
Algebraic Approaches to Graph Grammars

Phawade Ramchandra Babasaheb



Contents

1 Introduction 2
1.1 What is Graph transformation? . . . . . . . . . . . . . . . . . 3
1.2 Overview of Different Approaches . . . . . . . . . . . . . . . . 4
1.3 Aims of the report . . . . . . . . . . . . . . . . . . . . . . . . 4

2 DPO approach to graph transformations 6
2.1 Graph transformations based on DPO Approaches . . . . . . 6
2.2 Independence and Parallelism in the DPO approach . . . . . . 22
2.3 Models of computation in the DPO

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.3.1 Concrete model of computation in the DPO Approach 36
2.3.2 Truly-concurrent model of computation in the DPO

Approach . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.3.3 Requirements for capturing representation indepen-

dence . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.3.4 Equivalence ≡0 . . . . . . . . . . . . . . . . . . . . . 41
2.3.5 Equivalence ≡1 . . . . . . . . . . . . . . . . . . . . . . 44
2.3.6 Equivalence ≡3 . . . . . . . . . . . . . . . . . . . . . 49
2.3.7 Abstract model of computation in the DPO Approach 50
2.3.8 Abstract, truly-concurrent model of computation in

the DPO Approach . . . . . . . . . . . . . . . . . . . . 51

3 SPO approach to graph transformations 52
3.1 Graph transformation based on

SPO Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Parallelism in SPO approach . . . . . . . . . . . . . . . . . . 63

3.2.1 Interleaving . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Explicit Parallelism . . . . . . . . . . . . . . . . . . . 70

1



4 Conclusion 74
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2



Chapter 1

Introduction

The main idea of graph grammars is the rule based modification of graphs
where each application of a graph rule leads to a graph transformation step.
Graph grammars can be used on one hand to generate graph languages in
analogy to the idea to generate string languages by Chomsky grammars in
formal language theory. On the other hand graphs can be used to model the
states of all kinds of systems which allows to use graph transformations to
model the state changes of these systems.

This allows us to apply graph grammars and graph transformation sys-
tems to a wide range of fields in computer science like formal language theory,
compiler construction, distributed systems modelling, logical and functional
programming, AI, visual modeling etc.

The wide applicability is due to the fact that graphs are a very natural
way of explaining complex situations on an intuitive level. e.g. visualization
of software and hardware architectures, data and control programs, evolu-
tion diagrams of nondeterministic processes etc. Like the token game for
Petri nets, a graph transformation brings dynamism since it can describe
the evolution of graph structures. Therefore, graph transformations become
attractive as a modeling and programming paradigm for complex-structured
software and graphical interfaces. In particular, graph rewriting is promising
as a comprehensive framework in which the transformation of all these very
different structures can be modeled and studied in a uniform way.

3



1.1 What is Graph transformation?

In fact, graph transformation has at least three different roots
– from Chomsky grammars on strings to graph grammars
– from term rewriting to graph rewriting
– from textual description to visual modeling.

Altogether we use the notion graph transformation to comprise the con-
cepts of graph grammars and graph rewriting. In any case, the main idea
of graph transformation is the rule-based modification of graphs as shown in
the following figure.

The core of a rule or production p=(L, R) is a pair of graphs (L, R), called
left hand side L and right hand side R. Applying the rule p=(L, R) means
to find a match of L in the source graph and to replace L by R leading to
target graph of graph transformation. The main problem is how to connect
R with the context in the target graph. In fact, there are three different so-
lutions how to handle this problem leading to different graph transformation
approaches, which are summarized below.

4



1.2 Overview of Different Approaches

1. The node label replacement approach,mainly developed by Rozenberg,
Engelfriet and Janssens, allows replacing a single node as left hand side
L by an arbitrary graph R. The connection of R. The connection of R
with the context is determined by embeding rules depending on node
labels.

2. The hyperedge replacement approach, mainly developed by Habel, Kre-
owsky and Drewes, has as L a labeled hyperedge, which is replaced
by an arbitrary hypergraph R with designated attachment nodes cor-
responding to the nodes of L. The gluing of R with the context at
corresponding attachment nodes leads to the target graph.

3. The algebraic approaches are based on pushout and pullback construc-
tions in the category of graphs, where pushouts are used to model the
gluing of graphs. Algebraic approach is an unified approach to graph
transformations, simplifying proofs in complex situations also.

1.3 Aims of the report

The aim of this survey report is to study two algebraic approaches ,Dou-
ble Pushout Approach (DPO) and Single Pushout Approach (SPO) to graph
transformation. We have studied some of the main results from theory of par-
allelism, using these two approaches. We have studied chapter 3 and chapter
4 of Handbook of graph grammars and Computing by Graph Transformation
:volume1;foundations.

In section 2.1 of this report we introduce basic concepts of DPO Approach,
starting with category of graphs, pushouts, gluing conditions ,definitions of
production, direct derivation, and derivation. In section 2.2 we present con-
cepts and results concerning parallelism and independence of graph transfor-
mations . The main results are Local Church Rosser Theorem and the Par-
allelism Theorem, analysis and synthesis constructions. Section 2.3 presents
various models of computations for graph grammars on different levels of ab-
stractions, i.e., various categories having graphs as objects and graph deriva-
tions as arrows. All such models are built from the concrete ones by imposing
suitable equivalences on graphs and derivations.

5



In section 3.1 of chapter 2 we present graph transformation using SPO
approaches, introducing and using the concepts of single pushout construc-
tion, deletion by co-equalizer , and some properties of pushouts. Also the
translation of DPO rules to SPO and vice-versa under suitable conditions.
In section 3.2 we present the main results of independence and parallelism
as in the case of DPO Approach.

Finally in chapter 4 we conclude the report.

6



Chapter 2

DPO approach to graph
transformations

2.1 Graph transformations based on DPO

Approaches

Definition 2.1.1. (Graph, Graph morphism )
Labeled Graph:
Given two fixed alphabets ΩV and Ωe for node and edge labels, respectively,

a labeled graph over ΩV and ΩE is a tuple G =< GV , GE, s
G, tG, lvG, leG >,

where GV is a set of vertices(or nodes), GE is a set of edges (or arcs),
sG, tG : GE → GV are the source and target functions, and lvG : GV → ΩV

and leG : GE → ΩE are the node and the edge labeling functions, respectively.

Graph morphism:
A graph morphism f : G → G′ is a pair f =< fV : GV → G′V ,

fE : GE → G′E > of functions which preserve sources, targets, and labels
i.e., which satisfies fV ◦ tG = tG

′ ◦ fE, fV ◦ sG = sG
′ ◦ fE, lvG

′ ◦ fV = lvG,
leG

′ ◦ fE = leG.

Graph isomorphism:
A graph morphism f is an isomorphism if both fV and fE are bijections.

If there is an isomorphism from graph G to graph H, then we write G ∼= H.

Automorphism:

7



An automorphism of graph G is an isomorphism Φ : G → G; it is non-
trivial if Φ 6= idG.

The category having labeled graphs as objects and graph isomorphisms as
arrows is called GRAPH.

Definition 2.1.2. ( production, graph grammar)
A graph production:
A graph production p : (L← K → R) is composed of a production name

p and a pair of injective graph morphisms l : K → L and r : K → R. The
graphs L, K and R are called the left-hand side(lhs), the interface, and the
right-hand side(rhs) of p, respectively.

Graph grammar:
A graph grammar G is a pair G =< p : L ← K → R,Go > where the

first component is a family of productions indexed by production names in P
and Go is the start graph.

A production is depicted in the following figure.

Definition 2.1.3. ( pushout, pushout complement )

pushout:
Given a category C and two arrows b : A → B, c : A → C of C, a triple

< D, g : B → D, f : C → D > as in the diagram below is called a pushout of
< b, c > if following conditions are satisfied,
1) commutativity: g ◦ b = f ◦ c, and
2) universal property: for all objects D′ and arrows g′ : B → D′ and
f ′ : C → D′, with g′ ◦ b = f ′ ◦ c, there exists a unique arrow h : D → D′ such

8



that h ◦ g = g′ and h ◦ f = f ′.

pushout complement:
Given arrows b : A → B and g : B → D a pushout com-

plement of < b, g > is a triple < C, c : A → C, f : C → D > such that
< D, g, f > is a pushout of < b, c >. In this case C is called a pushout
complement object of < b, g >.

9



In category SET which have sets as objects and total functions as arrows,
pushout of two arrows always exists.

Lemma 2.1.4. pushout of two arrows always exists in category SET .

Proof. In SET , pushout < C, f ′ : C → D, g′ : A→ C > over f : A→ B and
g : A → C is the quotient set D = B ] C|≡ of the disjoint union of B and
C, modulo the equivalence relation ≡, which is the least equivalence relation
such that for all a ∈ A (f(a) ≡ g(a)) and f ′(c) = [c] for c ∈ C and g′(b) = [b]
for b ∈ B.

Consider the diagram given above. To prove that D is a pushout we have
to prove following properties.
1)commutativity: g′ ◦ f = f ′ ◦ g, and
Let us assume that a ∈ A and f(a) = b, g(a) = c.
therefore (b ≡ c) , by construction of D.
f ′ ◦ g(a) = f ′(g(a))
= f ′(c)
= {b, c} , by construction of f ′

= g′(b) , by construction of g′

10



= g′(f(a)) by assumption
= g′ ◦ f(a).

2)universal property: for all objects X and arrows l : B → X and k : C → X,
with k ◦g = l ◦f , there exists a unique arrow x : D → X such that x◦f ′ = k
and x ◦ g′ = l.

