
Introduction to LLMs

Let’s level set this…

2

By systems people…

…for systems people

3

By systems people…
(and the Internet)

…for systems people

4

5

Math

Mechanics

Systems

https://www.kingarthurbaking.com/recipes/tiramisu-recipe

6

Math

Mechanics

Systems

Flash Attention
(NeurIPS)

(powers
training)

Paged Attention
OSDI

(powers
inference)

7

Math

Mechanics

Systems

 1 - LLM Core 2 - Pytorch/GPUS

 3 - Inference 4 - Dist. Training

Today

Tomorrow

8

In terms of
GPUs,

we have no
GPUs

9

$ pip install torch transformers numpy scipy

$ hf download gpt2 model.safetensors

$ wget
https://huggingface.co/gpt2/resolve/main/pytorch_model.bin

10

Interactive Hands-on

11

No AI was used in the making of these slides.

… but can be used in the
consumption of these slides.

LLM Core

12

Language Models

● Probability distribution over words
○ “IIT Bombay is an institute in the city of ……….”

● Enable machines to understand, generate human language
● What all can they do?

○ QnA
○ Content Generation
○ Text Summarization
○ Sentiment Analysis
○ Conversation
○ Translation
○ Code Generation

14

Causal Language Modelling or Next Token Prediction

https://pm.dartus.fr/posts/2025/how-llm-generate-text/ 15

Model Creation Pipeline

17

What does it take to train an LLM?

Data

Hardware
(GPUs + CPUs
+ Networking)

Software/DL
Framework

Model
Math
(Deep

Learning)

Trained Model

Model
(weights)

Training and Fine tuning

https://code-b.dev/blog/large-language-model
18

https://code-b.dev/blog/large-language-model

How do we use the models?

Model
(weights)

 Inference
Platform

Hardware

Inference Server + Engine

https://ranjankumar.in/large-language-models-llms-inference-and-serving/
19

https://ranjankumar.in/large-language-models-llms-inference-and-serving/

https://dnacap.fund/insights/exploring-the-landscape-of-large-language-models
20

A partial timeline

21
https://dnacap.fund/insights/exploring-the-landscape-of-large-language-models

Sizes keep increasing

Types of LLM Models

https://huggingface.co/learn/llm-course/chapter1/4

Encoder

Decoder

Input
s

Outputs

Output
Probabilities

Builds a
representation
of input
features

Uses the
encoder’s
representation
along with other
inputs to
generate a target
sequence

Model type Used for Example
tasks

Example
Models

Encoder-only
models

Understanding
input

Classification,
embeddings

BERT,
RoBERTa,
SBERT

Decoder-only
models

Generative
tasks

Text generation GPT,
LLaMA,
Mistral

Encoder-decod
er models/
sequence-to-se
quence models

Generative
tasks that
require an
input

Translation,
summarization,
QA

T5, BART,
MarianMT

Each of these parts can be used independently depending on the task 29

Transformer: Base architecture of all LLMs today!!

Encoder Decoder

30Image source: Attention Is All You Need

How to use an LLM: First Look

32

What is hugging face?

https://huggingface.co/

● Global hub for Large Language models
○ Spaces (try the models)
○ Models: 1.8M models
○ git clone <modelurl>

33

Hands-on: the simplest hello world

from transformers import pipeline

pipe = pipeline(model="gpt2")

pipe("Paris is the capital of")

-> HF Pipeline
-> HF Model
-> Pytorch Model

34

First, let’s look at inputs

35

Tokenizer

● Prepare inputs for models:

TokenizerInputs Tokens Conversion

Lookup
Table

Input IDs

When running inference on a model, it is necessary to use the same tokenizer to tokenize the inputs as
that was used for pretraining the model.

36

Tokenizer

● Types

○ Word-level

We are learning systems for LLMs.

[‘We’, ‘are’, ‘learning’, ‘systems’, ‘for’,
‘LLMs’, ‘.’]

Problems
1. Separate tokens for different versions of

same word - e.g., ‘system’ and ‘systems’
2. Results in large vocabulary
3. Limiting vocabulary results in bad

performance

37

Tokenizer

● Types

○ Character-level

We are learning systems for LLMs.

