XV6 Inside-out

An OS-internals hands-on workshop

12-14 Dec 2024

what is an operating system??

a piece of software, a program!

purpose

APl —
- enable sharing of hardware between umsfc;e
multiple programs
A8 T perating Syst
. . . system call perating system kernel
- provide a set of abstractions and services interface mode

process, files, address space, pipe,
network endpoints, ...

about xv6

xv6 - a simple, Unix-like teaching operating system
- based on Unix v6
- implemented in C

- two versions, one for x86 and one for RISC-V
this hands-on — based on x86

- an example OS for hands-on understanding and usage

https://pdos.csail.mit.edu/6.1810/2024/xv6.html

https://pdos.csail.mit.edu/6.1810/2024/xv6.html

where to run/use xv6?

OS runs on (real/physical) hardware.
Xv6 runs on a (virtual) emulated machine provided via QEMU
benefits

- run xv6 in any machine (ARM, x86, RISC, etc.)
- kernel crashes can be handled gracefully.

- restarts are quicker

XVO setup

1. via virtualbox
load a pre-configure virtual machine image

2. source install on native Linux
fetch xv6 source, fetch dependencies (gemu, gcc, ...)

3. source install on Windows via WSL
install wsl, fetch

4. source install on MAC
install xcode, gemu, gcg, ...

more details on workshop webpage

XV6 source directory

README

Makefile

source files of programs/tools
source files of the operating system

$ cd xv6-public/
$ 1s

let's get started

$ cd xv6-public/
$ make

dd if=/dev/zero of=xv6.img count=10000

10000+0 records 1in

10000+0 records out

5120000 bytes (5.1 MB, 4.9 MiB) copied, 0.0914214 s, 56.0 MB/s
dd if=bootblock of=xv6.img conv=notrunc

1+0 records 1in

1+0 records out

512 bytes copied, 0.0411468 s, 12.4 kB/s

dd if=kernel of=xv6.img seek=1 conv=notrunc

349+1 records 1in

349+1 records out

179096 bytes (179 kB, 175 KiB) copied, 0.0349424 s, 5.1 MB/s

xv6.img is the emulated boot disk for gemu (look for QEMUOPTS in Makefile)
kernel is the compiled xv6 kernel to boot from
fs.img is the mounted file system after xv6 boot up

booting into xv6

_ * gemu-system-i386 -nographic -drive file=fs.img,index=1,media=disk,format=raw
Cd XV6 pu b-l--l C/ -drive file=xv6.1img,index=0,media=disk,format=raw -smp 2 -m 512
XV6. ..
make qemu_nox cpul: starting 1

cpu@: starting 0
sb: size 1000 nblocks 941 ninodes 200 nlog 30 logstart 2 inodestart 32 bmap

.l. S start 58

init: starting sh

cat README P

v n n n Un

11
00 11 512
wcC README README 2 2 2290
cat 2 3 13588
echo 2 4 12600
forktest 2 5 8032
grep 2 6 15464
Ctrl-a x (to quit) e i
kill 2 8 12652
1n 2 9 12548
1s 2 10 14736
mkdir 2 11 12732
rm 2 12 12708
sh 2 13 23196
stressfs 2 14 13380
usertests 2 15 56312
wcC 2 16 14128
zombie 2 17 12372
console 3 18 0
$

init and sh

After bootup, xv6 creates a init program which opens a shell in which common
commands and other user programs can be run

See contents of init.c and sh.c

what is happening via the Makefile”?

A makefile consists of set of rules
target: prerequisites
command

command
On change of any prerequisite files the commands associated with the target are executed

e.g.,

helloworld: helloworld.c
gcc helloworld.c -o helloworld

Check prerequisites of gemu-nox target in the xv6 Makefile

the gemu—-nox target

gemu-nox: fs.img xv6.img
$(QEMU) -nographic $(QEMUOPTS)

fs.img: List of files to be added to the xv6 startup disk (imagefile).

fs.img: mkfs README $ (UPROGS)
./mkfs fs.img README $ (UPROGS)

UPROGS is variable with list all user programs in the file system after xv6 boot up
README is a file to be added to the file system as well

What are the prerequisites of xv6.1img?

