
xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

Day 1

Task 0: xv6 setup and usage

In this lab we will learn how to use the xv6 operating system, how system calls are implemented and
explore examples of OS metadata and actions. Follow the instructions given below for xv6 installation.

Run the following commands to get the xv6 source (if you are using lab machine)

●​ wget https://www.cse.iitb.ac.in/~puru/courses/xv6-public.tar.gz
●​ tar -xf xv6-public.tar.gz
●​ cd xv6-public
●​ make

If you are using a Linux environment on a personal machine, you will need a set of other tools as well for
xv6 … use the following commands to install required packages.

●​ sudo apt-get update
●​ sudo apt -y install build-essential gdb coreutils util-linux sysstat

procps wget tar qemu

The booklet describing/listing all source files is available here. (also after make in the xv6 dir)

xv6 runs on an x86 emulator called QEMU that emulates x86 hardware on your local machine. In the xv6
folder, run the following command sequence to boot xv6 on an emulated machine. QEMU boots the
machine and if all goes well drops to a user space shell program.

●​ make clean
●​ make qemu

Build everything and start qemu with the VGA console in a new window and the serial console in
your terminal. To exit, either close the VGA window or press Ctrl-c or Ctrl-a x in your terminal.

●​ make qemu-nox

Like make qemu, but run with only the serial console. To exit, press Ctrl-a x. This is particularly
useful over SSH connections.

Ctrl+A X ⇒ First press Ctrl + A (A is just key a, not the alt key), 2. then release the keys and
press X.

●​ At the shell start with ls to list available programs and then execute a few of them.
●​ Look up the implementation of these programs. For example, cat.c is the source code for the cat

program. Execute and lookup the following: ls, cat, wc, echo, grep etc. Understand how the
syntax in some places is different from normal C syntax.

●​ Check the makefile to see how the program wc is set up for compilation.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

Hola, fellow OS enthusiasts! We are absolutely ​
stoked that we have the xv6 setup ready. It's time
to roll up our sleeves, dive into the xv6 code, and ​
get our hands dirty. Our journey begins with the ​

task of adding a simple program to xv6, and then​
we'll take it up a notch by introducing some brand ​

new system calls. This is where the real fun begins! ​
 🚀 🤓

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

Task 1: Adding new programs to the xv6 environment

(a) pingpong with xv6

Write a program named pingpong which reads a text file as an input argument and outputs “pong” to
the standard output every time it finds the word “ping” in the input text file.

I.​ Additions to the Makefile will be needed to add new programs for compilation and also to be
included as part of the xv6 viewable disk image (to read/write files e.g., abc.txt, hello.txt) via
fs.img.

Look for the following keywords in the makefile.
UPROGS=\​
Lists names of all user programs which are available after xv6 boot up.

EXTRA=\
List of all files (source programs and other scripts and data files) available after xv6 bootup.

fs.img
List of files to be added to the xv6 startup disk (imagefile).

II.​ The xv6 environment itself does not have a text editor or compiler support, all source code of
programs has to be written and compiled on the host machine, all its references added to the
makefile and then via fs.img and xv6.img be used with the QEMU emulator.

III.​ You will need to include input text files for e.g., “pingpong.txt” or any other files in the xv6 OS
image that you will use for running the program.​
Refer to the README included in xv6 image.

IV.​ Sample input file pingpong.txt is provided as part of this lab archive file.​
Consider using wc.c, source code of the wc program as a starting point for this task.

Sample usage

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

(b) inception (shell in a shell)

Write a program cmd.c that creates a child process — the child process executes a program, and the
parent process waits till completion of the child process before terminating. This program should use the
fork and exec system calls of xv6. The program to be executed by the child process can be any of the
sample xv6 programs and should be specified at the command line.
Refer to Sheet 66,85 of xv6 source code booklet for fork(), exec() system calls in xv6.