['W', 'e', ' ', 'a', 'r', 'e', ' ', 'l', 'e', 'a', 'r', 'n', 'i', 'n',
'g', ' ', 's', 'y', 's', 't', 'e', 'm', 's', ' ', 'f', 'o', 'r', ' ', 'L',

'L', 'M', 's', '.']
Problems

1. Tokens contain minimal semantic
information individually.

2. Produces longer sequences, limiting the
effective input size of language models.

38

Tokenizer

● Types

○ Subword-level

■ Breaks text into units that are smaller than words but larger than
characters.

■ Frequently-used words stored as entire tokens

■ Rare or unknown words are split into smaller, meaningful chunks
("cats" → "cat" + "s").

39

Tokenizer code snippet

from transformers import AutoTokenizer

tok = AutoTokenizer.from_pretrained("gpt2")

text = “Hello, how are you?”

print(tok(text))

print(tok.tokenize(text))

Display input_ids

Display tokens

1. https://huggingface.co/openai-community/gpt2/blob/main/tokenizer.json
2. https://huggingface.co/openai-community/gpt2/blob/main/vocab.json

41

https://huggingface.co/openai-community/gpt2/blob/main/tokenizer.json
https://huggingface.co/openai-community/gpt2/blob/main/vocab.json

Tokenizer hands-on

Tokenize the following:

1. cat
2. superman
3. spiderman

Examine the number of tokens

See the tokenizer config.json / vocab.json:
https://huggingface.co/openai-community/gpt2/tree/main

42

https://huggingface.co/openai-community/gpt2/tree/main

What is a model?

43

Configuration

Code (in a DL

framework)

Weights

Architecture

3

4

2

1

Obtained after extensive
training

Also known as
checkpoints

44

Encoder + Decoder
Transformer Model

GPT2
(Decoder Only)

45

Try it out: config/dummy model

from transformers import
GPT2Config, GPT2LMHeadModel

config = GPT2Config()

m1 = GPT2LMHeadModel(config)
m1
m1.lm_head.weight

GPT2Config {
 "activation_function": "gelu_new",
 "attn_pdrop": 0.1,
 "bos_token_id": 50256,
 "embd_pdrop": 0.1,
 "eos_token_id": 50256,
 "initializer_range": 0.02,
}

GPT2LMHeadModel(
 (transformer): GPT2Model(
 (wte): Embedding(50257, 768)
 (wpe): Embedding(1024, 768)
 (drop): Dropout(p=0.1,
inplace=False)
 (h): ModuleList(
 (0-11): 12 x GPT2Block(
…)
) 46

Try it out: loading weights

from transformers import AutoModelForCausalLM

m2 = AutoModelForCausalLM.from_pretrained("gpt2")

m2.lm_head.weight

Check the weights of the model

47

Try for another model (big model)

from transformers import AutoConfig

config = AutoConfig.from_pretrained("Qwen/Qwen3-32B")
print(config)

from transformers import AutoModelForCausalLM

model = AutoModelFromCausalLM.from_config(config)
model

from transformers import AutoModelForCausalLM

model = AutoModelFromCausalLM.from_pretrained(config)

~70 GB

Don’t do these!

48

Let’s download the weights - cutting out HuggingFace

wget https://huggingface.co/gpt2/resolve/main/pytorch_model.bin

49

Loading and examining the State Dict

import torch

mw = torch.load(“pytorch_model.bin”)

list(mw.keys())[:10]

mw['wte.weight']

['wte.weight',
 'wpe.weight',
 'h.0.ln_1.weight',
 'h.0.ln_1.bias',
 'h.0.attn.bias',
 'h.0.attn.c_attn.weight',
 'h.0.attn.c_attn.bias',
 'h.0.attn.c_proj.weight',
 'h.0.attn.c_proj.bias',
 'h.0.ln_2.weight']

50

Using these weights

Use nn.Module.load_state_dict More on this later, for now:
We have an hierarchy of

modules

def extract(sd, prefix):
 prefix = prefix + “.”
 return {k.split(prefix)[1]: v for k, v in sd.items()
if k.startswith(prefix)}

51

Pytorch prereqs: nn.Module

HF
(Application)

Pytorch
(DL Framework)

52

All components and models
are nn.Modules

torch.nn.ModuleList

Each Module has a “forward”
method

nn.Module

53

Embedding

import torch.nn as nn
embedding_layer = nn.Embedding(10000, 128)

input_indices = torch.tensor([10, 25, 300])

output_embeddings =
embedding_layer(input_indices)

output_embeddings.shape
torch.Size([3, 128])

What will happen if
you try to embed

“20000”?

