
Introduction to LLMs



Let’s level set this…
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By systems people…

…for systems people
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By systems people…
(and the Internet)

…for systems people
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Math

Mechanics

Systems

https://www.kingarthurbaking.com/recipes/tiramisu-recipe
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Math

Mechanics

Systems

Flash Attention
(NeurIPS)

(powers 
training)

Paged Attention
OSDI

(powers 
inference)
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Math

Mechanics

Systems

    1 - LLM Core      2 - Pytorch/GPUS

    3 - Inference      4 - Dist. Training

Today

Tomorrow



8

In terms of 
GPUs, 

we have no 
GPUs
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$ pip install torch transformers numpy scipy

$ hf download gpt2 model.safetensors

$ wget 
https://huggingface.co/gpt2/resolve/main/pytorch_model.bin
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Interactive Hands-on



11

No AI was used in the making of these slides.

… but can be used in the 
consumption of these slides.



LLM Core
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Language Models

● Probability distribution over words
○ “IIT Bombay is an institute in the city of ……….”

● Enable machines to understand, generate human language 
● What all can they do?

○ QnA
○ Content Generation
○ Text Summarization
○ Sentiment Analysis
○ Conversation
○ Translation
○ Code Generation
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Causal Language Modelling or Next Token Prediction

https://pm.dartus.fr/posts/2025/how-llm-generate-text/ 15



Model Creation Pipeline
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What does it take to train an LLM?

Data

Hardware
(GPUs + CPUs 
+ Networking)

Software/DL 
Framework

Model
Math
(Deep 

Learning)

Trained Model

Model
(weights)

Training and Fine tuning

https://code-b.dev/blog/large-language-model
18

https://code-b.dev/blog/large-language-model


How do we use the models?

Model
(weights)

  Inference 
Platform

Hardware

Inference Server + Engine

https://ranjankumar.in/large-language-models-llms-inference-and-serving/ 
19

https://ranjankumar.in/large-language-models-llms-inference-and-serving/


https://dnacap.fund/insights/exploring-the-landscape-of-large-language-models
20

A partial timeline
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https://dnacap.fund/insights/exploring-the-landscape-of-large-language-models

Sizes keep increasing



Types of LLM Models

https://huggingface.co/learn/llm-course/chapter1/4

Encoder

Decoder

Input
s

Outputs

Output 
Probabilities

Builds a 
representation 
of input 
features

Uses the 
encoder’s 
representation 
along with other 
inputs to 
generate a target 
sequence

Model type Used for Example 
tasks

Example 
Models

Encoder-only 
models

Understanding 
input

Classification, 
embeddings

BERT, 
RoBERTa, 
SBERT

Decoder-only 
models

Generative 
tasks

Text generation GPT, 
LLaMA, 
Mistral

Encoder-decod
er models/ 
sequence-to-se
quence models

Generative 
tasks that 
require an 
input

Translation, 
summarization, 
QA

T5, BART, 
MarianMT

Each of these parts can be used independently depending on the task 29



Transformer: Base architecture of all LLMs today!!

Encoder Decoder

30Image source: Attention Is All You Need



How to use an LLM: First Look
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What is hugging face?

https://huggingface.co/

● Global hub for Large Language models
○ Spaces (try the models)
○ Models: 1.8M models
○ git clone <modelurl>
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Hands-on: the simplest hello world

from transformers import pipeline

pipe = pipeline(model="gpt2")

pipe("Paris is the capital of")

-> HF Pipeline
-> HF Model
-> Pytorch Model
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First, let’s look at inputs
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Tokenizer

● Prepare inputs for models:

TokenizerInputs Tokens Conversion

Lookup 
Table

Input IDs

When running inference on a model, it is necessary to use the same tokenizer to tokenize the inputs as 
that was used for pretraining the model.
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Tokenizer

● Types

○ Word-level 

We are learning systems for LLMs.

[‘We’, ‘are’, ‘learning’, ‘systems’, ‘for’, 
‘LLMs’, ‘.’]

Problems
1. Separate tokens for different versions of 

same word - e.g., ‘system’ and ‘systems’
2. Results in large vocabulary
3. Limiting vocabulary results in bad 

performance
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Tokenizer

● Types

○ Character-level 

We are learning systems for LLMs.