To prove above property first of all we construct morphism x : D → X
and then prove it’s uniqueness. We remember that elements of D are equiv-
alence classes. So we have to consider two cases for any d ∈ D.

case 1. |d| = 1.
Assume that d = {c} i.e. by construction c was not an image of any element
of A under g. In this case [c] = {c} and {c} is mapped to k(c) i.e. k(c) = {c}.

case 2. |d| > 1.
In this case there exist atleast one element a in A such that g(a) = c and by
construction ∃b ∈ B such that f(a) = b. Therefore [b] = [c] = {b, c}.
therefore x({b, c}) = x([b]) = x([c]) = (k(g(a)) = l(f(a)).

First, we prove x ◦ f ′ = k.
In case 1, there do not exist any element a ∈ A such that f(a) = c, therefore
[c] = {c}, and by construction of x x(f ′(c) = x([c]) = x({c}) = k(c).
In case 2, there exist atleast one element a in A such that g(a) = c and
by construction ∃b ∈ B such that f(a) = b. Therefore [b] = [c] = {b, c}.
thereofore by construction of x, x(f ′(c) = x([c] = x({b, c}) = k(g(a)) = k(c)
as required.

Second, we prove x ◦ g′ = l.
In case 1, there do not exist any element a ∈ A such that g(a) = b, therefore
[b] = {b}, and by construction of x x(g′(b) = x([b]) = x({b}) = l(b).
In case 2, there exist atleast one element a in A such that f(a) = b and
by construction ∃c ∈ C such that g(a) = c. Therefore [c] = [b] = {b, c}.
thereofore by construction of x, x(g′(b)) = x([b]) = x({b, c}) = l(f(a)) = l(b)
as required.

Third, we prove uniqueness of above constructed morphism x : D → X.
Suppose that above morphism is not unique i.e. there exists another mor-

11



phism x′ : D → X , such that x′ ◦ f ′ = k, and x′ ◦ g′ = l. If x and x′ are
not the same mappings, it means that ∃d ∈ D such that x(d) 6= x′(d), i.e.
∃s, s′ ∈ X such that x(d) = s and x′(d) = s′ and s 6= s′.

case 1. |d| = 1
Assume that d = {c}.
k(c) = x′(f ′(c)) = x′([c]) = x′(c) = s.
and also k(c) = x(f ′(c)) = x([c]) = x(c) = s′, a contradiction.

case 2. |d| > 1
Without loss of generality assume that d = {b, c}, and f(a) = b,g(a) = c.
k(c) = x′(f ′(c)) = x′([c]) = x′({b, c}) = s′.
and also k(c) = x(f ′(c)) = x′([c]) = x′({b, c}) = s, a contradiction.

We provide an example in following diagram to illustrate the construction
of pushouts in category SET .

12



In category GRAPH the pushout of two arrows always exists as well: It
can be constructed componentwise (as a pushout in the SET ) for the nodes
and for the edges, and the source, target, and labeling mappings are uniquely
determined. The following diagram shows one example.

Lemma 2.1.5. In category GRAPH the pushout of two arrows always exists.

Proof. Consider the construction as shown in following diagram. We have
built the cube using source functions only. A similar cube using target func-
tions can be built. Proof for the other cube is same as the proof using source
functions which is given below.

13



We have to show that all six squares labelled (1) to (6) commute. For squares
(1),(2) shown in following diagram since we are considering only set of edges
and vertices their commutativity follows by lemma 1.

14



For squares (3),(4) shown in following diagram since we are considering
only set of edges and vertices in the respective sets so their commutativity
follows from the fact that souce and target are preserved by the morphisms
which are already given and we are not considering any element of pushout
graph or morphism constructed.

For squares (5),(6) as shown in the following diagram we have to prove
f ′V ◦ sC = sD ◦ f ′E and sD ◦ g′E = g′V ◦ sB

15



Now consider following paths, in the diagrams,
f ′V ◦ sC ◦ gE = f ′V ◦ gV ◦ sA = g′V ◦ fV ◦ sA = g′V ◦ sB ◦ fE
and sD ◦ f ′E ◦ gE = sD ◦ g′E ◦ fE = sD ◦ f ′E ◦ gE = f ′V ◦ sC ◦ gE

But note that we also need to prove that g′V ◦ fV ◦ sA = sD ◦ g′E ◦ fE, so if
we prove commutativity of diagram (5) , the commutativity of diagram (6)
is also proved and vice versa.

To prove f ′V ◦ sC = sD ◦ f ′E, it is sufficient to prove that f ′V ◦ sC ◦ gE =
sD ◦ f ′E ◦ gE.

Now let us assume that f ′V ◦ sC ◦ gE 6= sD ◦ f ′E ◦ gE. without loss of gen-
erality consider arbitrary edge ed ∈ D and other edges and vertices involved
in it’s construction as shown in the following diagram.

Now (f ′V ◦ sC ◦ gE)(ea) = (f ′V ◦ sC)(ea) = f ′V (Vc1) = [Vc1] = {Vc1, Vb1} and
(sD ◦f ′E ◦gE)(ea) = (sD ◦f ′E)(ec) = sD([ec]) = sD({ec, eb}) = {Vc1, Vb1} which
is a contradiction.

16



Lemma 2.1.6. (Gluing Condition) Let b : A→ B and g : B → D be two
morphisms in category GRAPH. Then there exists a pushout complement
< C, c : A → C, f : C → D > of < b, g > if and only if the following
conditions are satisfied:
[Dangling condition] No edge e ∈ DE − gE(BE) is incident to any node in
gV (BV − bV (AV ));
[Identification condition] There is no x, y ∈ BV ∪ BE such that x 6= y,
g(x) = g(y) and y /∈ b(AV ∪ AE).

Proof. (⇒) We assume that both dangling condition and indentification con-
dition are satisfied and prove existence of pushout complement.

1. First we construct C, the pushout complement object of < b, g >, and
morphisms c : A→ C, f : C → D as follows.

Elements of C are the elements d in D for which b−1(g−1(d)) exists in
A. For any element a in A c(a) is the element d in C, which is by con-
struction is in C which satisfies the condition that a = b−1(g−1(d)). For
any element c in C f(c) is element d in D such that c(a) = b−1(g−1(d)).

c is a morphism and it preserve source, target and labels. i.e. c preserve
following conditions:
(1)CV ◦ tA = tC ◦ Ce
(2)CV ◦ sA = sC ◦ Ce
(3)lvC ◦ CV = lvA

(4)leC ◦ CE = leA

Clearly C is a morphism . If not then it means that there exist an
element in a in A which is not mapped to any element of C. This is
possibly only when stated condition a = b−1(g−1(d)) is not satisfied,
i.e. b−1(g−1(d)) does not exist or when it exists it is not equal to a. As
far as the former situation is considered this can only when there exist
an element in B which is mapped to some element d in D via g but is
itself not mapped by B. But this can not happen since d is the element
in D which is preserved in C by construction. Therefore if such b in B
exists it violates the dangling condition or identification condition.

Consider the diagram given below. To prove condition (1), take any
arbitrary edge ae in A. Since b and g are morphisms corresponding
edges be and ce exists in B and D. Now lhs of condition (1) gives,

17



CV ◦ tA(ae) = CV (a2) = c2. and rhs of condition gives tC ◦ Ce(ae) =
tC(ce) = d2 = c2 by construction of elements of C. Similarly other 3
conditions are proved easily.

2. Second, we prove that D is pushout. To prove that D is a pushout, i.e.
for any graph X as shown in the following diagram there exist a unique
morphism x : D → X such that the shown diagram commutes.

Here we first prove that the g ◦ b = f ◦ c
without loss of generality we consider node a1 in the above diagram. For
lhs g(b(a1)) = g(b1) = d1, while rhs is f(c(a1)) = f(c1) by construction
of C and c.
= d1 by construction of C and f.

Now, we prove that for any graph X as shown in the following dia-
gram there exist a unique morphism x : D → X such that the above
diagram commutes. Construct x as x(d) = {x1 ∈ X|b−1(l−1(x1)) =
b−1(g−1(d))} or {x1 ∈ X|c−1(f−1(x1)) = c−1(k−1(d))}.
To prove that x◦f = k, consider any element c1 ∈ C. f(c1) is mapped
to some element d ∈ D which is same as c1 by construction of C.Now
x maps that element to some x1 ∈ X. on the rhs k(c1) is mapped to
same x1 ∈ X, by construction of c, C and x.

18



Similarly x ◦ g = l is proved.

To prove that this morphism x constructed as above is unique, let us
assume that there exist another morphism x′ 6= x, such that x′ ◦ f = k
and x′ ◦ g = l are satisfied, as shown in the diagram shown below.

19



It means that there exist an element d ∈ D such that x(d) 6= x′(d) i.e.
there exist x1 ∈ X and x2 ∈ X such that x1 6= x2 but x(d) = x1 and
x′(d) = x2.

without loss of generality let us assume that there exist elements a1 ∈ A
and b1 ∈ B such that b(a1) = b1 and g(b1) = d. By the commutativity
of diagram we know that x ◦ g = l = x′ ◦ g.

but x′(g(b1)) = x2 6= x1 = x(g(b1)), a contradiction.

(⇐) We assume existence of pushout complement to prove that both dan-
gling and identification conditions must be satisfied. Equivalently we prove
this by if either of the conditions is not satisfied then pushout complement
does not exist. It is sufficient to prove that D is not a pushout.