54

● Transformation of input tokens into a high-dimensional vector space
○ Capture semantic relationship between tokens
○ Dimensionality:

■ Smaller vectors (lower dimensions) – more efficient to keep in memory or to
process,

■ Bigger vectors (higher dimensions) – capture intricate relationships, prone to
overfitting.

Embedding

● Positional Encoding
○ Information about the

positions of the tokens
added into embeddings
to specify the order

○ Eg: RoPE used in Llama

https://machinelearningmastery.com/a-gentle-introduction-to-positional-encoding-in-transformer-models-part-1/
55

Embedding - using the real weights

l = torch.nn.Embedding(50257, 768)
l.load_state_dict(extract(mw, “wte”))

<All keys matched successfully>

apple = l(torch.tensor(tok("apple")["input_ids"]))
fruit = l(torch.tensor(tok("fruit")["input_ids"]))
man = l(torch.tensor(tok("man")["input_ids"]))
woman = l(torch.tensor(tok("man")["input_ids"]))

56

>>> torch.cosine_similarity(man, apple)
tensor([0.1757], grad_fn=<SumBackward1>)
>>> torch.cosine_similarity(fruit, apple)
tensor([0.3985], grad_fn=<SumBackward1>)
>>> torch.cosine_similarity(man, woman)
tensor([0.5863], grad_fn=<SumBackward1>)

57

Linear

linear_layer = torch.nn.Linear(10, 20)

input = torch.randn(5, 10)
output = linear_layer(input)

print(linear_layer.weight)
print(linear_layer.bias)

https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

GPT2 uses Conv1D instead of linear

Y = WX + B

58

Activations

1. RELU
2. Sigmoid
3. Tanh
4. GELU

..

https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

Y = WX + B
Can only capture linear

relations

Sigmoid

59

MLP layer - standalone
class MLP(nn.Module):
 def __init__(self, dim1, dim2, dim3):

 super().__init__()
 self.fc1 = nn.Linear(dim1, dim2)
 self.activation = nn.GELU()
 self.fc2 = nn.Linear(dim2, dim3)

 def forward(self, x):
 x = self.fc1(x)
 x = self.activation(x)
 x = self.fc2(x)
 return x

mlp = MLP(20, 64, 3)
x = torch.randn(5, 20)
output = mlp(x) https://medium.com/@muhammadraflyindrawan/understanding-multilayer-perceptron-the-foundation-of-modern-neural-networks-5b8bf757db99

20x64 64x3

G
E
L
U

5x20

60

MLP layer in GPT2
from torch import nn
from transformers.pytorch_utils import Conv1D

class GptMLP(nn.Module):
 def __init__(self):
 super().__init__()
 self.c_fc = Conv1D(768 * 4, 768)
 self.gelu = torch.nn.GELU()
 self.c_proj = Conv1D(768, 768 * 4)
 self.dropout = torch.nn.Dropout(p=0.1, inplace=False)

 def forward(self, x):
 x = self.c_fc(x)
 x = self.gelu(x)
 x = self.c_proj(x)
 x = self.dropout(x)
 return x

>>> extract(mw, “h.0.mlp”).keys()
dict_keys(['c_fc.weight', 'c_fc.bias',
'c_proj.weight', 'c_proj.bias'])
>>> m = GptMLP()
>>> m.load_state_dict(extract(mw, “h.0.mlp”))
<All keys matched successfully> 61

Conv1D

● Convolution, but represents Cross Correlation in this context.
● Think of it as a simple transposed Linear layer

LinearTranspose

Input

Weight

Bias

Output

62

Dropout

● Regularization technique to prevent
overfitting/improve generalization

● A certain percentage of values are
ignored or “dropped out " during each
forward and backward pass, making the
model’s architecture dynamically
different for each training batch.

● Only used during training

m = nn.Dropout(p=0.2)

input = torch.randn(5, 2)

output = m(input)

https://arxiv.org/abs/1207.0580
https://www.datacamp.com/tutorial/dropout-regularization-using-pytorch-guide

63

LayerNorm

● Normalization technique that standardizes
the inputs across the feature dimension of
each individual sample

● Mean and variance are calculated across all
dimensions of each input sample

https://arxiv.org/pdf/1607.06450
https://jaykmody.com/blog/gpt-from-scratch#layer-normalization

layer_norm = torch.nn.LayerNorm(10)

x = torch.randn(3, 10)
out = layer_norm(x)

64https://livebook.manning.com/wiki/categories/llm/layer+normalization

The heart of the
transformer!!!

