
xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

Day 2

Task 1: Implementing the spawn system call

spawn — one call, many processes!

Implement a system call, with the following declaration int spawn(int n, int* pids) which creates n child
processes with a single system call.

● The system call must return 0 to the child processes and number of children created to the parent
process.

● Additionally, the pids array should contain the pids of the spawned children after the spawn
system call. The parent should gracefully reap all the child processes which are present in the
pids array.

A simple test program spawn.c is also provided to test your implementation.

Note: argint, argstr, argptr are helper functions for handling system calls arguments.
(Refer to sheet 65 line 6557 of xv6 source code booklet for argptr usage)

Refer to fork() system call implementation in proc.c to understand how a child process is created and
how the call handles return values for parent and child processes.

Sample usage

Task 2 : Memory handling with xv6

Following is a partial list of important files for the task:
syscall.c, syscall.h, sysproc.c, user.h, usys.S, vm.c, proc.c, trap.c, defs.h, mmu.h, memlayout.h,
kalloc.c

● sysproc.c, syscall.c, syscall.h, user.h, usys.S link user system calls to system call implementation
code in the kernel.

● mmu.h, memlayout.h and defs.h are header files with various useful definitions pertaining to
memory management.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

● vm.c contains most of the logic for memory management in the xv6 kernel, and proc.c contains
process-related system call implementations.

● trap.c contains trap handling code for all traps including memory access related exceptions (page
faults).

2.1. Is the virtual address space real?

Write a system call getvasize() that returns the size of the virtual memory used by a process. Specifically,
the system call should have the following interface:

int getvasize(int pid); // pid is argument to the call and amount of virtual memory
// used by the process as return value.

Hints:
(i) Look up and understand implementation of the sbrk system call in proc.c.

Also, check the struct proc data structure in proc.h
(ii) Refer to Sheet 38 of xv6 source code booklet for sbrk() system call in xv6.
(iii) Refer to discussion on Page 34 of the xv6 book .

Figure 1. After calling sbrk(1024)
to increase the process size by
1024.

The sbrk(n) system call is
implemented in the function
sys_sbrk() in sysproc.c that
allocates physical memory and
maps it into the process’s virtual
address space. The sbrk(n)
system call grows the process’s
memory size by n bytes, and then
returns the start of the newly
allocated region (i.e., the old size).

Figure1: Show memory image of
process in XV6. User Stack in
XV6 is 1 Page Follow by heap 2
upto KERNBASE.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

A sample program t_getvasize.c is available for testing.

2.2. What is your postal address?

Write a system call va2pa that returns the virtual address to physical address mapping from the page
table of the current process. Specifically, the system call should have the following interface:

uint va2pa(uint virtual_addr); // virtual address is the argument
// corresponding physical address is the return value

Hints:
(i) Lookup and understand the walkpgdir() function and understand usage of this function in the system
calls implemented in vm.c
(ii) Refer to Sheet 17 of xv6 source code booklet for sbrk() system calls in xv6.

Figure 2: Page table layout Figure 3: Virtual to physical address mapping

(iii) Refer to discussion on Page 29-32 of the xv6 book.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

Figure 2. A page table is stored in physical memory as a two-level tree. The root of the tree is a
4096-byte page directory that contains 1024 PTE references to page table pages. Each page table page
is an array of 1024 32-bit PTEs. The paging hardware uses the top 10 bits of a virtual address to select a
page directory entry. If the page directory entry is present, the paging hardware uses the next 10 bits of
the virtual address to select a PTE from the page table page that the page directory entry refers to. If
either the page directory entry or the PTE is not present, the paging hardware raises a fault.

Figure 3. A process’s address space starts at virtual address zero and can grow up to KERNBASE,
allowing a process to address up to 2 GB of memory. The file memlayout.h declares the constants for
xv6’s memory layout, and macros to convert virtual to physical addresses. When a process asks xv6 for
more memory, xv6 first finds free physical pages from the free page list and then adds PTEs to the
process’s page table that point to the new physical pages. xv6 sets the PTE_U, PTE_W, and PTE_P flags
in these PTEs. xv6 includes all mappings needed for the kernel to run in every process’s page table;
these mappings all appear above KERNBASE.

