Xv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Day 3

Task 1: Lazy page allocation

Step 1: mmap()

Implement a simple version of the mmap system call in xv6. The mmap system call should take one
argument: the number of bytes to add to the size of the process. The process size in this context refers to
the heap size. The mmap call grows the size of the process (virtual) address space and expects a
mapped physical address.

However, mapping from a virtual to physical address is required only when the virtual address is
accessed!.

4GB =

Kernel Space
(Code, Data, ...)

KERNBASE - 2GB

Heap (after mmap)
Process Size (virtual)

User Stack user part of address space A
Guard Page Process Size (virtual) (after first mmap) Physical Process Size Physical Process Size
« user part of address space user part of address space user part of address space
Executable Code/Data (before first mmap) (before first mmap) (after first mmap)
0 J

Figure 4: Virtual and physical addresses before and after mmap().

The figure shows the working of mmap system call. when user call say mmap(1024) the virtual address
space of the process increases however the physical address space remains the same.

Assume that the number of bytes is a positive number and is a multiple of the page size. The system call
should return a value of 0 if any invalid inputs are provided. In the valid case, the system call should

expand the process's size by the specified number of bytes, and return the starting virtual address of the
newly added memory region.

However, the system call should NOT allocate any physical memory corresponding to the new virtual
pages. When the user accesses a memory-mapped page, a page fault will occur, and physical memory
should only be allocated as part of the page fault handling (lazy page allocation and mapping) ... this
Step 3.

Xv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Hints:

(i) mmap() system call is similar to sbrk() (with code related to memory allocation and mapping pages ...
kalloc, growproc, allocuvm, mappages etc.)

(i) Understand the implementation of the sbrk system call and mmap() system call will follow a similar
logic.

(iii) Refer to Sheets 19, 25, 38 of xv6 source code booklet for the related system calls.

(iv) Refer to Page 34 of the xv6 book.

Source file t_mmap.c is provided for testing.

Sample usage:

=1

% mmap
Process size before mmap 12288 Bytes

Process size after mmap 16384 Bytes
Accessing a address allocated by mmap 3F88
Pagefault occured at address eip O@xba addr 9x3+80--kill proc

Step 2: the big reveal

Next, modify the page fault handler logic, to allocate memory on demand for the page (need to check if
the page faulting address is a valid address!). Once a physical page is allocated and mapped for the
virtual address being accessed, the handler returns and the access is re-attempted and should not result
in a page fault.

Hints:

e Look at the arguments to the cprintf statements in trap.c to figure out how one can find the virtual
address that caused the page fault.
Use PGROUNDDOWN(va) to round the faulting virtual address down to the start of a page boundary.
You may invoke allocuvm (or write another similar function) in vm.c in order to allocate physical
memory upon a page fault.
You can add your page fault handler in vm.c and call it from trap.c.
Check whether the page fault was actually due to a lazy allocated page or an actual page fault (For
example - illegal memory access).

Note: it is important to call switchuvm to update the CR3 register and TLB every time you change
the page table of the process. This update to the page table will enable the process to resume
execution when you handle the page fault correctly

A user program t_lazy.c is provided for testing.

Sample usage:

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf

Xv6 inside-out Department of Computer Science

An OS-internals hands-on workshop and Engineering, IIT Bombay

[2F R I F R]
m D= om0
M M w M MmwImMmMmWumMmImEHE M M
W wmo\nonmwmw|mo|mnow|mo|m 3 N m

("]
g m oy

d

to be lazy is human, to share is humane!
note: solving this question is optional, rest is not optional.

xv6 does not support shared memory by default in this Part. We would like you to implement a
mechanism for Shared Memory. For this part we want you to implement Shared Memory support for xv6.
You will need to implement 4 System Calls namely

uint attach_shm(uint key); — Allocated one page shared memory identified by KEY to process
address space.

uint create_shm(uint key); — Attaches Shared memory identified by KEY to process add space.
int detach_shm(uint key); — Deattaches Shared memory from process add space.
int destroy_shm(uint key); — Destroy Shared memory identified by KEY
The program in t_shm_client.c is provided for testing.
$ shm client

Creating Shared Memory with key 18
Writing Data Into Shared Memory From Parent: Systems are vital to WORLD PEACE !!

