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Abstract

Constraint satisfaction problems(CSP) are mathematical problems whose solutions are those
states in the state space that satisfy constraints from the problem definition. CSPs have deep
roots in many of the known real world problems including timetabling, scheduling, planning, and
resource allocation. These problems are inherently combinatorial in nature and have constraints
to satisfy, where each constraint specifies a restriction on some set of variables in the problem.
A problem modeled as CSP can be effectively solved using CSP solvers which applies techniques
like Constraint propagation, Backtracking, local search.etc. However, modeling a combinatorial
problem in the constraint formalism requires significant expertise in constraint programming.
CSP solvers are not widely used in practice due to the inherent difficulty of modeling a problem
as CSP. Consequently, an expert has to identify the constraints and their domains to model a
problem as CSP.

Constraint acquisition is a technique by which a problem can be modeled as CSP by providing
examples and answering queries of the learner. It is the task of automatically acquiring a
constraint network formulation of a problem from a subset of its solutions and non-solutions. In
practice, the user may have already solved several instances of the problem without the help of a
solver and knows how to classify an example as a solution or a non-solution to it. Based on these
considerations, the overall aim of constraint acquisition is to induce from examples a general
constraint network that adequately represents the target problem. This approach allows to use
the learned network with different initial domains in order to solve further tasks supplied by
the user. This seminar is a review of the literature, algorithms, and developments in Constraint
acquisition and Multiple Constraint Acquisition with the focus on finding the challenges and
future scope in the area.
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Chapter 1

1 Introduction

1.1 Overview

Constraint Satisfaction problems(CSPs) are mathematical problems that exhibit high complexity,
requiring a combination of heuristics and combinatorial search methods to be solved in a reasonable
time. They are used in industries and other scientific areas where there is a need for planning,
scheduling, and allocating resources in order to improve the quality of service, reduce costs, or
optimize resource consumption. Examples range from power companies generating and distributing
electricity to hospitals planning their surgeries and public transportation companies scheduling their
time-tables. However, CSPs are not limited to scientific areas; they are applicable in many problem
domains.

Some well known domains and problems which are known to be CSP are: Bioinformatics, Network
design, Scheduling and related problems, Stochastic Constraint Programming, Time Tabling, Bin
packing problems, Clustering, Design and Configuration, Distributed CSP/COP, Games and puz-
zles, and other combinatorial problems. In other words, Boolean Satisfiability (SAT), Satisfiability
Modulo Theories (SMT) and Answer Set Programming (ASP) can be thought of and modeled as
Constraint Satisfaction Problems(CSP).

Constraint Programming(CP) is the programming paradigm used to solve Constraint Satisfaction
Problems. The solution involves modeling the problem as a constraint network and then solving
the constraint network using CSP solvers. A CSP then reduces to the problem of finding a solution
for a given constraint network. A constraint network can loosely be defined as a graph with nodes
and edges; where the nodes represent the scope of the constraints and the edges connecting the
nodes represent the constraints between the variables. A solution of the constraint network is an
assignment of variables to domain values that satisfies every constraint in the network.

In constraint programming, a distinction is made between model and data. The model contains
generic constraints while the data, on the other hand specifies the features of a problem instance.
The cost of learning the model can be amortized over the lifetime of the model which motivates the
acquisition of Constraint models. In all these applications of combinatorial problems it is very hard
to acquire the constraints and criteria. i.e. the model needed to specify the problem. Even if the
model has been obtained at some point, it needs to be to changed over time to reflect changes in
the environment. In short, a generalized model is unavailable for some CSP in some domain to be
used with different initial domains.



1.2 Problem Statement

Constraint acquisition is the technique by which a constraint network for a problem is acquired
with the help of examples given to the learner. Assuming the constraints of the problem can be
constructed with the set of relations provided to the learner, the aim of constraint acquisition is to
induce from a set of examples, a general constraint network that can represent the target problem,
which is the problem that the user has in mind. This approach then allows the constraint network
learned from the acquisition procedure to be used with different initial domains in order to solve
further tasks supplied by the user.

There are two acquisition approaches: Active constraint acquisition or Passive constraint acquisition,
depending upon the learning method. In Passive constraint acquisition the learner cannot ask
queries to the user. The learner has to learn from the positive and negative examples provided by
the user. Here the learner has to inform the user about the state of it’s version space and whether
the version space has converged. On the other hand, in Active constraint acquisition, the learner
can choose an example and ask whether it is a solution or not of the target problem. The number
of examples required to acquire a constraint network is significantly reduced if queries are selected
carefully. However, when acquiring constraint networks, computing good queries is a hard problem.

In the classic query generation strategy, regardless of the classification of the query, the size of the
version space is reduced by half which ensures the convergence to the target constraint network
in a logarithmic number of queries. In the same classic setting, a query can be generated in time
polynomial in the size of the version space. However, when acquiring constraint networks, query
generation becomes NP-hard. This leads to variants of the queries that the learner can ask, from
partial queries to recommendation queries, and where the user can provide background knowledge
to the learner to aid in the constraint acquisition process, which in turn makes the constraint
acquisition with quick convergence or acquisition with fewer queries an interesting problem.

1.3 Outline

The seminar report has been organized as follows:
Chapter 1 gives an Introduction to Constraint acquisition;
Chapter 2 deals with the Terminology and Related work;
Chapter 3 deals with Multiple Constraint Acquisition;
Chapter 4 deals with the Conclusion and Future Scope;
This is followed by the references of the publications.



Chapter 2

2 Related Work

2.1 Introduction

Constraint Programming (CP) provides a powerful paradigm for solving combinatorial problems.
The success of constraint programming comes from its efficiency to solve combinatorial problems
represented as constraint networks. However, the specification of constraint networks still remains
limited to specialists in the field since constraint networks are much more complex to acquire than
simple conjunctive concepts represented in propositional logic. While in conjunctive concepts the
atomic variables are pairwise independent, in constraint satisfaction there are dependencies amongst
them. Each constraint of the constraint system is expressed as a clause and the constraint system
can be expressed in conjunctive normal form (CNF).

Let’s see the example of Sudoku to better understand the constraint acquisition problem.

SUDOKU: Sudoku [4] is a logic puzzle with 9 X 9 grid. The grid must be filled with numbers
from 1 to 9 in such a way that all the rows, columns and the 9 non overlapping 3 X 3 squares
contain the numbers 1 to 9. The target network has 81 variables with domains of size 9, and 810
binary # constraints on rows, columns and squares. Assuming the user knows positive and negative
examples of Sudoku and constraint language A = {=, #} made available to the learner; the bias of
6480 binary constraints needs to be acquired for the constraint system by answering the queries of
the learner or by providing enough examples until the learner has converged on the target constraint
network. This technique of acquiring the constraint network is called Constraint Acquisition.

2.2 Terminology

Constraint Language / Constraint Library: A constraint language is a set = {rq,...,r;} of ¢
relations over some subset of Z. The learner owns a language of relations from which it can build
constraints on specified sets of variables. The relations are operators of some fixed arity that can
be used as they are or even combined to formulate constraints between the variables. Mostly all
derivable relations are not defined in the language. Those constraints which depend on the derivable
relations are defined using derivable constraints. Usually a language is also assumed to be known
to the learner, or else it is input to the learner.