First if the dangling condition is not satisfied, i.e., there is an edge de ∈
DE−gE(BE) is incident to some node in gV (BV−bV (AV )); We prove our claim

20



that D is not pushout by showing that universality property of pushouts is
violated.

For that we construct another objectX as shown in the following diagram,
and construct two different morphisms x, x′ : D → X such that x 6= x′ .

In following diagram X satisfies the conditions that k ◦ b = l ◦ c where k
and l are morphisms k : B → X and l : C → X

It is clear that x and x′ satisfy conditions: x ◦ g = k, x′ = k, x ◦ f = l,
x′ ◦ f = l. But they differ as x(de) = xe1 6= xe2 = x′(de).

Second, if the identification condition is not satisfied. It implies that there
are b1,b2 ∈ BV ∪BE such that b1 6= b2, g(b1) = g(b2) and b2 /∈ b(AV ∪AE).
Again prove our claim that D is not pushout by showing that universality
property of pushouts is violated.

For that we construct another object X as shown in above diagram, and

21



construct two different morphisms x, x′ : D → X such that x 6= x′ .
In above diagram object X satisfies the conditions that k ◦ b = l ◦ c where

k and l are morphisms k : B → X and l : C → X. It is clear that x and x′

satisfy conditions:x ◦ g = k, x′ = k, x ◦ f = l, x′ ◦ f = l. But they differ as
x(d1) = x2 6= x1 = x′(d1).

We now give the definitions for direct derivation and sequential derivation.
A sequential derivation is reflexive and transitive closure of a sequence of
derivations.

Definition 2.1.7. ( Direct derivation, Sequential derivation )

Direct Derivation:
Given a graph G, a graph production p : (L ← K → R), and a match

m : L→ G, a direct derivation from G to H using p(based on m) exists if and
only if following diagram can be constructed, where both squares are required
to be pushouts in category GRAPH.

q

Sequential Derivation:
A sequential derivation is either a graph G or a sequence of direct deriva-

tions ρ = {pi : Gi−1 ⇒ Gi}i∈1,..,n such that pi is a production of G for all
i ∈ {1, ..., n}. In the first case sequential derivation is written as G : G⇒∗ G
and in the latter case it is written as ρ : G0 ⇒∗ Gn. If ρ : G⇒∗ H is a pos-
sible derivation, then graph G is called starting graph and G is called ending
graph of derivation ρ. G is denoted by σ and H is denoted by τ . The length
of sequential derivation ρ is is the number of direct derivations in ρ, if it is
not identity and 0 otherwise. The sequential composition of two derivations
ρ and ρ′ is defined if and only if τ(ρ) = σ(ρ′); in this case it is denoted by
ρ; ρ′ : σ(ρ)⇒∗ τ(ρ′).

22



2.2 Independence and Parallelism in the DPO

approach

Parallel computations can be described in two different ways. In a sequential
model, two parallel processes have to be modeled by interleaving arbitrarily
their atomic actions, very similarly to the way multitasking is implemented
on a single processor system. On the contrary, explicit parallelism means to
have one processor per process, which allows actions to take place simulta-
neously.

Interleaving

In this approach two actions are concurrent i.e. potentially in parallel, if
they may be performed in any order with the same result. In terms of graph
transformations, the questions whether two actions(direct derivations) are
concurrent or not can be asked from two different points of view.

Assume that a given graph represents a certain system state. The next
evolution step of this state is obtained by the application of a production and
the match are chosen non-deterministically from a set of possible alternatives.
Clearly, each choice we make leads to a distinct derivation sequence, but the
question remains, whether two of these sequences indeed model different
computations or if we have only chosen one of two equivalent interleavings.
In other words given two alternative direct derivations H1 ⇐ G⇒ H2 where
p1 : G ⇒ H1 , p2 : G ⇒ H2 we ask ourselves if there are direct derivations
p1 : H2 ⇒ X , p2 : H1 ⇒ X, showing that the two given direct derivations
are not mutually exclusive, but each of them can instead be postponed after
the application of the other, yielding the same result.

Given a derivation, intuitively two consecutive direct derivations are G⇒
H1 ⇒ X where, p1 : G ⇒ H1 , p2 : H1 ⇒ X are concurrent if they can be
performed in a different order, as in G⇒ H2⇒ X where, p2 : G⇒ H2 , p1 :
H2 ⇒ X without changing the result. The existence of two different orderings
ensures that there is no causal dependency between these applications of p1
and p2.

We can say that two alternative derivations are concurrent if they are not
mutually exclusive while two consecutive derivations are concurrent if they
are not causally dependent.

23



Explicit Parallelism

Parallel productions can be represented more directly by parallel appli-
cation of productions. Truly parallel applications of productions essentially
requires to abstract from any possible application order, which implies that
no intermediate graph is generated, i.e. a (true) pareallel production can be
modeled by the application of single production, the parallel production.

Given productions p1 : L1 → R1 and p1 : L1 → R1, their parallel produc-
tion is denoted by p1 + p2 : L1 + L2 → R1 + R2. Intuitively p1 + p2 is just
a disjoint union of p1 and p2. Direct derivations like p1 + p2 : G → X using
parallel production p1 + p2 are called parallel direct derivations .

Now we give definitions of parallel independence and sequential indepen-
dence along with examples.

Definition 2.2.1. (parallel independence )

Let p1,m1 : G⇒ H1 and p2,m2 : G⇒ H2 be two direct derivations from
the graph G as in figure 3.8. They are parallel independent if m1(L1)

⋂
m2(L2) ⊆

m1(l1(K1)) = m2(l2(K2)) . This property can be formulated in categorical
terms as follows:

There exists two graph morphisms k2 : L1 → D2 and k1 : L2 → D1 such
that l∗2 ◦ k2 = m1 and l∗1 ◦ k1 = m2.

Two alternative direct derivations are parallel independent of each other,
if each of them can still be applied after the other has been performed. This
means that neither of p1,m1 : G⇒ H1 and p2,m2 : G⇒ H2 delete elements
of G which are also needed by the other direct derivation. In other words, the
overlapping of two sides of p1 and p2 in G must be included in the intersection
of the corresponding intersection graphs K1 and K2.

Following diagram shows categorical formulation of parallel independence.

24



Definition 2.2.2. (sequential independence )

Given a two step derivation p1,m1 : G⇒ H1 and p2,m2 : H1 ⇒ H2 as in
figure 3.9. It is sequential independent iff m′1(R1)

⋂
m2(L2) ⊆ m∗1(r1(K1)) =

m2(l2(K2)). This property can be formulated in categorical terms as follows:
There exists two graph morphisms k2 : R1 → D2 and k1 : L2 → D1 such

that l∗2 ◦ k2 = m∗1 and r∗1 ◦ k1 = m2.

25



Two consecutive direct derivations p1,m1 : G⇒ H1 and p2,m2 : H1 ⇒ X
are sequentially independent if they may be swapped i.e., if p2 can be applied
to G and p1 can be applied to the resulting graph. Therefore p2 can at
match m2 can not delete anything that has been explicitly preserved by
the application of p1 at match m1, and moreover it cannot use any element
generated by p1, which implies that the overlapping of R1 and L2 in H1 must
be included in the intersection of the interface graphs K1 and K2.

Definition 2.2.3. ( coproducts )

Let C be a category and A, B be two objects of C. A coproduct of <
A,B > is a triple < A + B, inA+B1 , inA+B2 > where A + B is an object and
inA+B1 : A → A + B,inA+B2 : B → A + B are arrows of C, such that the
following universal property holds:

for all pair of arrows < f : A → C, g : B → C > there exists a unique
arrow [f, g] : A+B → C such that [f, g] ◦ inA+B1 = f and [f, g] ◦ inA+B2 = g.

In this case A + B is called a coproduct object of < A,B > and inA+B1 ,
inA+B2 are called injections; arrow [f, g] is called copairing of f and g. One
says that category C has coproducts if each pair of objects of C has a coproduct.

From the definition it is clear that the coproduct of two objects need not
unique. Given any two coproducts of two objects they are not only isomor-
phic, but there exists only one isomorphism commuting with the injections.

26



Definition 2.2.4. (parallel productions, isomorphic parallel produc-
tions, parallel direct derivation)
Given a graph grammar G,a parallel production (over G)has the form <
(p1, in1), ....(pk, ink) >: (L ← K → R), where l : K → L, K → R,
where k ≥ 0 pi : (Li ← Ki → Ri), where li : Ki− > Li, Ki− > Ri

is a production of G for each i ∈ {1, ..., k}, L is a coproduct object of the
graphs in < L1, ..., Lk > and similarly R and K are coproduct objects of
the < R1, ..., Rk > and < K1, ..., Kk > respectively. Moreover, l and r are
uniquely determined by the families of arrows {li}i≤k and {ri}i≤k, respec-
tively. Finally, for each i ∈ {1, ..., k}, ini denotes the triple of injections
< iniL : Li → L, iniK : Ki → K, iniR : Ri → R >. All the parallel productions
are recorded in the name of a parallel production.

A parallel production like above is proper if k > 1; the empty production is
the only parallel production with k = 0, having the empty graph φ as left and
right hand sides and as the interface. Each production p : (L ← K → R),
where l : K → L,K → R of G is identified with the parallel production
< (p,< idL, idK , idR >) >: (L← K → R), where l : K → L, r : K → R.

Two parallel productions G, p =< (p1, in1), ....(pk, ink) >: (L← K → R),
where l : K → L, r : K → R, and q =< (q1, in1), ....(pk, ink) >: (L′ ← K ′ →
R′), where l′ : K ′ → L′, r′ : K ′ → R′, are isomorphic via π if k = k′ and π is
a permutation of {1,...,k} such that and pi = qπ(i) for each i ∈ {1, ..., k}; that
is the component productions of G are the same, up to a permutation. We
say that p and q are isomorphic if there is a π such that they are isomorphic
via π.