['W', 'e', ' ', 'a', 'r', 'e', ' ', 'l', 'e', 'a', 'r', 'n', 'i', 'n', 
'g', ' ', 's', 'y', 's', 't', 'e', 'm', 's', ' ', 'f', 'o', 'r', ' ', 'L', 

'L', 'M', 's', '.']
Problems

1. Tokens contain minimal semantic 
information individually.

2. Produces longer sequences, limiting the 
effective input size of language models.
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Tokenizer

● Types

○ Subword-level 

■ Breaks text into units that are smaller than words but larger than 
characters.

■ Frequently-used words stored as entire tokens

■ Rare or unknown words are split into smaller, meaningful chunks 
("cats" → "cat" + "s").
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Tokenizer code snippet

from transformers import AutoTokenizer

tok = AutoTokenizer.from_pretrained("gpt2")

text = “Hello, how are you?”

print(tok(text))

print(tok.tokenize(text))

 

Display input_ids

Display tokens

1. https://huggingface.co/openai-community/gpt2/blob/main/tokenizer.json
2. https://huggingface.co/openai-community/gpt2/blob/main/vocab.json
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https://huggingface.co/openai-community/gpt2/blob/main/tokenizer.json
https://huggingface.co/openai-community/gpt2/blob/main/vocab.json


Tokenizer hands-on

Tokenize the following:

1. cat 
2. superman 
3. spiderman 

Examine the number of tokens

See the tokenizer config.json / vocab.json: 
https://huggingface.co/openai-community/gpt2/tree/main
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https://huggingface.co/openai-community/gpt2/tree/main


What is a model?
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Configuration 

Code (in a DL 

framework)

Weights

Architecture 

3

4

2

1

Obtained after extensive 
training

Also known as 
checkpoints
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Encoder + Decoder 
Transformer Model

GPT2 
(Decoder Only)
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Try it out: config/dummy model

from transformers import 
GPT2Config, GPT2LMHeadModel

config = GPT2Config()

m1 = GPT2LMHeadModel(config)
m1
m1.lm_head.weight

GPT2Config {
  "activation_function": "gelu_new",
  "attn_pdrop": 0.1,
  "bos_token_id": 50256,
  "embd_pdrop": 0.1,
  "eos_token_id": 50256,
  "initializer_range": 0.02,
}

GPT2LMHeadModel(
  (transformer): GPT2Model(
    (wte): Embedding(50257, 768)
    (wpe): Embedding(1024, 768)
    (drop): Dropout(p=0.1, 
inplace=False)
    (h): ModuleList(
      (0-11): 12 x GPT2Block(
…)
) 46



Try it out: loading weights

from transformers import AutoModelForCausalLM

m2 = AutoModelForCausalLM.from_pretrained("gpt2")

m2.lm_head.weight

Check the weights of the model
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Try for another model (big model)

from transformers import AutoConfig

config =  AutoConfig.from_pretrained("Qwen/Qwen3-32B")
print(config)

from transformers import AutoModelForCausalLM

model = AutoModelFromCausalLM.from_config(config)
model

from transformers import AutoModelForCausalLM

model = AutoModelFromCausalLM.from_pretrained(config)

~70 GB

Don’t do these!
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Let’s download the weights - cutting out HuggingFace

wget https://huggingface.co/gpt2/resolve/main/pytorch_model.bin
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Loading and examining the State Dict

import torch

mw = torch.load(“pytorch_model.bin”)

list(mw.keys())[:10]

mw['wte.weight']

['wte.weight',
 'wpe.weight',
 'h.0.ln_1.weight',
 'h.0.ln_1.bias',
 'h.0.attn.bias',
 'h.0.attn.c_attn.weight',
 'h.0.attn.c_attn.bias',
 'h.0.attn.c_proj.weight',
 'h.0.attn.c_proj.bias',
 'h.0.ln_2.weight']
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Using these weights

Use nn.Module.load_state_dict More on this later, for now:
We have an hierarchy of 

modules

def extract(sd, prefix):
  prefix = prefix + “.”
  return {k.split(prefix)[1]: v for k, v in sd.items() 
if k.startswith(prefix)}
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Pytorch prereqs: nn.Module

HF
(Application)

Pytorch
(DL Framework)
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All components and models 
are nn.Modules

torch.nn.ModuleList

Each Module has a “forward” 
method

nn.Module
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Embedding

import torch.nn as nn
embedding_layer = nn.Embedding(10000, 128)

input_indices = torch.tensor([10, 25, 300])

output_embeddings = 
embedding_layer(input_indices)

output_embeddings.shape
torch.Size([3, 128])

What will happen if 
you try to embed 

“20000”?