E.g. In the Sudoku example the constraint language is A = {=, #}

Constraint bias: Given a prefixed vocabulary (X, D), the bias for the learning task is a set
B C Brp. Set B of constraints built from the constraint language on the vocabulary. These are
relations from the language whose scope is defined on the finite set of variables.



E.g. If A = {<,#, >} it is possible to derive new constraint relations like {<, >} by combining the
existing relations. The whole set of relations that can be built from the constraint library forms the
constraint bias.

Vocabulary: For the constraint acquisition process, the user and learner needs to share the same
vocabulary to communicate. A vocabulary is a pair (X, D) such that X is a finite set {z1,...,2,}
of variables, and D is a finite subset of Z called the domain.

E.g. In the sudoku example, X stands for variables {x1, ..., 281} representing each number from
the squares while D stands for the domain of each variable; which is {1...9}

Constraints network: It is a set C of constraints on the vocabulary (X, D), X being the constraint
scope and D being the domain. A constraint network over a given vocabulary (X, D) is a finite set
C' of constraints. Each constraint ¢ in C' is a pair {var(c),rel(c)}, where var(c) is a sequence of
variables of X, called the constraint scope of ¢, and rel(c) is a relation over D|var(c)|, called the
constraint relation of ¢. For each constraint ¢, the tuples of rel(c) indicate the allowed combinations
of simultaneous value assignments for the variables in var(c). The arity of a constraint ¢ is given
by the size |var(c)| of its scope.

Example: An example e is an assignment on a set of variables from their domain range. It can be
classified as either positive or negative depending on whether the assignment satisfies the constraints
of the target constraint network. An example can be partial if only a proper subset of the variables
are given an assignment. A complete example on the other hand is an assignment of all variables
from their domain.

E.g. An example of Sudoku puzzle has all 9 X 9 squares filled in with numbers without any
constraints failing.

Training set: It is a set of positive or negative examples. It is input to the learner for passive
acquisition techniques.

E.g. A set of completely solved Sudoku with different initial configurations serve as positive ex-
amples ; whereas puzzle configurations where at least one or more rows or columns(similarly 3 X 3
subsquares) having duplicates can be deemed as negative examples in the training set.

Solution: An assignment e is a solution of C iff for all constraints ¢ in C, the constraint ¢ does not
reject the example e. In other words, a set of constraints C accepts an assignment e iff there does

not exist any constraint from constraint set rejecting e.

Assignment: An assignment can be either partial or complete depending upon the subset of the
variables involved. A complete assignment can be either a solution or non-solution.

Sol(C): The set of solutions of C
Concept: Given a vocabulary, a concept is a Boolean function defined over the domain of the

variables, assigning to each assignment a value in the set {0,1}. It is a map that assigns to each
example a value in {0,1}. Loosely said, a concept classifies an example as positive or negative.

10



Target concept: The concept that returns a 1 for example e if and only if e is a solution of the
problem the user has in mind. If the example e is not a solution then 0 is returned.

Consistent concept: If the concept is consistent with every example in that training set.

Query: A query is essentially a question about the constraint network that the user must answer
based on the target network.

Membership query: A query where a user is required to classify an example as positive or
negative.

Ask(e): A classification query asked to the user with variable(e) subset of X. The answer to Ask(e)
is yes if and only if the target network accepts e.

Partial queries: Partial queries are assignments of only a subset of the variables of the problem.

Recommendation query / AskRec(c): Asks a user whether or not a predicted constraint
belongs to the target constraint network.

Equivalence query: The user is requested to decide whether a proposed concept is equivalent
to the target. In case of a negative answer the user should provide with an example to show the
discrepancy between the 2 models. In a setting of constraint acquisition, asking a user equivalence
query is unreasonable as the user may not be able to articulate the constraints of the target network
directly. Given any bias and any target concept representable by a bias, the concept is learnable by
equivalence queries.

Generalization query: The user provides the variable types and based on these types, general-
ization queries ask the user whether or not a learned constraint can be generalized to other scopes
of variables of the same type as those on the learned constraint. This is based on an aggregation of
variables into types.

Admissible network: A constraint network C is said to be admissible for a bias B if for each
constraint ¢;; in C there exists a set of constraints {b}j, s bfj} in B such that ¢;; = bl-lj U...bfj
Identification/Learnability: Given a bias B, a training set £ on a vocabulary (X, D), and a
type TQ € {membership, equivalence} of queries, the identification problem for a target concept f
representable by I' is to find a sequence {q1, ..., ¢} of queries of type T'Q leading to the detection of
a constraint network C' representing f. If the length m of the sequence is polynomial in the number
| B| of constraints in the bias, we say that f is learnable by queries of type T'Q.

Consistency problem: Given a bias B and a training set E, the consistency problem is to
determine whether Cp(E) = ®. If the answer is “yes”, then a representation C' of some concept in

Cp(FE) must be returned.

Convergence problem: Given a bias B and a training set F, the convergence problem is to
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determine whether Cp(E) has converged. If the answer is “yes”, then a representation C' of the
target concept in Cp(E) must be returned.

Clausal representation: Given a bias B and a training set E, the clausal representation of Cp(E)
is the dual Horn formula.

Query generation problem: Given a bias B, a training set E, an integer ¢, (and optionally a
non-unary positive clause « in T'), the query generation problem is to find a query ¢ such that
K|7)(q) does not cover any clause in T' (resp. K7j(q) constraints(a)) and |K)(q)| = t.

Deciding whether such a query ¢ exists is called the query existence problem.

Intractability of query generation: The query existence problem is N P-complete for any value
of ¢, and thus the generation problem is N P-hard for any value of t.

Hitting sets: Given a collection of sets from some finite domain D, a hitting set is a set of elements
from D that hits every set by having at least one element in common with it.

Minimal / Irreducible hitting sets: They are hitting sets from which no element can be removed
without losing the property of being a hitting set.

Minimal Unsatisfiable Subset (MUS): Given an unsatisfiable system of constraints C, an MUS
of C'is a subset of those constraints that is unsatisfiable and minimal, in the sense that removing
any one of its elements makes the remaining set of constraints satisfiable.

Minimal Correction Subset (MCS): Given an unsatisfiable system of constraints C, MCS is a
subset of the constraints of an infeasible constraint system whose removal from that system results
in a satisfiable set of constraints and that is minimal in the same sense that any proper subset does
not have that defining property.

Community: A network or a graph is said to have community structure, if the nodes of the network

can be easily grouped into (potentially overlapping) sets of nodes such that the groups have more
internal edges than outgoing edges. Such a group is called a Community.

12



2.3 Related Work

Modeling constraint satisfaction problem requires knowledge from examples, which is done by it-
eratively improving upon the learned constraint network by adding new constraints learned from
each new example.

The next challenge to constraint acquisition is to reduce the dialog length between the user and the
learner, that is, to reduce the number of asked queries to get the target model. Several papers have
already proposed to use the structure of the constraint graph to decrease the number of examples
needed to learn the target constraint network.

2.3.1 Constraint acquisition

In the paper Constraint acquisition, [1] Bessiere et. al. states the theoretical questions regarding
constraint acquisition. They propose CONAC(Q), a system that uses a concise representation of the
learner’s version space into a clausal formula. They also discuss the computational properties of the
strategies and their practical effectiveness.