The graph grammar with parallel productions G+ generated by gram-
mar G has the same start graph of G, and as productions all the parallel

27



productions over G. A parallel direct derivation over G is a direct deriva-
tion over G+; it is proper or empty if the applied parallel production is proper
or empty, respectively. A A parallel direct derivation over G is a sequential
derivation over G+.

Definition 2.2.5. (span-isomorphic productions)

Two productions p : (L ← K → R) and p′ : (L′ ← K ′ → R′) are
span isomorphic if there are three morphisms mL:L → L′, mR:R → R′,
mK:K → K ′, such that they make the resulting square commutative.

Proposition 2.2.6. (isomorphic parallel productions are span-isomorphic)

Let p =< (p1, in1), ....(pk, ink) >: (L ← K → R), where l : K → L,
r : K → R, and q =< (q1, in1), ....(pk, ink) >: (L′ ← K ′ → R′), where
l′ : K ′ → L′, r′ : K ′ → R′, be two parallel productions isomorphic via π.
Then they are span-isomorphic.

Proof. By definition, we have for each X ∈ {L,K,R}, < X, in1
X , ..., in

k
X >

and < X ′, in1
X , ..., in

k
X > are two coproducts of the same objects, and there-

fore there is a unique isomorphism φX : X → X ′ which commutes with the
injections. It is easy to see that these isomorphisms satisfy φL ◦ l = l′ ◦ φK
and φR ◦ r = r′ ◦ φK

28



Proposition 2.2.7. (applicability of parallel productions )
Let q =< (p1, in1), ....(pk, ink) >: (L ← K → R), where l : K → L, r :
K → R, and let m : L → G be a match for it. For each i ∈ {1, ..., k}, let
mi : Li → G be the match of the i’th production in G induced by m, defined
as mi = m ◦ iniL. Then < l,m > satisfies the gluing condition , i.e., there is
a parallel direct derivation q,m : G ⇒ H, iff for all i ∈ {1, ..., k} < li,mi >
satisfies the gluing condition, i.e., pi can be applied at match mi, say with
result Hi, and for each 1 ≤ i < j ≤ k, direct derivations pi,mi : G⇒ Hi and
pj,mj : G⇒ Hj are parallel independent.

Proof. The parallel independence of the matches of the composing produc-
tions follows from the gluing conditions of the parallel direct derivations, and
vice versa.

Lemma 2.2.8. (Butterfly lemma)
Let a1 and a2 be injective graph morphisms. Then the square (1) of diagram1
is a pushout if and only if there are graphs X1, X2 and graph morphisms r,
s, v, w, t and u, such that in the right part of the diagram2 (2), (3), (4) are
pushouts, (4) is a pullback, and all triangles commute.

29



Proof. (⇐)

Assuming that we have diagram2 , where (2), (3), (4) are pushouts, (4)
is a pullback, and all triangles commute, and also that a1 and a2 be injective
graph morphism. It is easy to see that Diagram 1 is a pushout.

(⇒)Assume that we have diagram1 and we have to prove that (2), (3),
(4) are pushouts, (4) is a pullback, and all triangles commute in diagram 2.

First we construct pushout (2), graph X1 is constructed as the disjoint
union of elements of A1 and D, in the usual way, in fact way X1 is a part
of graph C given in diagram 1. Here we use X’s morphisms a1 and n1 only.
morphism r maps any element a of A1 to equivalence class (a, d) where d
an element of D is mapped under n1 from the same element b of B1, or to
equivalence class (a) if it is not mapped under a1. In either case it is mapped
to same element of C. Similarly s is constructed.

Second we construct pushout (3) in similar fashion only difference is that
elements of X2 are made up of equivalences classes of A2 and D only.
Since a1 and a2 injective (2) and (3) are unique.

Third we construct pushout (4) in the following way. We know that v
and w are injective mappings from construction of (2) and (3). The fact that
v ◦ s = t ◦ w follows from the fact that v ◦ s = x = t ◦ w i.e the triangles
commute. Since s and t are injective (4) is unique.

Fourth we have to prove that (4) is a pullback i.e. we have to construct
D and morphisms s and t given X1, X2, and morphisms v and w. as shown
in the diagram3.
s exists and is unique follows the fact that x, v are injective morphisms by
construction of pushout (4) since m1, r and m2, u are injective morphisms.
Morphism t exists and is unique for the same reasons.

Lemma 2.2.9. (analysis of a parallel direct derivation)

Let ρ = (q : G ⇒ H) be a parallel direct derivation using the parallel
production q = p1 + .... + pk : (l : K → L, r : K → R). Then for each
ordered partition < I =< i1, ..., in >, J =< j1, ..jm >> of {1, ..., k} (i.e.,
I
⋃
J = {1, .., k} and I

⋂
J = φ) there is a constructive way to obtain a

sequential independent derivation ρ′ = (q′ : G ⇒ X, q′′ : X ⇒ H), called

30



an analysis of ρ, where q′ = pi1 + ... + pin, and q′ = pj1 + ... + pjm. Such
a construction is in general not deterministic. if ρ and ρ′ are as above , we
shall write ρ′ ∈ ANALI,J(ρ) or < ρ, ρ′ >∈ ANALI,J .

Proof. If I (or J) is empty the statement follows by taking X = G(X =
H), q′′ = q(q = q′), and an empty direct derivation as q′(q′′). Now let us as-
sume that q is a proper parallel production, and that I and J are not empty.
By the hypothesis on I and J , productions q′+ q′′ are clearly isomorphic via
the permutation π defined as π(x) = ix if 1 ≤ x ≤ n and π(x) = jx−n if
n < x ≤ n + m. Thus since the left diagram of figure is a double pushout
by the hypothesis, the right diagram is a double-pushout as well, where
(q′ :: l1 : K1 → L1, r1 : K1 → R1) and (q′′ :: l2 : K2 → L2, r2 : K2 → R2).

31



Therefore we can apply Butterfly lemma to (1) and (2), obtaining the

32



pushouts (3)− (5) and (6)− (8), respectively.
Now let (9) be the pushout of arrows l and u , where the pushout ob-

ject is X. Then we can build the required derivation via q′ and q′′ as in the
right part of the diagram, by using the fact that a square consisting of two
adjacent squares is also a pushout. Such a derivation is sequential because
arrows f : L2 → X2 and t : R1 → Y1 satisfy the conditions of definition of
sequential independence.

Lemma 2.2.10. (synthesis of sequential independent derivations)
Let ρ = (G ⇒ X ⇒ H), be a sequential independent derivation. where
q′ : G ⇒ X and q′′ : X ⇒ H. Then there is a constructive way to obtain a
parallel derivation ρ′ = (q′ + q′′ : G ⇒ H) called a synthesis of ρ. Also this
construction is in general not deterministic. if ρ and ρ′ are as above , we
shall write ρ′ ∈ SY NT (ρ).

Proof. Let ρ be the sequential independent derivation of figure (4). We have
to show that the commutative diagrams of figure (2) can be constructed,
where squares from (3) to (8) have to be pushouts , and (4) and (8) need
to be pullbacks. Then by two applications of butterfly lemma we obtain the
parallel production in the right part of figure (1), as required.

The diagrams of figure (2) can be constructed as follows:

• square 5:

< D, k2, l > is taken as a pushout complement of < l2, f >. It is
determined up to isomorphism because l2 is injective. Thus sqaure 5 is
pushout by construction. Morphism l is injective because l2 is injective.

• Determining morphism k1 : K1 → D

k1 is determined by showing that g : K1 → X2 in figure (4) factorizes
through morphism l : D → X2. i.e., there exists a morphism k1 such
that l ◦ k1 = g; then k1 is unique since l is injective.

We have to show that the image of K1 in X2 i.e. g(K1)) is contained
in the image of D in X2 i.e.in l(D). Since X2 is the pushout object of
< l2, k2 >, this is false only if g(K1) contains an item z ∈ f(L2) such
that z /∈ f(l2(K2)). This means that z is not in image of l then it is
pushed by f alone from L2 and which is not mapped by any element via

33



morphism l2. Also z /∈ f(l2(K2)) implies that z /∈ f(l(k2)), by property
of pushout.

But since X is the pushout object of < l2, h > and j ◦f = s, this means
that j(z) is in s(L2) but not in i(Y1), which is absurd by the existence
of a morphism t : R1 → Y1 such that i ◦ t = r.

• < X1, a, b > is taken as a pushout of l1, k1. Thus (3) is pushout by
construction,and b is injective because so is l1.

• Morphism x is defined as x = d ◦ l.

• Morphism c is uniquely determined by condition m1 ◦ l1 = d ◦ g =
d ◦ l ◦ k1 = x ◦ k1, because (3) is a pushout. If not then let us assume
that there is another morphism c′ : X1 → G. It implies that c(x1) =
g1 6= g2 = c′(x1), for x1 ∈ X1, and g1, g2 ∈ G, and k ∈ K1

c(b(k1(k))) = g1 and c1(b(k1(k))) = g2 which implies
x(k1(k)) = g1 and x(k1(k)) = g2
which is a contradiction.

• square (4) is a pushout

square (4) is a pushout by decomposition property of pushouts since
(3) and (3) + (4) are pushouts. Also c is injective because l is injective.