Accessing Shared Memory In Child Process: Systems are vital to WORLD PEACE !!
Detached Shared Memory From Child Address Space
Destoryed Shared Memory From Parent

Hints:

(i) need to maintain some form of table in the kernel in order to keep track of all the shared memory
identified by key and when you do call attach this table can be used to give you PA associated with the

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

shared memory identified by key.

(ii) need to call mappages() from trap.c in order to map the physical address in shared memory table to
virtual address for the shared memory in attach_shm() .In order to do this, you'll need to delete the static
in the declaration of mappages() in vm.c, and you'll need to declare mappages() in the trap.c. Add this
declaration to the trap.c before any call to mappages(): int mappages(pde_t *pgdir, void *va, uint size,
uint pa, int perm);

Optional Task:
entrypoint 2.0

Implement a new type of system_call_handler which instead of handling TRAP NUMBER 64 handles
trap number say 65. You should implement a new type of system call fork2() that uses a different trap
number (65) instead of the commonly used trap number 64 (which corresponds to the traditional int
S0x64 instruction for making system calls in x86 assembly). Using a different trap number, such as 65 in
this exercise, allows you to define and handle your custom system calls independently from the standard
ones.

In order to achieve this you should first need to look at how system calls are handled in xv6. List of files
you will need to refer to:

sysc.all.c syscall.h defs.h user.h proc.c sysproc.c proc.h trap.c trap.h usys.S

Note: First you need to write a trap handler and after that you can implement a new type of system call.
(TRAP NUMBER for SYSCALL is 64 but the actual system call number of system call like fork in

xv6 is 1).

Refer to sheet 32 33 and 34 of xv6 source code booklet

Hint: usys.s has the entry point from where int n is called. :)

One way to implement this is to change only the entry point to the trap handler and use the same
underlying system call implementation for all system calls.

A simple test program userfork2.c is provided to test your implementation.

Sample usage:

https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

XVv6 inside-out Department of Computer Science

An OS-internals hands-on workshop and Engineering, IIT Bombay

README
hello.txt
pingpong.txt
cat

head

cmd

pingpong

echo

15800
16244
15164

24

D00 = O N L R

18644
15300
14764

grep
init
kill

1
1
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p
p

14348

Zombie

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Task 2: Blast from the past

Step 1: Implement smalloc system call

Implement a system call called smalloc with declaration char* smalloc(void)
which increases the size of the process (virtual) space by one page (4096 bytes), and maps it to a physical
page. The virtual address of the process if to be kept page aligned.

The characteristic of this system call is that while every call changes the process (virtual) address space
usage (size) the same physical page is used for mapping the virtual address range (in effect providing a
shared memory region). Note that smalloc is a system call and can be invoked from across processes or
multiple times in a single process and sets up multiple instances of execution with a shared physical page.

Implementation notes:

Needs logic to store and reuse a reserved physical page for multiple mappings.

Needs careful handling of freeing memory mappings to a shared page. By default xv6 has no support
for page sharing and frees pages whenever a process exits.

Support needs to be added to make sure that pages are not freed on page table cleanup or on any
other action when the physical page may still be shared via other mappings.

xv6 functions of interest —

growproc, allocuvm, deallocuvm, freevm, mappages, kalloc, ..

Uncomment the lines corresponding to counter1 and final, compile and execute the file t1.c to test your
implementation.

Usage: t1 <number of processes to fork>

Sampe usage:

Now, uncomment the two lines corresponding to counter2 present in t1.c to observe that different smalloc()
calls return the same shared area even though the virtual addresses differ

p.s.: PID values, Total Ticks taken need not match.

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Step 2: race to the bottom
This task depends on and uses the smalloc system call.

Understand the program specified in the file t2.c and execute it in xv6 to observe its outputs. Uncomment all
the lines present in t2.c before compiling

Usage: t2 <number of processes>

Sample usage

Do we have a race condition yet?

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Task 3: Context switching mechanism
Step 1: count switch-in and switch-out in xv6

xv6 uses a per—-CPU process scheduler. Each CPU calls a void scheduler (void) after setting itself
up. The scheduler keeps looping infinitely, doing the following:

= choose a process to run

= swtch to start running that process

- Eventually, that process transfers control via swtch back to the scheduler.
Refer to sheet 27 to understand the existing scheduler function (present in proc.c) in xv6 and get
familiar with it.

The functioning of the swtch system call is as follows:
void swtch(struct context **old, struct context *new);

Save the current registers on the stack (populating) struct context, and save its address in *old (this is the
old context).