Analysis:

e The consistency problem can be solved in polynomial time.
e The convergence problem is coN P-complete

e Given any bias B and any target concept f representable by B, f is learnable by equivalence
queries.

e There exist biases B with fixed arity constraints, training sets FE, and target concepts f
representable by B that are not learnable by membership queries, even if E contains a positive
example.

Passive CONACQ.1 Algorithm

In Passive constraint acquisition, the learner must determine the state of its version space from the
pool of examples while having no control over the training set information given by the user. It
takes as input a bias B along with the training set E, and returns as output a clausal theory T that
encodes the version space Cp(FE).

The algorithm (fig 1, page 14) starts from the empty theory and iteratively expands it by encoding

each example in the training set. If e is negative, all concepts that accept z(e) are discarded from
the version space. This is done by expanding the theory with the clause consisting of all literals a(c)
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in K (x(e)). Dually, if e is positive, all concepts that reject x(e) is discarded from the version space.
This is done by expanding the theory with a unit clause (c) for each constraint ¢ in K(z(e)). If
the theory is no longer satisfiable after encoding the example, a collapse message is returned.

After processing all examples in the training set, a convergence procedure is called to determine
whether Cp(F) is reduced to a singleton set, or not. Finally CONACQ.1 returns the resulting
theory encoding Cp(E) together with the flag for convergence. As the convergence problem is
coN P-complete, a naive strategy for implementing the convergence procedure is to start from the
interpretation I, encoding the maximally specific network, and to explore the other models of T in
order to find an interpretation I for which the constraint networks ¢ and are not equivalent.

Algorithm 1: The CoNAcQ.1 algorithm.

Input: a bias B and a training set E
Output: a clausal theory T encoding Cg(E), a Boolean value v saying if convergence is reached

1 T<—©

2 foreach examplee € E do

3 K(Xx(e)) < {c € B| x(e) violates c}

4 if ye)=0thenT <« T A (\/CEK(M) a(c))
5 if ye)=1then T < T A Accpne) —2(0)
6 if T is unsatisfiable then return “collapse”
7

8

v < CONVERGENCE(T)
return (T, v)

Figure 1: Conacq.1 Algorithm |[1]

Analysis:

e Let (X,D) be a prefixed vocabulary, B bias, and E a training set. Let T be the clausal
representation of Cg(E). Then, I ¢ models(T) if and only iff ¢(I) ¢ Cp(E)

e The consistency problem can be solved in O(|E|.|B]) time.
e The update operation takes O(|B|) time.

e The intersection operation takes O((|E1| + |E2|).|B]|) time.
e The subset and equality tests take O(|E1].|E2|.|B|?) time.
e The membership test takes O(|E|.|B|) time.

e The prediction test takes O(|E|.|B]) time.

14



o If Cp(E) = ¢, then the maximally specific concept is unique and a representation of it can be
computed in O(|E|.|B|) time.

o If Cp(F) = ¢ and T is a monomial, then the maximally general concept is unique and a
representation of it can be computed in O(|E|.|B]) time.

Active CONACQ.2 algorithm

CONACQ.2 is an active learning version of the CONACQ algorithm where the learner can ask
membership queries. i.e. select an assignment x and ask the user to classify the assignment with
a positive or negative label. If z is a solution of the target problem the user answers yes; and no
otherwise. CONACQ.2 (fig 2, page 16) takes as input a constraint bias B, background knowledge
K for B, and a query generation strategy used by function QueryGeneration (fig 3, page 16) for the
generation of queries and returns a clausal theory 7' that encodes a constraint network representing
the target concept.

Each time an interdependency among constraints that is not captured by the background knowledge
K is discovered, we encode the interdependency as a logical no good that is stored in a set N to
avoid repeatedly discovering it. CON AC'Q.2 starts from an empty theory T" and iteratively expands
it by an example (z,y) formed by the query ¢ = x, and the user response y supplied. The query
generation process is implemented by QueryGeneration, which takes as input the bias B, the current
clausal theory T, the given background knowledge K, the current set of no goods N, and the given
strategy Strategy.

If there exists irredundant queries, QueryGeneration returns an irredundant query ¢ following Strat-
egy as much as possible, i.e. with |K7(q)| as close as possible to the specified ¢. If there is no irre-
dundant query, this means that convergence is reached and the theory encoding the target network
is returned. Otherwise, the query ¢ is supplied to the user for membership, who answers by yes or
no. If ¢ is classified as negative by the user, all concepts that accept ¢ must be discarded from the
version space. This is done by expanding the theory with the clause consisting of all literals a(c)
with ¢ in K(q). Dually, if ¢ is classified as positive, all concepts that reject ¢ must be discarded from
the version space. This is done by expanding the theory with a unit clause 4(c) for each constraint
cin K(q).
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Algorithm 4: The CoNAcQ.2 algorithm.

Input: a bias B, background knowledge K, a strategy Strateg
OQutput: a clausal theory T encoding the target network

1 T <« &; converged < false; N <« &
2 while —converged do

3 q < QUERYGENERATION(B, T, K, N, Strategy)

4 if g = nil then converged < true

5 else

6 if Ask(g) =nothenT < T A (Vcemq} a(c))
7 else T <~ T A Ncge(q) —a(©)

8 return T

Figure 2: Conacq.2 Algorithm [1]

Algorithm 5: QUERYGENERATION.

Input: the bias B, the clausal theory T, background knowledge K, a nogood set N, and a strategy Strategy
Output: a query q
1 gqenil,a«—o
2 while (T is not a monomial) and (q = nil) do
3 if (0 = &) and (T contuins non-unary unmarked clauses) then
4 read a non-unary unmarked clause « in T
5 € « 0; Assign t depending on Strategy
6 splittable «— (@ # D) A (T +€ < |a]) v (L — € = 0))
7 F «BUILDFORMULA(splittable, T, ¢, t, €)
8 if models(F A K A N) = & then
9 if splittable then € <€ + 1

10 else T < TUa(c) |a(c) ea}\ |}, o «— &
11 else

12 select I e models(F A K A N)

13 if Sol(p(I)) = & then

14 foreach CS € ConflictSets(@(I)) do

15 N <« NU{V .cc5alo)}

16 else

17 select any q in sol(g@(I))

18 if (—splittable) and (« # &) then mark o
19 if g = nil then g < IRREDUNDANTQUERY(T)

20 return q

Figure 3: Query Generation Algorithm [1]
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2.3.2 Quick Acquisition

Constraint Acquisition via Partial Queries |2] introduces an algorithm for Quick Acquisition called
QUACQ. QUACQ is an active learner which, in addition to membership queries, is able to ask the
user to classify partial queries. The algorithm asks partial queries to the user until it has converged
on a constraint network Cp equivalent to the target network Cp, or collapses. As opposed to
membership queries, partial queries do not involve all variables; they are assignments of only part
of the variables of the problem. Even if the user is not able to articulate the constraints of his
problem, the user is assumed to be able to decide if partial assignments of variables satisfies or
violates some requirements.