• square (4) is a pullback

since any pushout made of injective morphisms is a pullback in category
GRAPH

• Determining morphism u and it’s uniqueness. Assuming this square
(9) commutes which implies that u is injective since l,j,i are injective.
Also it is clear that square (9) is a pushout because (5) and (5) + (9)
are pushouts.

To show this we have to show that j ◦ l factorizes through i. We have
to show that the image of D in X i.e. j(l(D)) is contained in the
image of Y1 in X i.e.in i(Y1). If not then since X is the pushout object
of < l2, h >, there is an item z ∈ j(l(z′′)) such that z ∈ s(L2) and
z /∈ s(l2(K2)). Let z′ ∈ L2 be such that s(z′) = z thus z′ /∈ (l2(K2)) ,
then we have j(f(z′)) = s(z′) = z = j(l(z′′)) which implies f(z′) = l(z′)
by injectivity of j. But since X2 is the pushout object of < l1, k2 >,
this implies that z′ ∈ l2(K2), which is a contradiction.

34



• square (7) is a pushout.

< Y2, w, v > is taken as a pushout of < k2, r2 >. therefore (7) is a
pushout and v is injective because r2 is injective.

• Morphism y is defined as y = p ◦ u.

• Morphism q is uniquely determined by condition n2 ◦ r2 = p ◦ h =
p ◦ u ◦ k2 = y ◦ k2, because (7) is a pushout.

• square (8) is a pushout. since (7) and (7)+(8) are pushouts. Since u is
injective q is injective. Square (8) is injective because all it’s morphisms
are injective.

• Finally by pushout-pullback decomposition property which holds for
category GRAPH with injective morphisms , square (8) is a pullback
since (6) + (8) is a pushout, and morphisms r1, u, v, q , p are injective
then (6) is a pushout.

Theorem 2.2.11. (Parallelism)
Given (possibly) parallel productions p1 : L1 ← K1 → R1 where l1 : K1 →
L1,r1 : K1 → R1, and p2 : L2 ← K2 → R2 , where l2 : K2 → L2,
l2 : K2 → R2,
the following statements are equivalent:

1. There are parallel direct derivations p1 + p2,m : G⇒ X

2. There is a sequentially independent derivation G ⇒ H1 ⇒ X, where
p1,m1 : G⇒ H1 and p2,m

′
2 : H1 ⇒ X.

Proof. (1⇒ 2) follows from constructive proof given by lemma (analysis of
a parallel direct derivation) .

(2 ⇒ 1) follows from constructive proof given by lemma (synthesis of
sequential independent derivations) .

Theorem 2.2.12. (Local Church Rosser)

35



1. Let p1,m1 : G ⇒ H1 and p2,m2 : G ⇒ H2 be two parallel direct
derivations,as in Figure 3.8, and let m′2 = r∗1◦k1, where arrow k1 : L2 →
D1 exists by parallel independence. Then morphisms < l2,m2′ > satisfy
the gluing condition, and thus production p2 can be applied to match
m′2. Moreover, derivation G ⇒ H1 ⇒ X is sequentially independent
derivation , where p1,m1 : G⇒ H1 and p2,m

′
2 : H1 ⇒ X is sequentially

independent derivation.

2. Let G ⇒ H1 ⇒ H2 is a sequentially independent derivation , where
p1,m1 : G⇒ H1 and p2,m

′
2 : H1 ⇒ H2 as in Figure 3.9, and let m′2 =

l∗1 ◦ k1, where arrow k1 : L2 → D1 exists by sequential independence.
Then morphisms < l2,m2′ > satisfy the gluing condition, and thus
production p2 can be applied to match m′2. Moreover, direct derivations
p1,m1 : G⇒ H1 and p2,m2 : G⇒ Y are parallel independent.

Proof. Let p1,m1 : G⇒ H1 and p2,m2 : G⇒ Y be two parallel independent
direct derivations
iff
(by proposition 2.2.6) there is a graph such that p1 +p2, [m1,m2] : G⇒ H
is a parallel direct derivation,
iff
(by Parallelism theorem) ,there is a sequentially independent derivation
G⇒ H1 ⇒ X is sequentially independent derivation , where p1,m1 : G⇒ H1

and p2,m
′
2 : H1 ⇒ X.

2.3 Models of computation in the DPO

Approach

Our aim is to study the operational behaviour of a grammar, i.e., to study
formal frameworks where derivations can be analyzed and described, since
derivations of grammar are intended to model computations of the system
modeled by grammar.

A model of computation for a grammar is a mathematical structure
which contains the relevant information concerning the potential behaviour
of grammar, ,i.e. all about the possible derivations of the grammar. Since
the basic operations on derivation is concatenation categories are very suit-
able to use as mathematical structure. A model of computation for a given

36



grammar is just a category of graphs as objects, and where every arrow is
a derivation starting from the source graph and ending at the target graph.
Here categorical operation of sequential composition corresponds to the con-
catenation of derivations.

A concrete model of computation for a grammar has all concrete graphs
as objects and all derivations as arrows. But this model contains lot of re-
dundant information. So we need abstract models where derivations and
graphs differing only for insignificant aspects are identified. Such abstract
models are defined by imposing an equivalence relation on derivations and
graphs. Such relation equates those derivations and graphs which are indis-
tinguishable by the chosen observation criterion. This equivalence should be
a congruence wrt sequential composition. We get the abstract model corre-
sponding to chosen observation criterion by taking the quotient category of
concrete model with respect to the equivalence relation.

We study concrete model for a grammar in the DPO approach, two equiv-
alence relations and their corresponding models. We refine them to obtain a
third abstract model: the abstract, truly concurrent model, which satisfac-
torily composes the two equivalences.

2.3.1 Concrete model of computation in the DPO Ap-
proach

(We assume that a derivation is a possibly parallel derivation.)

Definition 2.3.1. The concrete model of computation

Given a graph grammar G, the concrete model of computation for G,
denoted Der(G), is the category having all graphs as objects and where ρ :
G→ H is an arrow iff ρ is a (parallel) derivation, σ(ρ) = G and τ(ρ) = H.
Arrow composition is defined as the sequential composition of derivations,
and the identity of object G is the identity derivation G : G⇒∗ G.

There is a drawback of concrete model.Consider any two step derivation
G1 ⇒ G2 ⇒ G3, where p : G1 ⇒ G2 and q : G2 ⇒ G3 are the two produc-
tions applied. Here between G1 and G3 we have one arrow for the two step
derivation but, infinitely many isomorphic arrows, one for each isomorphic

37



copy of that derivation, which is obtained by changing arbitrarily the identity
of nodes and edges in all the graphs of derivation, except the starting and
ending ones.

2.3.2 Truly-concurrent model of computation in the
DPO Approach

According to the parallelism theorem , two productions can be applied at
parallel independent matches in a graph either at the same time, or one after
the in any order, producing the same resulting graph. An observation mecha-
nism which does not distinguish between two derivations where independent
rewriting steps are performed in different order is considered to observe the
concurrent behaviour of a grammar, instead of a sequential one. The corre-
sponding equivalence is said to capture true concurrency.

Shift equivalence:
This equivalence is based on analysis and synthesis constructions. It

equates two derivations if they are related by a finite number of applications
of analysis and synthesis. The shift refers to the basic operation of shifting
a production one step towards the left, if it is sequential independent from
the previous direct derivation.

Definition 2.3.2. (shift equivalence )
If ρ and ρ′ are two derivations such that ρ′ ∈ ANALI,J(ρ)
ρ1 = ρ2; ρ; ρ3
ρ′1 = ρ2; ρ

′; ρ3
and ρ2 has length n−1 then we will write ρ′1 ∈ ANALnI,J(ρ1), indicating that
ρ′1 is an analysis of ρ1 at step n.

Similarly ρ′ ∈ SY NT (ρ),
ρ1 = ρ2; ρ; ρ3
ρ′1 = ρ2; ρ

′; ρ3
and ρ2 has length n− 1 then we will write ρ′1 ∈ SY NT n(ρ1), indicating that
ρ′1 is obtained from ρ1 at step n via synthesis construction.

Now, let ANAL be the union of all analysis relations, (i.e., ANAL=
∪{ANALnI,J |n ∈ ℵ ∧ I, J ∈ ℵ∗}) and similarly let be SYNT be the union
of all synthesis relations, (i.e., SYNT= ∪{SY NT n|n ∈ ℵ}). Furthermore,

38



let SHIFT 0
0 be the relation defined as < ρ1, ρ2 >∈ SHIFT 0

0 iff ρ1 is an
identity derivation ρ1 : G⇒∗ G and ρ2 is an empty derivation ρ2 : G⇒φ G
such that the induced isomorphism is the identity idG : G⇒φ G.

The smallest equivalence relation on derivation on derivations containing
ANAL∪ SY NT ∪ SHIFT 0

0 is called shift equivalence and it is denoted by
≡sh. If ρ is a derivation, by [ρ]sh we denote the equivalence class containing
all derivations shift-equivalent to ρ.

From definition it is clear that ρ ≡sh ρ′ implies σ(ρ) = σ(ρ′) and τ(ρ) =
τ(ρ′), because synthesis and analysis do not affect the extremes of a deriva-
tion.

The truly-concurrent model of computation for a graph grammar is, a
category having concrete graphs as the objects; however it’s arrows are equiv-
alence classes of derivation modulo the shift equivalence.

Definition 2.3.3. (truly-concurrent model of computation)
Given a graph grammar G, the truly−concurrent model of computation

for G, denoted Der(G)/sh, is the category having graphs as objects and as
arrows equivalences of derivations wrt the shift equivalence. More precisely

[ρ]sh : G→ H is an arrow of Der(G)/sh iff σ(ρ) = G and τ(ρ) = H. The
arrow composition is defined as [ρ]sh; [ρ]′sh = [ρ; ρ′]sh, and the identity of G
is the equivalence class [G]sh containing identity derivation G.