Switch stacks to newcontext (new — esp) and pop previously saved registers.

Refer to implementation in swtch.S

P1 P2
When is sched() called?
exit() ' yield() | exit() ‘ ‘ sleep() ‘
syscall
User Space
Kernel Space
sys_exit() trapret sched ()
|
sched()
L sys_loop/wait
swtch(p->context, sched()
scheduler) returns {| yield() ‘ ‘ forkret() ‘ ‘ sleep() ‘
L to here
scheduler () sleep/yield/forkret
L swtch(scheduler, | Figure 2: Locations in xv6 code where sched() is
p->context) .
invoked and where sched() returns to.
Figure 1: Depiction of system call flow in process
scheduling

Refer to swtch.S in the xv6 source code to familiarize yourself with the underlying assembly code for
saving and loading registers while context switching.
Figure 1 describes the sequence of scheduler, sched and swtch and Figure 2 shows the location in xv6

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

code where it is called from where it returns to when rescheduled.

Implement a system called cscount(int pid) to count the number of context switches for a process
with a given pid, i.e. you need to count both the number of switch-in and switch-out of that particular
process.

Hint: Can add fields in proc struct to store the per process context switch in and out values. Understand
the logic of sched in proc.c and when it is called. Note that the scheduler picks up a user space process
to run on the CPU whereas sched switches back to the scheduler again once the process is done. sched
is called after a timer interrupt when a process becomes a zombie or when a process goes to a blocked
state.

NOTE: The user program provided cscount.c has a simple implementation to check the cscount ()
system call.

The given user program forks child processes and calls the cscount() just before the child starts
executing, and calls the system call cscount() again just before the child exits.

The output format is pid [process pid] switch in [context switch in count], switch out [context
switch out count].

Your output should give a switch in count = 1 and switch out count = 0 just before the process starts
executing since this is the first time the process is getting the share of the CPU. The switch in and out
count at the end can be any number depending on the time taken by the process to execute and the
number of context switches it went through.

Sample usage

$ cscount
Scheduler: DEFAULT

switch in [1],switch out [©]
4 started

pid [5] switch in [1],switch out [©]
Child 5 started

[1],switch out [©]

5] switch in [1621],switch out [1628]
hild pid: 5 ted

in [1622],switch out [1621]
=d

switch i
: 4 exitec

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Step 2: Waiting for execution statistics

Implement a new system call wait2 similar to wait, but with more functionalities, in order to check the
performances of xv6 scheduling algorithms. Specifically, it will have the following interface:

int wait2(int *wtime, int *runtime);

The call takes two arguments, pointers to variables that denote the amount of time the

process spent waiting for the CPU and the time spent executing on the CPU. It waits for a child process to
exit and fills the waiting time and run time (both are in terms of ticks counted in the trap handler. Note that
xv6 is configured to generate 200 ticks per second for a 2GHz CPU, which corresponds to a tick every
5ms. You may however report just the tick count.) in wtime and runtime buffer, respectively, for the
process that is exiting and return its pid. Return -1 if the calling process has no children.

The waiting time of a process is defined as the time spent by the process in the RUNNABLE state (ready
to run and waiting for CPU), and run time is the time spent by the process on the CPU (time is in ticks).

NOTE: The user programs provided tasklb.c have a simple implementation to check the wait2()
system call.

The wait2 call will be useful for understanding how a scheduling policy affects the times of every Process.

Hints:

e Logging of durations/timings will need tracking down all events where the state of the process
changes between WAITING, RUNNABLE, RUNNING etc. and appropriate duration updates via
variables in the PCB entry for the process.

e An implementation of the wait system call exists in xv6 and can be the starting point for the
wait2 implementation — a copy of the code of wait is a good starter for the implementation of
wait2.

e You can initialize wtime and runtime in the allocproc function in the proc. c file.

Note: It is important to keep in mind that the process table struct ptable is protected by a lock.

You must acquire the lock before accessing this structure for reading or writing and must release the lock
after you are done.

Sample usage

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Child
Child pid exited with pid: 8, Waiting Time: 58, Run Time:
i 7 exited wi id: 7, Waiting Time: 58, Run Time:

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Task 4: Process scheduling and extensions
Step 1: actions express priorities ... or is it the other way round?