QUACQ takes as input a bias B on a vocabulary (X, D). QUACQ then iteratively generates partial
queries and asks the user to classify them. When the answer of the user is yes, QUAC(Q as usual
reduces the search space by removing constraints that reject the positive example. For a negative
answer, QUACQ focuses on a single constraint from the negative example. This is performed in a
number of queries logarithmic in the size of the example which allows QUACQ to converge on the
target network in a polynomial number of queries. Despite this good theoretical bound, QUACQ
may require a lot of queries to learn the target constraint network, especially when the problem is
highly structured and involves a large number of constraints. E.g. Sudoku.

The advantage of QUACQ over CONAC(Q comes in the case of a negative example where CONACQ
produces a non-unary positive clause on the candidate constraints for rejection, while QUACQ uses
partial queries to return exactly a constraint of the target network in logarithmic time. Another
advantage of QUACQ is that it provides less of a burden on the user. First, it often converges
quicker than other methods. Second, partial queries will be easier to answer than complete queries.
Third, the user does not need to give positive examples, which might be useful if the problem has
not yet been solved, and there are no examples of past solutions.

Algorithm

Bessiere et.al [2| explains the algorithm (fig 4, page 18) as given below. QUACQ initializes the
network C'p, it will learn to the empty set. If Cf, is unsatisfiable, the space of possible networks
collapses because there does not exist any subset of the given bias B that is able to correctly classify
the examples already asked of the user. QUAC(E) computes a complete assignment e satisfying Cf,
but violating at least one constraint from B. If such an example does not exist, then all constraints in
B are implied by C,, which implies convergence. If the constraint network has not been converged,
the example e is proposed to the user, who will answer by yes or no. If the answer is yes, the set
B(e) of all constraints in B that reject e can be removed from B. If the answer is no, it implies that
e violates at least one constraint of the target network Cp. The function FindScope (fig 5, page 19)
is then called to discover the scope of one of these violated constraints.

FindC (fig 6, page 20) will identify which one with the given scope is violated by the negative e.
If no constraint is returned, this implies a collapse as a constraint rejecting one of the negative
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Algorithm 1: QUACQ: Acquiring a constraint network
C'r with partial queries

1 O «+— 9.

2 while rrue do

3

if sol(C,) = @ then return ‘“‘collapse™;
4 choose e in DX accepted by (', and rejected by B;
5 if ¢ = nil then return “convergence on C,”;
6 if ASK (e) = yesthen B« B\ kpg(e);
7 else
8 ¢ < FindC(e,FindScope(e, @, X, false));
9 if ¢ = nil then return “collapse™;
10 else C';, < Cp U{c}:

Figure 4: Quacq Algorithm |[2]

examples could not be found in B. Otherwise, the constraint returned by FindC is added to the
learned network Cf,.

FindScope is a recursive function that takes as parameters an example e, two sets R and Y of
variables, and a Boolean ask query. An invariant of FindScope is that e violates at least one
constraint whose scope is a subset of R U Y. When FindScope is called with ask query = false,
we already know whether R contains the scope of a constraint that rejects e. If ask query = true
the user is asked whether e[R] is positive or not. If yes, all the constraints that reject e[R] from
the bias are removed, otherwise the empty set is returned. The line 4 is reached only in case e[R]
does not violate any constraint. We know that e[R U Y] violates a constraint. Hence, as Y is a
singleton, the variable it contains necessarily belongs to the scope of a constraint that violates e[R
U Y]. The function returns Y. If none of the return conditions are satisfied, the set Y is split in two
balanced parts and a technique similar to QUICKXPLAIN [5] is applied to elucidate the variables
of a constraint violating e[R U Y] in a logarithmic number of steps.

The function FindC takes as parameter e and Y, e being the negative example that led FindScope
to find that there is a constraint from the target network C'r over the scope Y. FindC first removes
from B all constraints with scope Y that are implied by C, because there is no need to learn them.
The set A is initialized to all candidate constraints violated by e. If A no longer contains constraints
with scope Y, ¢ is returned, which will provoke a collapse in QUACQ.

An example eq is chosen in such a way that contains both constraints rejecting ey and constraints

satisfying eg. If no such example exists, this means that all constraints in A are equivalent w.r.t
Cr[Y]. Any of them is returned except if A is empty. If a suitable example is found, it is proposed
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Algorithm 2: Function FindScope: returns the scope
of a constraint in C't
function FindScope(in e, R, Y, ask_query): scope:
begin

1 if ask_query then

2 L if ASK (e[R]) = yes then B < B\ rp(¢[R]);
3 else return J;

4 if |Y'| = 1 then return Y;

5 split Y into < Y7, Y5 > such that |Yy| = [|Y|/2] :
6 S1 < FindScope(e, RU Y7, Yo, true);

7 So + FindScope(e, RUS1, Y1, (51 # 9));

8 return S; U So:

end

Figure 5: Findscope Algorithm [2]

to the user for classification. If classified positive, all constraints rejecting it are removed from B and
A, otherwise all constraints accepting that example are removed from A. To ensure quick converge,
we want a query answered yes to prune B as much as possible. This is best achieved when the
query generated in line 4 of QUAC() is an assignment violating a large number of constraints in B.

Analysis

e Given a bias B built from a language I, a target network C7r, a scope Y, FindC uses O(|I'|)
queries to return a constraint cy from Cop if it exists.

e Given a bias B, a target network Cp, an example e € DX \ sol(Cr), FindScope uses O(|S|.
log|X|) queries to return the scope S of one of the constraints of Cp violated by e.

e Given a bias B built from a language I' of bounded arity constraints, and a target network
Cr, QUACQ uses O(|Cr|.(log| X| + |I'|)) queries to find the target network or to collapse and
O(|B]) queries to prove convergence.

e QUACQ learns Boolean networks on the language {=, =} in an asymptotically optimal number
of queries.

e It can learn constraint networks with unbounded domains on the language {=} in an asymp-
totically optimal number of queries.

e It can learn Boolean constraint networks on the language {<} in O(n) queries.
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Algorithm 3: Function FindC: returns a constraint of
C'p with scope Y

function FindcC(in €. Y'): constraint;
begin

1 BFB\{(}/‘(‘L IZCy}'._

2 A+ {ey e BlY]|elEcy}:

3 if A = @ then return o;

4 while true do

5 choose ¢’ in sol(C[Y]) such that
Je, € Ae! = cand e £

6 if ¢/ = nil then

7 if A = @ then return nil:

8 L else pick ¢ in A; return c;

9 if ASK (¢/) = yes then

10 | B« B\rp(e): A« A\ rp(e):

11 else A+ Ankp(e):

end

Figure 6: FindC Algorithm [2]

e It does not learn Boolean networks on the language {<} with a minimal number of queries.

20



2.3.3 Ask & Solve

Bessiere et.al proposes ASKE&SOLVE [6], an elicitation based algorithm that solves a constraint
problem without the need of a constraint network representing it. The elicitation here consists
in asking the user to classify partial assignments as positive or negative. It tries to find the best
tradeoff between learning and solving to converge on a solution with as few queries to the user as
possible.

ASK € SOLVE learns constraints by asking queries during search. During the initial steps of
learning, if queries with complete assignment are tried, it leads to expensive constraint elicitation
steps on long negative assignments when the problem is critically constrained. If exploring first
plenty of short assignments is promoted it leads to a fast and cheap learning of constraints which
but it can be a waste of time if the problem is easy to solve.