54

● Transformation of input tokens into a high-dimensional vector space
○ Capture semantic relationship between tokens
○ Dimensionality: 

■ Smaller vectors (lower dimensions) – more efficient to keep in memory or to 
process, 

■ Bigger vectors (higher dimensions) – capture intricate relationships, prone to 
overfitting.



Embedding

● Positional Encoding 
○ Information about the 

positions of the tokens 
added into embeddings 
to specify the order

○ Eg: RoPE used in Llama

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
55



Embedding - using the real weights

l = torch.nn.Embedding(50257, 768)
l.load_state_dict(extract(mw, “wte”))

<All keys matched successfully>

apple = l(torch.tensor(tok("apple")["input_ids"]))
fruit = l(torch.tensor(tok("fruit")["input_ids"]))
man = l(torch.tensor(tok("man")["input_ids"]))
woman = l(torch.tensor(tok("man")["input_ids"]))
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>>> torch.cosine_similarity(man, apple)
tensor([0.1757], grad_fn=<SumBackward1>)
>>> torch.cosine_similarity(fruit, apple)
tensor([0.3985], grad_fn=<SumBackward1>)
>>> torch.cosine_similarity(man, woman)
tensor([0.5863], grad_fn=<SumBackward1>)
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Linear

linear_layer = torch.nn.Linear(10, 20)

input = torch.randn(5, 10)
output = linear_layer(input)

print(linear_layer.weight)
print(linear_layer.bias)

https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

GPT2 uses Conv1D instead of linear

Y = WX + B
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Activations

1. RELU
2. Sigmoid
3. Tanh
4. GELU

..

https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

Y = WX + B
Can only capture linear 

relations

Sigmoid
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MLP layer - standalone
class MLP(nn.Module):
    def __init__(self, dim1, dim2, dim3):

    super().__init__()
    self.fc1 = nn.Linear(dim1, dim2)
    self.activation = nn.GELU()
    self.fc2 = nn.Linear(dim2, dim3)

    def forward(self, x):
        x = self.fc1(x)
        x = self.activation(x)
        x = self.fc2(x)
        return x

mlp = MLP(20, 64, 3)
x = torch.randn(5, 20)
output = mlp(x) https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

20x64 64x3

G
E
L
U

5x20

60



MLP layer in GPT2
from torch import nn
from transformers.pytorch_utils import Conv1D

class GptMLP(nn.Module):
    def __init__(self):
        super().__init__()
        self.c_fc = Conv1D(768 * 4, 768)
        self.gelu = torch.nn.GELU()
        self.c_proj = Conv1D(768, 768 * 4)
        self.dropout = torch.nn.Dropout(p=0.1, inplace=False)

    def forward(self, x):
        x = self.c_fc(x)
        x = self.gelu(x)
        x = self.c_proj(x)
        x = self.dropout(x)
        return x

>>> extract(mw, “h.0.mlp”).keys()
dict_keys(['c_fc.weight', 'c_fc.bias', 
'c_proj.weight', 'c_proj.bias'])
>>> m = GptMLP()
>>> m.load_state_dict(extract(mw, “h.0.mlp”))
<All keys matched successfully> 61



Conv1D

● Convolution, but represents Cross Correlation in this context.
● Think of it as a simple transposed Linear layer

LinearTranspose

Input

Weight

Bias

Output

62



Dropout

● Regularization technique to prevent 
overfitting/improve generalization

● A certain percentage of values are 
ignored or “dropped out " during each 
forward and backward pass, making the 
model’s architecture dynamically 
different for each training batch.

● Only used during training

m = nn.Dropout(p=0.2)

input = torch.randn(5, 2)

output = m(input)

https://arxiv.org/abs/1207.0580
https://www.datacamp.com/tutorial/dropout-regularization-using-pytorch-guide
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LayerNorm

● Normalization technique that standardizes 
the inputs across the feature dimension of 
each individual sample

● Mean and variance are calculated across all 
dimensions of each input sample

https://arxiv.org/pdf/1607.06450
https://jaykmody.com/blog/gpt-from-scratch#layer-normalization

layer_norm = torch.nn.LayerNorm(10)

x = torch.randn(3, 10)  
out = layer_norm(x)

64https://livebook.manning.com/wiki/categories/llm/layer+normalization



The heart of the 
transformer!!!