1. Adding a new file to xv6 environment

Create a new file abc. txt with (e srareing <
. 11 512
contents g L1on
“OS for world peace!” README 22 225
‘ cat 2 3 15464
echo 2 4 14348
. . forktest 2 5 8792
Our task is to add the file to the xv6 grep 2 6 18308
. init 2 7 14968
file system kill 2 8 14432
y
1n 2 9 14328
1s 2 10 16896
Should be able to boot into xv6, find medir 21 s
H H h 2 13 28492
abc.txt and cat (display) the file o eete 213 28ae2
usertests 2 15 62864
wcC 2 16 15892
Lookup usage of UPROG and EXTRA zonbie 2 17 1012
abc.tTXx
variables in Makefile console 318 0

$ cat abc.txt
0S for world peace!

$

2. Adding a new userspace program to xv6

Create a new userspace program hw.c which should print “Hello world!”.

Our task is to put the file and its compiled userspace program inside the xv6
file system

Should be able to boot into xv6, find the hw. ¢, display the file and run the
executable hw.

To get started look into user.h, types.h, wc.c .

Adding a new userspace program to xv6

S cat hw.c

#include "types.h"
#include "user.h"

int main()

{
printf(1, "Hello World\n");
exit();

}

system calls

spac A @
e
spac system

call

kernel
space

Kernel

The system call interface allows user programs to request OS services/functions

Sample system calls listed in user.h for user programs ...

fork(), exec(), wait(), getpid(), kill(), pipe(), read(), write(),
open(), close() etc.

Xv6 system calls

Syscall listing - can also be found in user.h

fork(), exec(), wait(), getpid(), kill(), pipe(), read(),
write(), open(), close() etc.

3. Using system calls in an userspace program

Implement a program that uses a system call to start a new process
(name it myshell.c)

Use fork system call to create the child process

The child process prints it PID and returns,

the parent (forking) process waits this child exits.

$ myshell

[P] Parent process PID: 3

[P] Waiting for child process w/ PID 4
[C] Child process PID: 4

[P] Child process with PID 4 exited
$

Use system calls in an userspace program (2)

Re-implement a version of the cat command (name it mycat. c)
Use fork system call to create the child process

Child process reads contents from STDIN writes them to STDOUT
Use system calls read and write (NOT printf and scanf).

$ mycat

>>> 0S 1is critical for world peace!
OS 1is critical for world peace!
>>>

Implement your own system call!

relevant xv6 source files ...

user.h xv6 system call declarations
usys.S assembly code for system call wrappers

syscall.h contains mapping of system call name to system call number

syscall.c contains helper functions to handle the system call entry, parse arguments,
and pointers to the actual system call implementations

sysproc.c contains the implementations of process related system calls

defs.h a header file with function declarations in the xv6 kernel

proc.h contains the process abstraction related variable definitions
proc.c contains implementations of various process related system calls,
functions and the scheduler

sysfile.c other system call implementation functions

function call vs. system call

«F*w»uh LY CQMQ V3 /gaiw u&

?vw_cq
.
Y
ep— o
g4 -
addresd Clock.

3 50O

Xv6 system call details

need mechanism to invoke system call and switch to kernel mode

ISA dependent
via assembly instruction (e.g., int 0x80)

need information about system call (system call number, arguments)
passed via hardware registers stored on stack

need support to save-restore process execution state
CPU registers stored on kernel stack (the xv6 trapframe)

system call action

system calls maintain and manipulate kernel state (variables)
and perform kernel functionality (e.g., create new process, add memory etc.)

// Per-process state
struct proc {

uint sz; // Size of process memory (bytes)
pde_tx* pgdir; // Page table
char xkstack; // Bottom of kernel stack for this
process
enum procstate state; // Process state
int pid; // Process ID
struct proc *parent; // Parent process
struct trapframe *tf; // Trap frame for current syscall
struct context xcontext; // swtch() here to run process
void *chan; // If non-zero, sleeping on chan
int killed; // If non-zero, have been killed
struct file xofile[NOFILE]; // Open files
struct inode *cwd; // Current directory
char name[16]; // Process name (debugging)
}s

What's next?

- Implementing your own system call

- Understanding memory management

- Adding your own memory management ideas
- Understanding the scheduling mechanism

- Updating the scheduler with new policies

- Synchronization primitives
- File system implementation

- Your imagination.....