Canonical derivations

In truly-concurrent model arrows are equivalences classes of derivations,
so the natural question is to ask for some standard representive i.e., a deriva-
tion which can be characterised as the only one in the equivalence class which
enjoys a certain property.

Canonical derivations are partial answer to above problem. Any given
derivation can be converted to a shift − equivalent canonical derivation
where each production is applied as early as possible.

Definition 2.3.4. (shift relation, canonical derivation ) Let us write
ρ′ ∈ ANALni (ρ) if ρ′ ∈ ANALnI,J(ρ), where I =< i > and J =< 1.., i −
1, i+ 1, .., k >; i.e., when ρ′ is obtained from derivation ρ by anticipating the
application of the i′th production of the n′th direct derivation.

Now for each pair of natural numbers < n, j > both greater than 0, the
relation SHIFT nj is defined as SHIFT nj = SY NT n−1 ◦ ANALnj .

39



Moreover, for each n > 0, we write < ρ1, ρ2 >∈ SHIFT n0 iff ρ1 has length
n, ρ1 = ρ;G⇒ H,where q : G⇒ H ρ2 = ρ;G⇒ X ⇒ H, where q : G⇒ X
and φ : X ⇒ H, an the double pushout with the isomorphism from X to H
induced by the empty direct derivation φ : X ⇒ H. Finally let SHIFT 0

0 be
as defined earlier in definition of shift equivalence.

Relation <sh is defined as the union of relations SHIFT nj for each n, j ∈
ℵ. The transitive and reflexive closure of <sh, denoted ≤sh, is called the
shift relation. A derivation is called canonical iff it is minimal wrt ≤sh.

ρ1 <sh ρ2 iff ρ1 is obtained from ρ2 either by removing the last direct
derivation if it is empty or by moving the application of a single production
one step towards left.

It is important to note that for each n ∈ ℵ, relation SHIFT n0 is deter-
ministic, in the sense that < ρ1, ρ2 >,< ρ′1, ρ2 >∈ SHIFT n0 implies ρ1 = ρ′1.

Proposition 2.3.5. (properties of the shift relation)

1. The smallest equivalence relation containing the <sh relation is exactly
relation ≡sh introduced in definition of shift equivalence.

2. Relation <sh is well-founded, i.e., there is no infinite chain ρ1, ρ2, .... of
derivations such that ρi+1 <sh ρi for all i ∈ ℵ. Thus for each derivation
ρ there exists a canonical (i.e., minimal wrt ≤sh) derivation ρ′ such that
ρ′ ≤sh ρ.

The drawbacks of truly-concurrent model are

1. It still contains too many arrows.Consider any two step derivation
G1 ⇒ G2 ⇒ G3, where p : G1 ⇒ G2 and q : G2 ⇒ G3 are the
two productions applied. However ,since the objects of the category
are graphs , looking at the arrows starting from G1 one may still find
the infinitely many arrows corresponding to the application of same
productions p and q, but ending at different isomorphic copies of G3.

Also consider the pushout of two arrows , which is unique upto iso-
morphism only, which implies that we can have application of same
production yielding infinitely many results.

2. canonical derivations are not unique, since in general analysis and syn-
thesis constructions are not deterministic.

40



2.3.3 Requirements for capturing representation in-
dependence

Graph grammars are mostly used as a formalism for specifying the evolution
of certain systems. In general two isomorphic graphs are considered as repre-
senting the same state. In fact, such a state is determined by the topological
structures of graph and by labels only, while the true identity of nodes and
edges is considered as representation detail only.

Therefore we need an equivalence which equates all isomorphic graphs.
Thus we reason in terms of abstract graphs i.e., of isomorphic classes of
concrete graphs: Given a production p : G ⇒ H applied at match m there
is only one abstract graph [H] such that p,m : [G]⇒ [H].

Above solution is sufficient if we need to consider only the set of graphs
generated by the grammar. But for the semantics which associates with
grammar all possible derivations still we have too much information depen-
dent information. For example we derive [H] from [G] by application of
production p at match m, this can be done via many distinct context graphs
D in the double-pushout construction. Thus the problem is that we find too
many distinct derivations which should not be considered as distinct system
evolutions.

Therefore we need a suitable equivalence class of derivations also i.e.,
abstract derivations. The shift equivalence is not representation indepen-
dent because it relates only those derivations which are starting and ending
at the same concrete graphs.

Three requirements for capturing representation independence and also
to capture the semantics of computation are as follows:

1. well defined equivalence

2. equivalence allowing for sequential composition

3. uniqueness of canonical derivations

we use ∼ to denote an equivalence relation on derivations, and [ρ] to
denote an abstract derivation , which is an equivalence class of derivations
modulo ∼.

The notion of abstract derivation should be consistent with notion of
abstract graph, i.e., any abstract derivation should start from an abstract
graph and should end in an abstract graph.

41



Definition 2.3.6. (well defined equivalence )
For each abstract derivation [ρ], define σ([ρ]) = {σ(ρ′)|ρ′ ∈ [ρ]},and similarly
τ([ρ]) = {τ(ρ′)|ρ′ ∈ [ρ]}. Then the equivalence ∼ is well defined if for each
derivation ρ : G⇒∗ H we have that σ([ρ] = [σ(ρ)], and τ([ρ] = [τ(ρ)].

If ∼ is well defined then for each derivation ρ : G ⇒∗ H we can write
[ρ] : [G]⇒∗ [H].

The second requirement is that the equivalence is a congruence with re-
spect to sequential composition.

Definition 2.3.7. ( equivalence allowing for sequential composition
)
Given two abstract derivations [ρ] and [ρ′] such that τ([ρ] = [σ(ρ′)], their
sequential composition [ρ];[ρ′] is defined iff foe all [ρ1], [ρ2] ∈ [ρ] and [ρ′1], [ρ

′
2] ∈

[ρ′] such that τ([ρ1] = [σ(ρ′1)] and τ([ρ2] = [σ(ρ′2)], one has that
ρ1; ρ

′
1 ∼ ρ2; ρ

′
2. In this case

[ρ]; [ρ′] is by definition the abstract derivation [ρ; ρ′1].
An equivalence ∼ for sequential composition iff [ρ]; [ρ′] is defined for all

[ρ] and [ρ′] such that τ([ρ] = σ([ρ′]).

Each abstract derivation has a unique abstract canonical derivation.

Definition 2.3.8. (uniqueness of canonical derivations)
Equivalence ∼ enjoys uniqueness of canonical derivations iff for each pair
of equivalent derivations ρ ∼ ρ′ and for each pair < ρc, ρ

′
c > of canonical

derivations, ρ ≡sh ρc and ρ′ ≡sh ρ′c implies that ρc ∼ ρ′c.

2.3.4 Equivalence ≡0

Let ρ : G0 ⇒∗ Gn and ρ′ : G′0 ⇒∗ G′n be two derivations having the same
length as shown in the following figure. They are isomorphic (written ρ ≡0 ρ

′

) if there exists a family of isomorphisms {φG0 : G0 → G′0, φXi
: Xi → X ′i}

with X ∈ {L,K,R,G,D} and i ∈ {1, ..., n} between corresponding graphs of
the two derivations, such that all those squares commute, which are obtained
by composing two corresponding morphisms X → Y and X ′ → Y ′ of the
two derivations and the morphisms φX and φY relating the source and the
target graphs.

42



The drawback of ≡0 is that equivalence induced by the isomorphisms of
derivations identifies too many derivations. The productions in the corre-
sponding direct derivations need to be only span-isomorphic. As a result
derivations which can hardly be considering as differing in the representation
detail may be identified.

For example, if a grammar G has two span-isomorphic productions p and
p′, two direct derivations using p and p′ would be considered as equivalent.
To give a more specific example, consider two parallel productions q = p1 +
..... + pk and q′ = p′1 + ..... + p′k, may happen to be span-isomorphic even if
some of the involved sequential productions are distinct or if k 6= k′.

A more specific example is as follows: Following figure shows grammar
production rules for the client-server system. In figure S denotes server, C
denotes client. The various states they could be in are denoted by edges. A
loop labeled idle on server indicates that server is ready to accept requests
from client. A loop labeled req on client indicates that client issued a request,
while a loop labeled job indicates client is doing some internal activity. An
edge from client to server labeled busy means server is processing client’s re-
quest. For prdoctions REQ models the situation where client sends request
to server, REL models the situation where server finished client’s request
and ready to accept further requests, SER models the situation when server

43



switches state from idle to processing some client’s request.

44



Suppose that grammar client-server is extended with the production SYN-
CHR which models the situation where the service of a request starts exactly
when another service terminates. This production is shown in the above fig-
ure.

This production is span-isomorphic to the parallel production SER+REL,
therefore these two productions would be identified by ≡0. But these deriva-
tions are very different, i.e., SER+REL can be sequentialized in any order,
while other is sequential derivation and not decomposable.