The idea in ASKE&SOLVE is to try to extend step by step, a scope on which at least one assignment
is accepted by the target network C'r. Each time there is a chance that the assignment generated
by ASKé6SOLVE violates one of the constraints in the bias B, ASK6SOLVE asks the query to the
user. If the answer to the query is negative, ASK&SOLVE immediately launches a procedure that
learns a culprit constraint to avoid generating again an assignment rejected for the same reason.

Based on the ASK&SOLVE algorithm several strategies [6] are proposed which includes restart
policies/variable ordering to speed-up even more convergence on a solution. Restart policies have
been a long-held goal in Al and they are one of the approaches developed to boost combinatorial
search. Three restart policies are proposed that triggers a restart, when the number of negative
answers is greater than or equal to the cutoff value returned by restart().

Fixed cutoff: The first policy uses a fixed cutoff, noted FC. This is done by implementing the
function restart() so that it always returns | X]|.

Geometric: The second policy is the Geometric strategy. The cutoff value returned by restart()
grows geometrically by a factor of 1.5. We use an initial cutoff size of | X]|.

Luby: The third policy is more elaborated. In this case the restart() function implements the
universal Luby-restarts policy. The Luby-restarts policy is given by the sequence (1, 1, 2, 1, 1, 2,
4,1,1,2,1,1, 2,4, 8, 1...) that is multiplied by the factor |X|. Such a policy has been used with
great success in SAT solvers. The goal is, on the one hand to cut the search early enough to escape
from bad subtrees and to produce short nogoods, and on the other hand to let the solver the chance
to go to a solution.

In a restart policy, there is some particular order in which to select variables in the search following
immediately the restart.

Random (RAND): At each restart event, the variables are reordered randomly.

Lexicographic (LEX): Use the basic lexicographic order. When a restart occurs, the same variable
order is followed: x1, 9,3 — x1, T2, T3, T4...
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Reverse-lex (R-LEX): The algorithm is initialized with a LEX order on the variables. Once a
restart event occurs, the variables in the scope scp are reversed: Start by selecting the last variable
that was added to scp and continue until the first. If we reach the first (that is, we exhausted all
variables from that previous scope), we select the remaining variables in the same order as they
were ordered before the restart. And so on.

Continuous-lex (C-LEX): A variant of the lexicographic order is used. At the beginning we have
a LEX order on the variables. Once a restart event occurs, we select the last variable in scp and we
continue on the same LEX order. (This LEX order has to be circular: z,, is followed by z.) This
heuristic allows the search process to explore the variables in a balanced way. x1,x2,x3 — =3, 14 —
T4, X5, LG
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2.3.4 Recommendation Queries

Link prediction in dynamic graphs is an important research field in data mining. All these link
prediction techniques compute and assign a score to pairs of nodes (z,y) based on the input graph
and then produce a ranked list in a decreasing order of scores. They can be viewed as computing
a measure of proximity or similarity between nodes x and y with respect to the network topology.
Most of these techniques are based either on node neighborhood or on path ensemble. The pa-
per Constraint Acquisition with Recommendation Queries |7| selects one link prediction technique
representative of node-neighborhood-based techniques (Adamic/Adar), and one representative of
path-ensemble-based techniques (Leicht-Holme-Newman Indez) to improve upon the basic version
of QUACQ.

When a constraint network has some structure, variables of the same given type are often involved
in constraints with the same relation. Hence, it is expected that when variable types are not known
in advance, predicting type similarity or type proximity of variables can be done by prediction link
techniques. By using techniques borrowed from link prediction in dynamic graphs, constraints that
are more likely to belong to the target constraint network are inferred, and are validated by asking
recommendation queries to the user.

A recommendation query asks the user whether or not a predicted constraint belongs to the target
constraint network. To deal with recommendation queries, a constraint recommender algorithm
called PREDICT & ASK is proposed, which when plugged into the QUAC(Q constraint acquisition
system leads to the P-QUAC(Q algorithm. The idea behind P-QUAC(Q algorithm is to predict
missing constraints in the partial network learned so far, and then to recommend the predicted
constraints to the user through recommendation queries. The algorithm PREDICT & ASK takes
as argument the set of constraints C learned so far, a relation r, and the predictor score that
corresponds to the strategy used to assign a cost to a candidate constraint for recommendation.

Algorithm

PREDICT & ASK starts by initializing L to the empty set. The set L will contain the output
of PREDICT & ASK. i.e. all constraints learned by prediction plus recommendation query. The
constraint graph G = (Y, E) is restricted to the relation r. The counter counts the number of
consecutive times recommendation queries have been classified negative by the user. It is initialized
to zero. All constraints that are candidate for recommendation are put in.

In PREDICT & ASK, for each iteration, a constraint is picked such that its score is maximum. A
constraint with a high score implies that this constraint belongs to the target constraint network.
Hence, PREDICT € ASK asks a recommendation query on ((z;y); ). If the user says yes, ((z;y);r)
is a constraint of the target network. Hence, we put ((z;y);r) in L. The edge (z;y) to E has to be
taken into account in the next iteration when computing the score. Num is reinitialized to zero. If
the user says no, remove the constraint ((z;y);r) from B and Num is incremented. The loop ends
when A is empty or when Num reaches the given threshold, and L is returned.
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P-QUACQ initializes the constraint network C7 to the empty set. When C}, is unsatisfiable, the
space of possible networks collapses because there does not exist any subset of the given basis B that
is able to correctly classify the examples already asked to the user. P-QUAC(Q computes a complete
assignment e satisfying Cp, and violating at least one constraint from B. If such an example does
not exist, then all constraints in B are implied by C},, and the algorithm has converged. Otherwise,
the example e is proposed to the user, who will answer by yes or no.

If the answer is yes, the set B(e) of all constraints in B that reject e can be removed from B. If
the answer is no, we are sure that e violates at least one constraint of the target network Cr. We
then call the function FindScope to discover the scope of one of these violated constraints. Here,
FindScope acts in a dichotomous manner and asks a number of queries logarithmic in the size of
the example. FindC selects which constraint with the given scope is violated by e. If no constraint
is returned, this is a condition for collapsing as we could not find in B a constraint rejecting one
of the negative examples. Otherwise, we know that the constraint ¢ returned by FindC belongs to
the target network Cr , we then add it to the learned network Cp. Afterwards, we call PREDICT
& ASK to mine the learned constraint network Cp, in order to predict and recommend missing
constraints that may belong to the target network. P-QUACQ updates C, by adding all learned
constraints.

2.3.5 Other related work

GENACQ [8] is an algorithm based on generalization queries that require the aggregation of
variables into types. The idea is to infer potential types by analyzing the structure of the current
constraint network and to use the extracted types to ask generalization queries, based on an ag-
gregation of variables into types. The user provides the variable types and based on these types,
generalization queries ask the user whether or not a learned constraint can be generalized to other
scopes of variables of the same type as those on the learned constraint.

The aggregation of variables into types may not always be a straightforward task for the user
especially when the problem under consideration has a hidden structure. The idea is to analyze the
structure of the partial constraint network learned so far in order to detect potential types and to
build generalization queries. The variables of the same type are often tightly connected with similar
constraints whereas the variables of different types are connected in a weaker way. This point can
be illustrated by considering the Lewis Carroll’s Zebra problem.