Sample usage

Task 2: Adding new system calls to xv6

To understand and work with system calls and process related information and action, the following files
of the xv6 OS are important —
usys.S, user.h, defs.h, sysproc.c, syscall.h, syscall.c, proc.h, proc.c​

●​ user.h contains the xv6 system call declarations
●​ usys.S contains a list of system calls exported by the kernel, and the corresponding invocation of

the trap instruction
●​ syscall.h contains the mapping of system call name to system call number
●​ syscall.c contains helper functions to handle the system call entry, parse arguments, and

pointers to the actual system call implementations
●​ sysproc.c contains the implementations of process related system calls
●​ defs.h is a header file with function declarations in the xv6 kernel
●​ proc.h contains the process abstraction related variable definitions

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

●​ proc.c contains implementations of various process related system calls, functions and the
scheduler, also contains the declaration of ptable, and several examples of functions
traversing/using the process list

●​ System call related functions are also listed in sysfile.c

All or most of these files will have to be used/updated to implement new system calls. New files, new
programs, new data files need to be added to xv6 via the xv6 Makefile.

All changes are to be followed by a clean compile and build, followed by executing xv6.

Note that xv6 itself does not have a text editor or compiler support, so all xv6 source code changes are on
the host machine then xv6.img and fs.img are used as inputs to QEMU.

(a) hello, system calls!

Implement a system call, with the following declaration worldpeace(), which prints the message “Systems

are vital to world peace !!” in the kernel mode. ​
The function cprintf is used for printing in the kernel mode (refer to sheet 30 line 3026 of xv6 source
code booklet for usage).
A simple test program worldpeace.c is also provided to test your implementation.
ChatGPT’s take on systems + world peace is here.​

Sample usage

Task 3: Probing the process implementation

(a) who all are ready?

Implement a system call, with the following declaration numberofprocesses() which returns the total
number of processes in READY(xv6 naming is RUNNABLE) state to the user program.

Refer to the PCB structure defined on line 2336 sheet 23 of xv6 source code booklet and lines 10-14 in
proc.c in the given source code to refer to struct ptable.

Refer to sheet 24 Line 2480 to understand how to iterate through the process table and sheet 23 Line
2334 to for the process state enum of xv6 source code booklet .​

A simple test program nump.c is also provided to test your implementation.

https://medium.com/@lakshyagour10/systems-are-vital-to-world-peace-662f63bc7b88
https://medium.com/@lakshyagour10/systems-are-vital-to-world-peace-662f63bc7b88
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://medium.com/@lakshyagour10/systems-are-vital-to-world-peace-662f63bc7b88
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

Sample usage

(b) status check

Implement a system call, with the following declaration whatsthestatus(int pid), which returns the parent
pid, prints the name of the parent process and the current state of the process given the pid of the
process.

The function cprintf is used for printing in the kernel mode (refer to sheet 30 line 3026 of xv6 source
code booklet for usage).

Please refer to the PCB structure defined on line 2336 sheet 23 of xv6 source code booklet and lines
10-14 in proc.c in the given source code to refer to ptable struct.

Refer to sheet 24 Line 2480 to understand how to iterate through the process table and sheet 23 Line
2334 to understand the process enum structure of xv6 source code booklet .

Refer to sheet 36 line 3631-3632 to refer argint usage of xv6 source code booklet
Note: argint, argstr, argptr are helper functions for handling system calls arguments.

A simple test program status.c is also provided to test your implementation.
Input should be in the format status 3 0 1 2 when “3” denotes the number of children to fork and 0
signifies Sleeping, 1 signifies Runnable and 2 signifies Zombie states.

Output should be in the format <pid> <status> <ppid> <parent_name> where pid represents the pid of
the child process for which status needs to be checked, ppid represents the parent pid and parent_name
represents the name of the parent.

Sample usage

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out​
An OS-internals hands-on workshop

Department of Computer Science ​
and Engineering, IIT Bombay

More Exercises (Optional)

1. you got siblings?​

Implement a system call int get_sibling() to print the details of siblings of the calling process to
the console and to return the number of siblings of the calling process. A sibling is all processes with the
same parent process.​
The output should be in the format of:
<pid> <process status>
<pid> <process status>
….​

Sample usage
$ my_siblings 6 1 2 1 0 2 0
4 RUNNABLE
5 ZOMBIE
6 RUNNABLE
7 SLEEPING
8 ZOMBIE
9 SLEEPING​

Sample user program my_siblings.c is provided. The program takes an integer n, followed by a
combination of 0, 1 and 2 of length n, as command line arguments— 0/1/2 specify the process state of
the n child processes. The (n+1) th child process executes the get_sibling() system call and displays the
output.

Hint: You need to find the process ID of the calling process, and process ID of its parent and traverse all
the PCBs and compare their parent PID with the parent of the calling process.

Sample usage