2.3.5 Equivalence ≡1

Definition 2.3.9. ( equivalence ≡1 )
Let ρ : G0 ⇒∗ Gn and ρ′ : G′0 ⇒∗ G′n be two derivations such that ρ ≡0 ρ

′ as
in the figure given above. Then they are 1− equivalent (written ρ ≡1 ρ

′ ) if

1. There exists a family of permutations < π1, ..., πn > such that for each
i ∈ {1, ..., n}, productions qi and q′i are isomorphic via πi;

2. For each i ∈ {1, ..., n}, the family of isomorphisms {φLi
: Li → L′i, φKi

:
Ki → K ′i, φRi

: Ri → R′i, } that exists by definition of ≡0 is exactly the
family of isomorphisms between corresponding graphs of qi and q′i which
is induced by permutations πi according to the result that isomorphic
parallel productions are span-isomorphic.

we say that ρ and ρ′ are 1 − equivalent via < πi >i≤n if < πi >i≤n
is the family of permutations of point 1 above. Given a derivation ρ, it’s
equivalence class with respect to ≡1 is denoted by [ρ]1, and is called a 1 −
abstract derivation.

Lemma 2.3.10. (analysis, synthesis and shift preserve ≡1)

Let ρ ≡1 ρ
′ via < πi >i≤n and let φG0 and φGn be the isomorphisms

between their starting and their ending graphs.

1. If ρ1 ∈ ANALij(ρ) then there is at least one derivation ρ2 ∈ ANALiπi(j)(ρ
′).

Moreover for each ρ2 ∈ ANALiπi(j)(ρ)′ it holds that ρ2 ≡1 ρ1.

45



2. If ρ1 ∈ SY NT i(ρ) then there is at least one derivation ρ2 ∈ SY NT i(ρ′).
Moreover for each ρ2 ∈ SY NT i(ρ′). it holds that ρ2 ≡1 ρ1.

3. If ρ1 ∈ SHIFT ij (ρ) then there is at least one derivation ρ2 ∈ SHIFT iπi(j)(ρ
′).

Moreover for each ρ2 ∈ SHIFT iπi(j)(ρ
′) , it holds that ρ2 ≡1 ρ1.

Furthermore in all these three cases, the isomorphisms relating the
starting and ending graphs of the 1-equivalent derivations ρ2 and ρ1
are exactly isomorphisms φG0 and φGn.

Proof. Analysis proof
We assume that ρ and ρ′ are parallel direct derivations which implies

that ρ ≡1 ρ
′ via π. This assumption is made for simplicity as we will have to

deal with parallel derivations of length 1. It can be generalised to equivalent
derivations of arbitrary length. Also existence of ρ2 ∈ ANALiπi(j)(ρ)′ is
guaranteed by Analysis of parallel direct derivations lemma.

Two direct derivations ρ = p1 + p2 + ... + pk : G ⇒ H and ρ′ =
p′1 + p′2 + ... + p′k : G′ ⇒ H ′ are transformed into corresponding derivations
η = (pj + q2 : G⇒ H) and η′ = (p′π(j) + q′2 : G′ ⇒ H ′) using lemma Analysis

of parallel direct derivations, where q2 = p1 + ....+ pj−1 + pj+1 + ...+ pk
and q′2 = p′1 + ....+ p′π(j−1)

+ p′π(j+1)
+ ......+ p′k.

Suppose pj = (l1 : K1 → L ,l1 : K1 → R),
q2 = (l2 : K2 → L ,l2 : K2 → R),
p′π(j) = (l′1 : K ′1 → L′1, l

′
1 : K ′1 → R′1),

q′2 = (l′2 : K ′2 → L′2, l
′
2 : K ′2 → R′2),

We know that pj = p′π(j) i.e., we have X = X ′ for X ∈ {L,K,R, l, r}.
Let π1 be the unique permutation on {1} and π2 be the bijective mapping

between the productions of q2 and q′2 induced by π.
Let us assume that the derivations η and η′ have the same shape of

the right double-pushout of figure splitting a parallel production. Then
(1) + (2) is derivation η and similarly we can have another diagram for η′

having the derivation (1′) + (2′). We also have that η and η′ are related
by family of isomorphisms {φX : X → X ′|X is a graph of η } making the
diagram commutative.

Now we apply butterfly lemma on the double-pushouts (1) + (2) and
(1′) + (2′) corresponding to η and η′ to get pushouts (3) to (8) and (3′) + (8′)
like in figure Application of butterfly lemma. And also construct (9)

46



and (9′) corresponding to η and η′ respectively. Like in figure Building the
sequential derivation.

Now all the corresponding graphs of two families are related by the iso-
morphisms relating η and η′, except X1, X2, Y1, Y2 and X. Isomorphism
φX1 : X1 → X ′1 is uniquely determined since (3) and (3′) are pushouts.
Similarly φX1 , φX2 , φY1 , φY2 ,φX are also determined.

From isomorphisms constructed as above combined with π1, π2, it follows
that two sequential derivations corresponding to η and η′ are 1-equivalent.

(Synthesis proof)

We assume that ρ and ρ′ have length 2, therefore ρ ≡1 ρ
1 via < π1, π2 >.

By hypothesis ρ1 ∈ SY NT i(ρ) therefore ρ is sequential independent.

• To show the existence of ρ2 ∈ SY NT i(ρ′) by synthesis of sequential
independent derivation lemma, it is sufficient to show that ρ′ is sequential
independent.

Let ρ′ be a sequential derivation like in figure a sequential indepen-
dent derivation. We have that ρ ≡1 ρ

1, therefore there exists a family of
morphisms relating the corresponding graphs of ρ and ρ′ so that everything
commutes, making ρ′ sequentially independent.

Pushouts (3) to (8) and (3′) + (8′) like in figure Application of but-
terfly lemma constructed for η and η′ respectively induce isomorphisms
between corresponding graphs by synthesis of sequential independent
derivation lemma. Since all the corresponding graphs are either pushouts or
pushout complement objects, the morphisms φD : D → D′ , φX1 : X1 → X ′1,
φY2 : Y2 → Y ′2 are uniquely determined.

From isomorphisms constructed as above combined with < π1, π2 > it
above it follows that η and η′ are 1-equivalent.

(Shift proof)
If j ≥ 1 proof immediately follows from (1) and (2) above as SHIFT ij =
SY NT i−1 ◦ ANALij by definition of SHIFT .

If j = 0 then it means that πi(j) = 0 , then both ρ and ρ′ are empty
directions. In this case ρ2 and ρ1 are uniquely determined because SHIFT i0
is deterministic. If this construction is applicable to ρ then it is applicable
to ρ′ also giving 1-equivalent derivations.

47



Theorem 2.3.11. (≡1 enjoys uniqueness of canonical derivations)
Let ρ and ρ′ be two derivations such that ρ ≡1 ρ′, and let ρc, ρ

′
c be two

canonical derivations such that ρc ≡sh ρ′c and ρ′ ≡sh ρ′c. Then ρc ≡1 ρ
′
c.

Drawback of ≡1 model is that it does not allow for the sequential compo-
sition. We prove this by giving a counter example. Consider two derivations
d1; d2 shown in figure(a), and d′2 shown in figure(b), which are given below.

48



We see that d2 ≡1 d
′
2,since productions applied SER are same, and we

have family of isomorphisms φ2 = {φG′2 : G′2 → G′2, φK2 : K2 → K ′2, φG3 :
G3 → G′3} with φG′2(w) = v, , φG′2(v) = w, φK2(v) = w, φG3(v) = w, and for
other edges and vertices, we use identity morphisms. Also d1 ≡1 d1 using
family of morphisms φ1 = {idG1 , idK1 , idG′2}. We see that τ(d1) = σ(d′2) = G′2
therefore d1; d

′
2 is defined.

So we have two derivations d1; d2 and d1; d
′
2 with d2 ≡1 d

′
2 and d1 ≡1 d1.

but these two derivations are not 1-equivalent, since φ1 and φ2 do not agree
on G′2. These two derivations are semantically different also. In the first
derivation d1; d2 first request will be served while in second derivation d1; d

′
2

second request is served first. Therefore there does not exist a family of
isomorphisms between corresponding graphs of two derivations.

49



2.3.6 Equivalence ≡3

Definition 2.3.12. (standard isomorphisms)
A family s of standard isomorphisms in category GRAPH is a family of
isomorphisms indexed by pairs of isomorphic graphs (i.e., s = {s(G,G′)|G ∼=
G′}) satisfying the following conditions for each G,G′ and G′′ ∈ |GRAPH|:

1. s(G,G′) : G→ G′;

2. s(G,G) = idG;

3. s(G′′, G′) ◦ s(G,G′′) = s(G,G′′).

Definition 2.3.13. ( Equivalence ≡3 )

Let s be an arbitrary but a fixed family of standard isomorphisms of cat-
egory GRAPH, and let ρ, ρ′ be two derivations. we say that ρ and ρ′ are
3 − equivalent (written ρ ≡3 ρ

′ ) iff they are 1-equivalent, and moreover
the isomorphisms φG0 and φGn, relating their starting and ending graphs are
standard. An equivalence class of derivations wrt ≡3 is denoted by [ρ]3, and
is called a 3− abstract derivation.

Lemma 2.3.14. (≡3 allows for sequential composition)

Let ρ ,ρ′1,ρ2 and ρ′2 be four derivations such that ρ1 ≡3 ρ
′
1, ρ2 ≡3 ρ

′
2,

τ(ρ1) = σ(ρ2) and τ(ρ′1) = σ(ρ′2). Then ρ1; ρ2 ≡3 ρ
′
1; ρ
′
2.

Proof. By hypothesis there are two families of isomorphisms making ρ1 and
ρ2 3− equivalent to ρ′1 and ρ′2, respectively. The two families must agree on
τ(ρ1) = σ(ρ2) since there is only one standard isomorphism between a given
pair of isomorphic graphs. Thus union of these families provides a family of
isomorphisms which makes 3-equivalent ρ1; ρ2 and ρ′1; ρ

′
2.