An important characteristic that commonly occurs in networks with tightly connected sub-graphs
such as social networks and biochemical networks is community structure. Given the similarity
between the structure of a type and that of a community, it is possible to detect potential types
by finding communities in the constraint network during the constraint acquisition process. Several
methods for community finding have been proposed in the literature. The paper considers three
different techniques.

The first one is based on the concept of modularity which provides information on the strength

24



of division of a network into communities. Networks with high modularity have dense connections
between the nodes within communities but sparse connections between nodes in different communi-
ties. The second technique exploits the notion of edge betweenness, which is a measure that assigns
a score to each edge. The edges that lie between many pairs of nodes have high scores which enables
their easier identification. Removing these edges will leave behind just the communities themselves.
The third technique is more straightforward. It is based on the assumption that the variables of
the same type will tend to form quasicliques during the constraint acquisition process. That is, this
technique finds sub-graphs with an edge density exceeding a threshold parameter.

Preference elicitation [9] mechanism solves soft constraint problems where some of the preferences
are unspecified. The idea is to combine a branch & bound search with elicitation steps where
candidate solutions are presented to the user who provides missing preferences on the variables.
When restricted to hard constraint problems (that is, preferences are either accept or reject), this
approach becomes very close to the matchmaker agent, requiring the user to be able to express her
constraints one by one. The matchmaker agent [10] is an agent that interactively asks the user to
provide one of the constraints of the target problem each time the system proposes an incorrect
solution.

Lallouet et al. [11] have proposed a passive constraint acquisition system based on inductive
logic programming. Their system is able to learn constraints from a given language that classify
correctly the examples. To overcome the problem of the huge space of possible candidate constraint
networks, their system requires the structure of the constraint network to be put in the background
knowledge. They illustrate their approach on graph coloring problems. The positive/negative
examples (i.e., correct and wrong colorations) are provided with their logical description using a set
of given predicates. The background knowledge already contains all edges of the graph.

ModelSeeker [12] is a passive constraint acquisition system devoted to problems having a regu-
lar structure, such as matrix models. In ModelSeeker the bias contains global constraint from the
global constraints catalog whose scopes are the rows, the columns, or any other structural property
ModelSeeker can capture. It also provides an efficient ranking technique that returns the best can-
didate constraints representing the pattern occurring on a particular set of variables (e.g. variables
composing a row).

Modelseeker can handle positive examples only. Its very specific bias allows it to quickly find
candidate models when the problem has a good structure. The counterpart is that it misses any
constraint that does not belong to one of the structural patterns it is able to handle. Finally,
its efficiency also comes from the fact that it does not prove convergence. It provides candidate
constraints. It is the user who selects the constraints that fit the best the target problem. It lists the
global constraints satisfied by all examples using the constraint seeker, which uses multiple criteria
to order the constraints according to pertinence.
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Chapter 3

3 Multiple Constraint Acquisition

3.1 Motivation

We have already seen QUAC(Q) using partial queries performing Quick Constraint Acquisition. With
QUACQ, if an example e has been classified positive, all constraints rejecting it are removed from
the bias B. Otherwise, when e is classified as negative, QUAC(Q learns and focuses on one constraint
each time there is a negative example, whereas Multiple Constraint Acquisition(MULTIACQ) tries
to learn more than one constraint of why the user classifies a given example as negative. MULTIACQ
behaves just like QUACQ taking as input a bias B on a vocabulary (X, D) and returning a constraint
network C, equivalent to the target network Cp by asking partial queries. The motivation for
MULTIACQ) is given below.

The paper MERGEXPLAIN: Fast Computation of Multiple Conflicts for Diagnosis [13] discusses
about computation of minimal conflict sets by introducing MERGEXPLAIN, a non-intrusive conflict
detection algorithm which implements a divide-and-conquer strategy to decompose a problem into
a set of smaller independent subproblems. The paper also mentions QUICKXPLAIN [5], originally
developed in the context of constraint problems, is an example of a very efficient non-intrusive
conflict detection technique designed to find one minimal conflict based on a divide-and-conquer
strategy. One limitation of QUICKXPLAIN is that it will only return one conflict in each call and
will be restarted with a slightly different configuration when the next search node is created.

QUICKXPLAIN applies a recursive procedure which relaxes the input set of faulty constraints C,
by partitioning it into sets C7 and Cs. If C7 is a conflict, the algorithm continues partitioning
(1 in the next recursive call. Otherwise, if the last partitioning has split all conflicts in C, the
algorithm extracts a conflict from the sets C1 and Cs. This way, QUICKXPLAIN finally identifies
single constraints which are inconsistent with the remaining consistent set of constraints and the
background theory. This working of QUICKXPLAIN is analogous to QUACQ.

MERGEXPLAIN adopts the general divide and conquer principle of QUICKXPLAIN, but is de-
signed to compute several minimal conflicts, if they exist during one problem analysis run. The
main design rationale of MERGEXPLAIN is that (a) being able to identify multiple conflicts early
on can help to speed up the overall diagnosis process; and that (b) the identification of additional

conflicts is faster when we investigate only smaller subsets of the original components due to the
decompose and merge strategy of MERGEXPLAIN.

MERGEXPLAIN accepts two sets of constraints as inputs, B as the assumed correct set of back-
ground constraints and C', the diagnosable constraints. In case C' U B is inconsistent, MERGEX-
PLAIN returns a set of minimal conflicts by calling the recursive function FINDCONFLICTS. This
function again accepts B and C as an input and returns a tuple C’, ¢ ; where ( is a set of minimal
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conflicts and C” subset of C is a set of constraints that does not contain any conflicts, i.e. B U C’
is consistent.

The logic of FINDCONFLICTS is similar to QUICKXPLAIN in that the problem is decomposed
into two parts in each recursive call. However differently from QUICKXPLAIN, conflicts are looked
for in both splits C'; and Cs independently and then combine the conflicts that are eventually found
in the both halves. If there is a conflict in the first part and one in the second, FINDCONFLICTS
will find them independently from each other. There might also be conflicts in C' whose elements
are spread across both Cy and Cjy, i.e. the set Cy U Cy U B is inconsistent. The computation of
a minimal conflict is done by two calls to GETCONFLICT. In the first call this function returns a
minimal set X subset C] such that U C) U B is a conflict. We then look for a subset of C5, say Y,
such that Y u X corresponds to a minimal conflict C'S. The latter is added to . In order to restore
the consistency of C1UCSU B we have to remove at least one element a € C'S from either C1UCY,.
Therefore, the algorithm removes o ¢ X C C'S from CY.

Given a background theory B and a set of constraints C;, MERGEXPLAIN always terminates and
returns 'no solution’; if B is inconsistent; if BUC' is consistent; and a set of minimal conflicts,
otherwise. From the algorithm design, QUICKXPLAIN applies a constructive conflict computa-
tion procedure prior to partitioning, whereas MERGEXPLAIN does the partitioning first, thereby
removing multiple constraints at a time, and then uses a divide and conquer conflict detection ap-
proach. Finallyy, MERGEXPLAIN can, depending on the configuration, make a guarantee about
the existence of a diagnosis given the returned conflicts without the need of computing all existing
conflicts.