Masked . Multi-head . Attention

65

Attention

What attention needs to do?

American shrew mole

One mole of carbon dioxide

Take a biopsy of the mole

6.02 X 1023

Differs based on context

66

Attention

Token Embedding is a table lookup

Attention helps pass the context information from
other vectors

67
**Subsequent slides on attention from https://youtu.be/eMlx5fFNoYc?si=9lYxz2a8dyimrm78

In vector space

68

In vector space

69

70

71

72

Query

73

Query

74

How is query
calculated?

75

How is query
calculated?

76

Key

77

How well does key and query match?

78

79

80

81

82

Softmax

83

Attention
Pattern

84

Which words
are relevant to
which other
words

85

Values

86

87

Representing attention

89

92

Attention is all you need

https://www.instagram.com/p/DHy
TTONT4dl/

Attention hands-on

Let’s write our own attention implementation

For correctness, we will compare with Pytorch’s Scaled Dot Product Attention
(SDPA) implementation

93

Masked . Multi-head . Attention

94

We don’t want what comes next to effect the previous words attention

95

96

97

Attention Mask

98

Attention Mask

https://jalammar.github.io/illustrated-gpt2/ 99

Masked . Multi-head . Attention

102

103

104

105

106

107

108

Multi head attention

https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention

1. q, k and v are now split into a number
of smaller pieces, called “heads”.

109

Multi head attention

https://jalammar.github.io/illustrated-gpt2/#part-2-illustrated-self-attention

2. Attention is calculated per head
3. Finally, we “merge” the heads by concatenating the results

Calculate

self

attention

Merge

heads

110

How torch sdpa looks internally

T = q.shape[2]

att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))

att = att.masked_fill(self.bias[:,:,:T,:T] == 0, float('-inf'))

att = F.softmax(att, dim=-1)

y = att @ v # (B, nh, T, T) x (B, nh, T, hs) -> (B, nh, T, hs)

return y

111

The 2 sides of attention

It is THE engine of
the current LLM
wave

LLMs wouldnʼt be what they are without the
Attention block.

It is very costly -
O(n2)

Where n is sequence length.

Longer and longer context becomes harder.

112

Attention is a lot more than this!

Sliding Window

Don’t focus on all tokens

Linear

Switch from Quadratic form to an
approximate linear form

Hybrid

Mix and match various Attention blocks
in a single architecture

Example of latest research work here:
Jet-Nemotron from Nvidia, 21’st Aug, 2025:
https://www.arxiv.org/pdf/2508.15884

Search for the best attention
configuration for a task +

hardware

113

https://www.arxiv.org/pdf/2508.15884

LM Head and Softmax

The last Linear layer is called LMHead

LM Head
Linear

(768, 50257)

wte
Embedding

(50257, 768)

Bs, seqlen, 768 768 x 50257@

logits logprobs

Softmax

Pick a
token

114

Let’s write our own GPT2 Model:
Putting the layers together

115

2 step exercise

Write the module definitions of all the
components of the GPT2 Model and load
the weights.

Win condition:

No error in loading from the state dict.

import torch
mw =
torch.load(“pytorch_model.bin”)
list(mw.keys())

Write the forward definitions of all the
components.

Win condition:

When running `generate.py`, you are
able to generate proper English
sentences.

116

http://generate.py

Step 1: Create the modules (fill in gpt2.py)

Complete the init for all modules using the provided empty classes and hints

1. Use the weight state dict keys to get the class field names.
2. Use the comments as hints for the type (LayerNorm, Conv1D, MLP,

Embedding or another Module)
3. Use the dict values shapes as the size for the Conv/Embedding/LayerNorm

modules

It works if you are able to load weights without error.

Final answer is in: solutions/gpt_with_init.py
117

Step 2: Fill in the forwards

Now, write the forward for all the modules. Use the
MLP you have already written.

This is how a single block should look.

Make the same calls in the way shown and make
sure to add the residual.

If everything works, run generate.py which should
produce good output.

118

Recap

Transformer architecture - GPT2

From here:

- Explore other features of HF ecosystem
- Explore other model architectures (ex. Advancements like MoE)
- Explore Hybrid architectures (Mamba attention)
- Explore Multi-modal LMs such as image, video, audio

119