A priority-based scheduler selects the process with the highest priority for execution. In case two or more
processes have the same priority, we choose them in a round-robin fashion. The priority of a process can
be in the range [0,100]. The smaller value will represent a higher priority. Set the default priority of a
process as 60. To change the default priority add a new system call set_priority which can change
the priority of a process.

int set_priority (int pid, int priority)

The system call should set the priority of a process with a given pid and return the pid of the process. The
scheduler should then schedule the process based on the set priority.

Hint: You also need to slightly modify the scheduler () function in proc.c to change the logic to
choose the process having higher priority to schedule instead of the one used by the default round robin
in xv6.

The user programs provided task4a.c have a simple implementation to check the set_priority()
system call.

Sample usage

Note: If multiple processes have the same priority, they will be executed in the default round-robin fashion
(first sample output) and if processes have different priorities (second sample output), the one with a
lower priority number (i.e. higher priority) will execute before the ones with a higher priority number (i.e.
lower priority).

This effect is visible in the increased waiting time of lower priority processes.

Scheduler: PRIORITY BASED

8, Waiting Time: 111, Run Time: 56
ith pid: 9, Waiting Time: 110, Run Time: 54
ed with pid: 18, Waiting Time: 110, Run Time: 56

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

Scheduler: PRIORITY BASED

Child 12

Child 12
d 13 creat 7
d 13 fini
d 14 creat 7

d 14

d pid: 12 ex i pid: 12, Waiting Time: ©, Run Time: 58

d pid: (1 ith pid: 13, Waiting Time: 58, Run Time: 56
d pid: 14 with pid: 14, Waiting Time: 114, Run Time: 60

Step 2: The big slice

Implement the following system call int set_quanta(int pid, int quanta), which sets the time
slice quanta of a process with the given pid. This system call will allow you to give more time to a process
overriding the default slice of 1 quanta/tick implemented in xv6.

You need to add a specific field to the process structure (e.g. current slice, extra_slice) at proc. h to hold
the current time slice value. You should create the syscall to set quanta and modify the scheduler function
to reset current_slice to extra_slice at process wakeup.

You also need to modify trap.c to handle the time slice logic when timer interrupts come for a process
to give up the CPU on the clock tick. Look at the case of what happens when
T_IRQO + IRQ_TIMER interrupt occurs.

Note:. Change the modification in scheduler () in proc.c made for the previous task back to the default
scheduling logic and add a line to update the process’s current slice value.

The user programs provided task4b.c have a simple implementation to check the set_quanta()
system call.

Note: The process with a higher quanta should have a lesser waiting time than others since it gets more
time (opportunity) to execute at a time (and T.Q. in output implies “Time Quanta”)

Sample usage:

The process with a higher time quanta (pid = 4) finishes before every one as it has the largest time
quanta (T.Q. = 8) and has a waiting time 0 since it utilizes its full quanta to complete its execution. Similar
is the case process with pid = 5 with respect to the process with pid = 6. So you need to make sure that
the process with a higher time quanta has a lesser waiting time than those with lesser time
quanta.

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

set gquanta Scheduler: DEFAULT
.Q. [8]

: B, Run Time: 3
e: 34, Run Time:
ime: 68, Run Time:

Scheduler: DEFAULT

Child

Child

Child [4]

Child pid: 4 exited with pid: 4, Waiting Time: 62, Run Time: 132
Child [5]

Child pid: d with pid: 5, Waiting Time: 195, Run Time: 132
Child [6]

Child pid: 6 exited with pid: 6, Waiting Time: 264, Run Time: 132

Scheduler: DEFAULT
child
child
child
child
child
Child i
Child - d with pid: 4, Waiting Time: 33
Child pic cited with pid: 5, Waiting Time: 33
Child : 6 e d with pid: 6, Waiting Time: 33

oh LA

LT,

@, Run Time: 168
, Run Time: 167
, Run Time: 168

3
3

XVv6 inside-out Department of Computer Science
An OS-internals hands-on workshop and Engineering, IIT Bombay

raskzb

set quanta Scheduler: DEFAULT
.0. [8800]

Child o8 .0. [8008]

Child ini

Child [e = .0. [8008]

Child '

Child pid: 4 with pid: 4, Waiting Time: @, Run Time: 132
Child pid: vith pid: 5, Waiting Time: 132, Run Time: 131
Child pid: 6 exited with pid: 6, Waiting Time: 263, Run Time: 136