Use the above information to traverse the page table of a process and convert virtual address to physical
address.

Sample programs t_va_to_pa1.c and t_va_to_pa2.c are provided for testing.

Sample usage:

Q. Can you see what is interesting in the two outputs?

2.3. enter the page table!

Implement the following system calls to get details of the page table of a process.

int get_pgtb_size();
The system call has no arguments and returns the number of page table pages allocated to the current
process.

int get_usr_pgtb_size();

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

The system call has no arguments and returns the number of page table pages allocated for user space
memory for the current process.

int get_kernel_pgtb_size();
The system call has no arguments and returns the number of page table pages allocated for kernel space
memory for the current process. Recall kernel pages are mapped for virtual addresses above
KERNBASE.

A user-level program t_getpgtablesz.c is provided for testing. This program will call all the above system
calls before and after multiple sbrk() system calls.

Hint:
Walk the page table of a process by using the walkpgdir function and consider only those entries which
indicate mapping that are present (the present bit is set).

Sample usage

2.4. no escape from reality!

Next, report the physical memory (in pages) allocated for a process via a system call

int getpasize(int pid)

The call takes pid as an argument and prints the number of physical pages mapped to the virtual
addresses of a process (process virtual addresses).

NOTE: Count the number of mapped pages by walking the process page table and counting the number
of page table entries that have a valid physical address assigned.

You are provided with t_getpasize.c for testing,

Sample usage

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

We will use these system calls to test your implementation of Task 4 .

Hints:
(i) You can walk the page table of the process by using the walkpgdir function which is present in vm.c.
You can look up loaduvm and deallocuvm in vm.c to see how to invoke the walkpgdir function. To
compute the number of physical pages in a process, you can write a function that walks the page table of
a process in vm.c and invoke this function from the system call handling code.

(ii) xv6 has a 2-level page table organization. You need to calculate the size of the page table (total level 0
and level 1 pages). You need to iterate over the Page Directory Entries (PDEs) to check if a page is
assigned for storing Page Table Entries (PTEs) for that PDE.

Task 3: Page fault handling

Step 1: faulting page, page faulting, who is handling?

The default xv6 distribution does not handle the page fault trap explicitly.
Extended implementation of trap handler function in trap.c to explicitly handle a page fault. The handler
should print details of the page fault — pid of the process and faulting address which was accessed for
the trap.
The page fault trap defined in traps.h is T_PGFLT.

Refer to Sheet 34 of xv6 source code booklet for trap() handler in xv6.

Sample program t_pagefault.c is provided for testing.

Sample usage

Hints:

● Look at the arguments to the cprintf statements in trap.c to figure out how one can find the virtual
address that caused the page fault.

● Once you correctly handle the page fault, do break or return in order to avoid the cprintf and the add
proc->killed = 1 statement.

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

xv6 inside-out
An OS-internals hands-on workshop

Department of Computer Science
and Engineering, IIT Bombay

More Exercises (Optional)

entrypoint 2.0
Implement a new type of system_call_handler which instead of handling TRAP NUMBER 64 handles
trap number say 65. You should implement a new type of system call fork2() that uses a different trap
number (65) instead of the commonly used trap number 64 (which corresponds to the traditional int
$0x64 instruction for making system calls in x86 assembly). Using a different trap number, such as 65 in
this exercise, allows you to define and handle your custom system calls independently from the standard
ones.
In order to achieve this you should first need to look at how system calls are handled in xv6. List of files
you will need to refer to: syscall.c syscall.h defs.h user.h proc.c sysproc.c proc.h trap.c trap.h
usys.S

Note: First you need to write a trap handler and after that you can implement a new type of system call.
(TRAP NUMBER for SYSCALL is 64 but the actual system call number of system call like fork in
xv6 is 1). Refer to sheet 32 33 and 34 of xv6 source code booklet

Hint: usys.s has the entry point from where int n is called. :)

One way to implement this is to change only the entry point to the trap handler and use the same
underlying system call implementation for all system calls. A simple test program userfork2.c is provided
to test your implementation.

Sample usage:

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