Masked . Multi-head . Attention
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Attention

What attention needs to do?

American shrew mole

One mole of carbon dioxide

Take a biopsy of the mole

6.02 X 1023

Differs based on context
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Attention

Token Embedding is a table lookup

Attention helps pass the context information from 
other vectors

67
**Subsequent slides on attention from https://youtu.be/eMlx5fFNoYc?si=9lYxz2a8dyimrm78



In vector space
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In vector space
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Query
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Query
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How is query 
calculated?
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How is query 
calculated?
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Key

77



How well does key and query match?
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Softmax
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Attention 
Pattern

84

Which words 
are relevant to 
which other 
words
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Values



86
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Representing attention
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Attention is all you need

https://www.instagram.com/p/DHy
TTONT4dl/



Attention hands-on

Let’s write our own attention implementation 

For correctness, we will compare with Pytorch’s Scaled Dot Product Attention 
(SDPA) implementation
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Masked . Multi-head . Attention

94



We don’t want what comes next to effect the previous words attention
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Attention Mask
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Attention Mask

https://jalammar.github.io/illustrated-gpt2/ 99



Masked . Multi-head . Attention
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Multi head attention

https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention

1. q, k and v are now split into a number 
of smaller pieces, called “heads”.
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Multi head attention

https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention

2. Attention is calculated per head
3. Finally, we “merge” the heads by concatenating the results

Calculate
 

self 

attention

Merge 

heads
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How torch sdpa looks internally

T = q.shape[2]

att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))

att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))

att = F.softmax(att, dim=-1)

y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

return y
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The 2 sides of attention

It is THE engine of 
the current LLM 
wave

LLMs wouldnʼt be what they are without the 
Attention block.

It is very costly - 
O(n2)

Where n is sequence length.

Longer and longer context becomes harder.
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Attention is a lot more than this!

Sliding Window

Don’t focus on all tokens

Linear

Switch from Quadratic form to an 
approximate linear form

Hybrid

Mix and match various Attention blocks 
in a single architecture

Example of latest research work here:
Jet-Nemotron from Nvidia, 21’st Aug, 2025: 
https://www.arxiv.org/pdf/2508.15884 

Search for the best attention 
configuration for a task + 

hardware
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https://www.arxiv.org/pdf/2508.15884


LM Head and Softmax

The last Linear layer is called LMHead

LM Head
Linear

(768, 50257)

wte
Embedding

(50257, 768)

Bs, seqlen, 768 768 x 50257@

logits logprobs

Softmax

Pick a 
token
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Let’s write our own GPT2 Model: 
Putting the layers together
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2 step exercise

Write the module definitions of all the 
components of the GPT2 Model and load 
the weights.

Win condition:

No error in loading from the state dict.

import torch
mw = 
torch.load(“pytorch_model.bin”)
list(mw.keys())

Write the forward definitions of all the 
components.

Win condition:

When running `generate.py`, you are 
able to generate proper English 
sentences.

116

http://generate.py


Step 1: Create the modules (fill in gpt2.py)

Complete the init for all modules using the provided empty classes and hints

1. Use the weight state dict keys to get the class field names. 
2. Use the comments as hints for the type (LayerNorm, Conv1D, MLP, 

Embedding or another Module)
3. Use the dict values shapes as the size for the Conv/Embedding/LayerNorm 

modules

It works if you are able to load weights without error.

Final answer is in: solutions/gpt_with_init.py
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Step 2: Fill in the forwards

Now, write the forward for all the modules. Use the 
MLP you have already written.

This is how a single block should look.

Make the same calls in the way shown and make 
sure to add the residual.

If everything works, run generate.py which should 
produce good output.
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Recap

Transformer architecture - GPT2

From here:

- Explore other features of HF ecosystem
- Explore other model architectures (ex. Advancements like MoE)
- Explore Hybrid architectures (Mamba attention)
- Explore Multi-modal LMs such as image, video, audio
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