Algorithms for Computing Minimal Unsatisfiable Subsets of Constraints [14] discusses about the
algorithm Compute All Minimal Unsatisfiable Subsets (CAMUS), a sound and complete algorithm
for producing all Minimal unsatisfiable subsets (MUSes) of an unsatisfiable constraint system.
MUSes are explanations of type errors, and all MUSes are required to generate the best expla-
nation of type errors. The set of MUSes is equivalent to the set of all irreducible hitting sets of
the MCSes, and the MCSes are likewise all the irreducible hitting sets of the MUSes. The goal is
to find minimal sets of clauses [15] whose removal renders the given formula satisfiable. As noted
above, this is equivalent to finding Maximal Satisfiable subsets (MSSes) because the complement of
any MCS (resp. MSS) is an MSS (resp. MCS). In the first phase, CAMUS finds MCSes. Once the
entire collection of MCSes has been computed, the second phase of CAMUS produces all MUSes
of the given instance by finding all irreducible hitting sets of the MCSes. CAMUS finds MSSes by
iteratively finding the largest satisfiable subset that has not been found in a previous iteration.

Loosely said, if we were to apply the analogous ideas from MERGEXPLAIN [13] as it improved
on QUICKXPLAIN [5] to QUACQ |2| with the concepts of MUSes and MCSes in [14], we would
obtain Multiple Constraint Acquisition. The algorithm for Multiple Constraint Acquisition is as
explained below.
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3.2 Algorithm

Multiple Constraint Acquisition (MULTIACQ) (fig 7, page 28) starts by initializing the C7, network
to the empty set. If C'1, is unsatisfiable, the acquisition process will reach a collapse state. A complete
assignment e satisfying the current learned network C, and violating at least one constraint in B
is computed. If such an example does not exist, then all the constraints in B are implied by Cp,
and the algorithm has converged. Otherwise, the function findAllScopes (fig 8, page 29) is called
on the example e. If e is negative, findAllScopes returns the set M Ses of minimal scopes of e. As
each minimal scope in M Ses represents the scope of a violated constraint that must be learned,
the function findC (fig 6, page 20) is called for each such minimal scope. It returns a constraint
from C7p with the given minimal scope as scope, that rejects e. If no constraint is returned, this is
a second condition for collapsing as no bias B a constraint rejecting the negative example we could
be found. Otherwise, the constraint returned by findC' is added to the learned network C7..

Algorithme 1 : MULTIACQ
1 O +— @

> while true do

3 if sol(C) = @ then return “collapse”

4 choose ¢ in DX accepted by €', and rejected by B
5 if ¢ = nil then return “convergence on C'.,”
6 else

7 MSes +— &

8 findAllScopes (e, X. MSes)

9 foreach Y € MSes do

10 cy < findC(e, Y')

11 if cyy = nil then return “collapse”
12 else C'p + Cp U {cy}

Figure 7: Multiple Acquisition Algorithm [3]

The recursive function findAllScopes takes as input a complete example e and a subset of variables
Y (X for the first call). Function findAllScopes returns true if and only if there exists a minimal
scope of e in Y . But findAllScopes fills the set M Ses with all the minimal scopes of e. Function
findAllScopes starts by checking if the subset Y is already reported as a minimal scope. If this occurs,
true is returned. It is assumed that the bias is expressive enough to learn Cr , when Kp(ey) = ¢
(i.e. there is no violated constraint in B to learn on Y'), it implies that ASK (ey) = yes and false
is returned. As a third check, it is verified that a subset of Y is not reported as a minimal scope.
If it is reported, ASK (ey) = mno. If not, the user is asked to classify the (partial) example ey . If
it is positive, all the constraints rejecting €Y are removed from B and false is return. If ASK (ey)
= no, this means that there exist minimal scopes in Y. For reporting that, findAllScopes is called
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Function 1 : findA11Scopes (e, Y, MSes) : Boolean

if Y € MSes then return true
if kp(cy ) = @ then return falsc
if M € MSes | M c Y then
if ASK (ey) = yes then
B+ B\ kp(ey)
return false
flag < false
foreach ; € Y do
| flag < findAl1Scopes(e, Y'\{x;}, MSes)V flag
) if - flag then MSes < MSes U {Y }
11 return true

—

[PV )

£ =S

=T B | = tn

o

Figure 8: FindAllScopes Algorithm 3]

on each subset of Y built by removing one variable from Y. If any subcall to findAllScopes returns
true, the Boolean flag will be set to true, which means that Y itself is not a minimal scope and
true is returned. Otherwise, when all the subcalls of findAllScopes on Y subsets return false, this
means that Y is a minimal scope and it is added to the set M Ses.

Given a negative example, findAllScopes asks partial queries to compute the set of minimal scopes of
constraints that explain why the user classified negatively. Function findAllScopes needs to explore,
in the worst case, a search space containing 2|X| candidate scopes. A query in findAllScopes can
be time-consuming.

Since it is not satisfactory, in an interactive process, to let the human user wait too long between
two queries, MULTIAC(@ implements a heuristic to use a cutoff on the waiting time between two
queries. However, if the cutoff is too short, it would not be able to explore the last branches of
the search for minimal scopes, those branches including the last variables. As a result, the cutoff
technique is combined with a second heuristic based on reordering the variables.

Given a call to findAllScopes on a complete (negative) example e, after triggering the cutoff for the
first time, findAllScopes is called again on the same complete example e, but on a reverse order of
the variables. If a second cutoff is triggered, we come back to MULTIAC(Q), generate a new example
and make a shuffle on the variable order. To ensure termination of MULTIACQ, findAllScopes is
forced to return at least a minimal scope before cutting off.
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XP | Algorithm | [CL| T o1  #q q  #ad #al #4
b QUACQ 52 001 003 SIS 1035 1 52 90

S | Muttiace | 52 000 006 404 493 2 3 248
g QUACQ 90 002 003 1078 121 4 90 140
= MULTIACQ 100 0.00 0.05 379 3.53 8 1 200
Z..| QuAce | 323 053 193 4258 645 | 323 6l

3 | MuLtiAco | 418 120 119 1946 514 0 43 567
E QUACQ 622 008 143 10110 3624 0 62 1107
3 | Mumiaco | 810 024 036 3821 350 10 1 2430

Table 1: Quacq Vs Multiacq [3]

3.3 Performance

If MULTIACQ is compared to QUACQ (table 1, page 30), the main observation is that the use of
findAllScopes to find all minimal scopes of a negative example reduces significantly the number of
queries required for convergence.

Table 1 displays the performance of MULTIACQ and QUACQ. The notations are |Cr| : Size of
the learned network, T: Average time needed to generate a query in seconds, o of T: Standard
deviation, #q: Total number of queries, q: average size of all queries, #¢}: number of complete
positive (resp. negative) queries, (resp. #¢, ): number of complete negative queries, #q;{ : number
of partial positive queries.

If we compare MULTIACQ to QUACQ, the main observation is that the use of findAllScopes to
find all minimal scopes of a negative example reduces significantly the number of queries required
for convergence. Let us take the Murder problem.

e MULTIACQ exhibits a gain of 22% on the number of queries.

e MULTIACQ reduces significantly the average size of the queries (52%), which is probably
easier to answer by the user.

e MULTIACQ needs only 3 complete negative examples instead of 52 for QUACQ).

e The same observations on the performance of MULTI- ACQ comparing to QUACQ are true
on the other problem instances:
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Number of queries reduction (i.e., gain of 65% on Latin Square, 55% on Golomb Rulers and
73% on Sudoku).

The average size of the queries (i.e., 71% on Latin- Square, 20% on Golomb Rulers and 90%
on Sudoku).

Obviously, we need less complete negative example (i.e. only one instead of 90 on Latin
Square, 43 instead of 323 on Golomb Rulers and only one instead of 622 on Sudoku)

The number of constraints learned by MULTIACQ is always greater than or equal to the
number of constraints learned using QUACQ. MULTIACQ can learn redundant constraints,
which is not the case using QUACQ. Take three constraints ¢y, ¢ and cg such that ¢y ¢3 c3. If
we generate a negative example e that violates the three constraints, MULTIACQ will return
three minimal scopes corresponding to the three constraints. By contrast, QUACQ will return
only one minimal scope, let us say the one of ¢o. If in a second iteration QUACQ learns ¢y,
c3 is automatically satisfied in any next iteration and will never be learned by QUACQ.

A last observation we can make on Table 1 is related to the average time needed to generate
a query. If we take the instances of Golomb Rulers and Sudoku, we observe that MULTIAC(Q
respectively needs twice more time (1.20s instead of 0.53s) and three times more time (0.24s
instead of 0.08s) than QUACQ. On these two instances, generating a query is starting to
become time-consuming. Table 1 does not report the results of MACQ-CO because it performs
exactly the same as the basic version of MULTTACQ. The reason is that the average time
(and standard deviation) needed to generate a query is significantly below the value of the
cutoff (5s in our case).

The observations made on Table 1 remain true on RLFA and Langford instances. The differ-
ence is in the average time needed to generate a query. Using MULTIACQ), the time increases
significantly. For instance, on Langford, QUACQ takes about 0.03 to 0.13 seconds to generate
a query whereas MULTIACQ takes 4.24 to 23.03 seconds. On Zebra and Graceful Graphs
instances, we observe the same behavior as on the previous two instances for the time to gener-
ate a query. However, as for the number of queries, QUACQ is better than MULTIACQ. This
can be explained by the high number of partial positive queries asked by MULTIACQ (e.g.,
for Zebra we have #q, = 592 with MULTIACQ against 255 with QUACQ). By definition,
MULTIACQ has a trend to ask small queries and then, needs an important number of partial
positive queries to reduce the bias and thus, to converge.

Analysis

If ASK(ey) = yes then for any Y C Y’ we have ASK (ey') = yes
If ASK(ey) = no then for any Y’ DO Y we have ASK (ey’) = no.
Given a bias B and a target network Cp representable by B, function findAllScopes is correct.

Given a bias B built from a language A of bounded arity constraints, and a target network
Cr , MULTIACQ uses O(|Cr|.(|X| + |A]) + |B|) queries to prove convergence on the target
network or to collapse.
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Chapter 4

4 Conclusion & Future Scope

4.1 Future Scope

Learning the Parameters of Global Constraints Using Branch-and-Bound [16] uses their algorithm
to constraints such as Among and Sequence commonly used in timetabling. The paper uses branch
and bound for this and introduces SubsetFocus which is useful in modelization of timetabling prob-
lems. This paper is important due to the focus on global constraints. There are Machine learning
techniques like Neural networks and Decision trees that recognize the solution to a problem and
then embed the trained neural network or decision trees into a global constraint.

The paper Embedding Decision Trees and Random Forests in Constraint Programming [17], discusses
about Table based Encoding and MDD based Encoding. A Decision tree can be converted to
a set of classification rules by interpreting each path from root to leaf as logical implication. A
simple approach to encode a Decision tree in Constraint Programming consists in translating each
implication into a boolean meta-constraint. Fmbedding random forests in Constraint Programming
requires to: embed in the CP model each Decision tree from the forest, and define a constraint model
for the mode computation, i.e. for aggregating the DT results and obtain the final classification.

Constraint Acquisition Using Recommendation Queries [7] lists out that an interesting direction
would be to use reinforcement learning to decide on the use of neighborhood-based predictions
or path-ensemble based predictions to predict constraints that are likely to belong to the target
network.

Constraint Acquisition |2] tells that background knowledge is a well-known technique in machine
learning consisting in using properties of the problem to learn to reduce the bias as much as possible
so that the version space to explore becomes small enough. Complex queries is another way to speed
up convergence by allowing a more informative communication between the user and the learner so
as to capture more information.

Improving the efficiency of CAMUS [14] in finding MCSes, MSSes, and MUSes can also improve the
time taken for finding all scopes. Also new techniques for computing a diverse subset of the MUSes
containing some desired structural characteristic is also preferred for time improvements.

4.2 Conclusion

This seminar is a concise literature survey to find various aspects of Constraint Acquisition: from
passive constraint acquisition to active constraint acquisition and how different acquisition tech-
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niques and methods motivated the development of Multiple Constraint Acquisition. While in the
process, I have been able to list out the challenges and the future scope.

The weakness of passive learning is that the user needs to provide diverse examples for the target
set of constraints to be learned. It is noticeable that CONACQ.1 often requires a huge number
of examples to converge to the target network. Moreover, the user has to verify for oneself when
it comes to candidate constraints and finalize for which constraints would fit the target problem.
Passive learning leaves the user in a helpless position to acquire lots of positive examples when
acquiring positive solutions is difficult or even impossible. Despite all these drawbacks, even when
CONACQ.1 has not converged, the most specific network in the version space is often quite close
to the target network.

Even though active learning solves many of the problems associated with passive learning, it is
associated with two important computational challenges: how the system generates a useful query,
and how many queries are needed for the system to converge to the target set of constraints. It
has been shown that the number of membership queries required to converge to the target set of
constraints can be exponentially large. CONACQ.2, by its active behavior, reduces the number of
examples needed to converge to the target network. Another advantage is that the user need not
be a human. It might be a previous system developed to solve the problem.

QUACQ has two main advantages over learning with membership queries: Small average size of
queries ¢, which are probably easier to answer by the user, and lesser time to generate queries.
Generating good queries in QUAC(Q is not computationally difficult and that when the bias increases
in size, the number of queries increase only in logarithmic shape. Conacg.2 needs to find examples
that violate exactly one constraint of the bias to make progress towards convergence which can be
expensive to compute, preventing the use of Conacq.2 on large problems. QUACQ and MULTIACQ,
on the other hand, uses cheap heuristics to generate queries.

QUACQ always converges on the target constraint network in a polynomial number of queries.
QUACQ and MULTIACQ as opposed to existing techniques does not need provide positive examples
to converge which can be very useful when the problem has not been previously solved. Problems
with dense constraint networks (as Sudoku) require a number of queries that could be too large for
a human user. An interesting direction would be to combine ModelSeeker and QUACQ to quickly
learn global constraints and use QUACQ to finalize the model.

For many concept classes, the use of membership queries in conjunction with equivalence queries is
known to dramatically accelerate the learning process. Though equivalence queries are not consid-
ered in constraint acquisition, and membership queries alone are not powerful enough to guarantee
convergence in a polynomial number of queries, the use of membership queries in conjunction with
a given training set can substantially improve the acquisition process. More studies should focus on
the translation of problem description written in natural language in textual form as well as speech
into a formal model.
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