Proposition 2.3.15. ( properties of equivalence ≡3 )
Equivalence ≡3 is well defined, it allows for sequential composition , and it
enjoys uniqueness of canonical derivations.

Proof. 1. Sequential composition is well defined by the proposition (≡3

allows for sequential composition).

50



2. Uniqueness of canonical derivations follows from theorem (≡1 enjoys
uniqueness of canonical derivations) .

3. Analysis, synthesis and shift preserve ≡1 along with isomorphisms re-
lating starting and the ending graph of 1-equivalent derivations , it
follows that they preserve ≡3 also.

2.3.7 Abstract model of computation in the DPO Ap-
proach

Definition 2.3.16. (abstract model of computation)

Given a grammar G, it’s abstract model of computation ADer(G) is
defined as follows.

The objects of ADer(G) are abstract graphs, i.e., isomorphism classes
of objects of GRAPH. Arrows of ADer(G) are 3-abstract derivations, i.e.,
equivalence classes of (parallel) derivations of G with respect to equivalence
≡3. The source and target mapping are given by σ and τ , respectively; thus
[ρ]3 : (σ[ρ]3) → τ([ρ]3). Composition of arrows is given by the sequential
composition of the corresponding 3-abstract derivations.For each object [G]
the identity arrow is the 3-abstract derivation [G : G ⇒∗ G]3 containing the
identity derivation G.

Category ADer(G) is equipped with an equivalence relation ≡sh on ar-
rows, defined as [ρ]3; [ρ′]3 if ρ ≡sh ρ′.

Proposition 2.3.17. (category ADer(G) is well-defined)

Category ADer(G) s well-defined. Moreover, equivalence ≡sh is a congru-
ence with respect to arrow compositions, i.e., if [ρ1]3 ≡sh [ρ′1]3 and [ρ2]3 ≡sh
[ρ′2]3, then [ρ1]3; [ρ2]3 ≡sh [ρ′1]3; [ρ′2]3; (if the compositions are well defined).

Proof. The two facts follow easily from the properties of equivalence equiv3
summarized in proposition properties of equivalence ≡3 and from the
theorem (≡1 enjoys uniqueness of canonical derivations) .

Category ADer(G)/sh is equipped with an equivalence relation ≡sh on
arrows, defined as [ρ3] ≡sh [ρ′]3 if ρ ≡sh ρ′.

51



2.3.8 Abstract, truly-concurrent model of computa-
tion in the DPO Approach

Definition 2.3.18. ( Abstract, truly-concurrent model of computa-
tion )
The Abstract, truly−concurrent model of computation for a grammar G is
defined as category ADer(G)/sh, having the same objects as ADer(G) and
as arrows as equivalence classes of arrows of ADer(G) wrt equivalence ≡sh.

52



Chapter 3

SPO approach to graph
transformations

3.1 Graph transformation based on

SPO Approach

Definition 3.1.1. (partial graph morphism)
Let G =< GV , GE, s

G, tG, lvG, leG > be a graph, where GV is a set of ver-
tices(or nodes), GE is a set of edges (or arcs), sG, tG : GE → GV are the
source and target functions, and lvG : GV → ΩV and leG : GE → ΩE are the
node and the edge labeling functions, respectively.

A subgraph S of G , written S ⊆ G or S ↪→ G is a graph with SV ⊆ GV ,
SE ⊆ GE, sS = sG|SE

, leS = leG|SE
.

A partial graph morphism g from G to H is a total graph morphism
from some subgraph dom(g) of G to H, and dom(g) is called the domain of
g.

Definition 3.1.2. production, graph grammar
A production p : (r : L → R) is composed of a production name p and
of an injective partial graph morphism r, called the partial morphism. The
graphs L, R are called the left-hand side(lhs), and the right-hand side(rhs) of
p, respectively.

A graph grammar G is a pair G =< (p : r)p∈P , Go > where the first
component is a family of production morphisms indexed by production names
in P and Go is the start graph of the grammar.

53



Definition 3.1.3. (co-equalizer)
Given a category C and two arrows a : A→ B and b : A→ B of C, a tuple
< C, c : B → C > is called co-equalizer of < a, b > if c ◦ a = c ◦ b for all
objects D and arrows d : B → D, with d ◦ a = d ◦ b, there exists a unique
arrow u : C → D such that u ◦ c = d.

Proposition 3.1.4. (construction of specific co-equalizer in GRAPHP)
Let a, b : A→ B be two partial morphisms such that for each x ∈ A , if both
a and b are defined on x then a(x) = b(x). Then, the co-equalizer of a and b
in GRAPHP is given by < C, c > where,

• C ⊆ B is the largest subgraph of [b(A) ∩ a(A)] ∪ [a(A) ∩ b(A)] , and

• dom(c) = C and c is the identity morphism on it’s domain.

Proof. (proof that above construction indeed gives us a co-equalizer)

• commutativity c ◦ a = c ◦ b
For each x ∈ A , if both a and b are defined on x then a(x) = b(x)
and c is the identity morphism on it’s domain, therefore it follows that
c ◦ a = c ◦ b.

• universal property

For any other morphism d : B → D with d ◦ a = d ◦ b we have dom(d) ⊆
dom(c) from the first point of construction that c is the largest sub-
graph. Therefore the required unique arrow u : C → D is just the
restriction of c to dom(d).

Example 3.1.5. (deletion of elements by co-equalizer construction)

54



Following figure shows how specific co-equalizer constructed as above
deletes elements. Morphism a is empty and b is a total morphism in GRAPHP .
vertex 2 is deleted because it has preimage under b but not under a, i.e.,
2 /∈ [b(A) ∩ a(A) and also 2 /∈ a(A) ∩ b(A).

Proposition 3.1.6. (pushout in GRAPHP)

The pushout of two morphisms b : A→ B and c : A→ C in GRAPHP
always exists and can be computed in three steps, as shown in figure 3:

1. [gluing1] Construct the pushout < C
′
, A→ C

′
, C → C

′
> of the total

morphisms dom(c)→ C and dom(c)→ A in Graph.

2. [gluing2] Construct the pushout < D,B → D,C
′ → D > of the total

morphisms dom(b)→ A→ C
′

and dom(b)→ B in Graph.

3. [deletion] Construct the co-equalizer < E,D → E > of the partial
morphisms A→ B → D and A→ C → C

′ → D in GRAPHP .

< E,C → C
′ → D → E,B → D → E > is the pushout of b and c in

GRAPHP .

55



Proof. Commutativity holds by construction. To prove uniqueness assume
that there is < F,C → F,B → F > with A → B → F = A → C → F .
Then we have to show that there exists a unique morphism E → F such that,
B → D → E → F = B → F and C → C

′ → D → E → F = C → F .

Definition 3.1.7. (match, derivation )
A match for r : L → R in some graph G is a total morphism m : L → G.
Given a production r and a match for r in a graph G, the direct deriva-
tion from G with r at m, written G ⇒r,m H, is the pushout of r and m in
GRAPHP as shown in the following figure.

A sequence of direct derivations of the form ρ = (G0 ⇒r1,m1 .... ⇒rk,mk

Gk) constitutes a derivation from G0 to Gk by r1...rk, briefly denoted as
G0 ⇒∗ Gk.

The graph language generated by a graph grammar GRAPHP is the set
of all graphs Gk such that there is a derivation G0 ⇒∗ Gk using productions
of GRAPHP .

56



Definition 3.1.8. (special matches)
Given a match m : L → G for a production r : L → R. Then m is called
conflict free if m(x) = m(y) implies x, y ∈ dom(r) or x, y /∈ dom(r). It is
called d-injective if m(x) = m(y) implies x, y ∈ dom(r) or x = y. Finally,
m is d-complete if for each edge e ∈ GE with sG(e) ∈ mV (LV − dom(r)V )
or tG(e) ∈ mV (LV − dom(r)V ) we have e ∈ mE(LE − dom(r)V ).

Example 3.1.9. (special match, direct derivations as pushout con-
struction)

In the Diagram shown above, dangling edge is deleted as part of pushout
construction, in D itself. It is important to note that it is not deleted as a
part of co-equalizer construction but because deletion has got priority. Here
the match is not d-complete, because dangling edge got implicitly deleted
as a result of explicit deletion of it’s source vertex 1.

57



Lemma 3.1.10. (pushout properties)

If (H, r∗ : G → H,m∗ : R → H) is the pushout of r : L → R and
m : G→ H in in GRAPHP , then the following properties are fulfilled:

1. pushouts preserve surjectivity, i.e. r surjective implies r∗ surjective.

2. pushouts preserve injectivity, i.e. r injective implies r∗ injective.

3. r∗ and m∗ are jointly surjective.

4. m conflict-free implies m∗ total.

Proof. 1. (proof of first property i.e., r surjective implies r∗ surjective)
Given that r is surjective means no new elements are added in G to
construct resulting pushout graph.It is also given that m is total means
all elements in L are mapped to G.

So there are 3 cases to consider ,

(a) element mapped by m but preserved from G . Consider an element
a ∈ L which is mapped to some a

′
in G via m and a′′ in R via r,

i.e., e→m e
′

and e→r e′′ , then by the pushout construction e′′ is
mapped to equivalence class {e′ , e′′} in H.

(b) element mapped by m but not mapped by r is deleted from G
Consider an element a ∈ L which is mapped to some a

′
in G via

m and not mapped to any element in R via r, i.e.,e→m e
′

and by
the pushout construction e′′ is mapped to equivalence class {e′ , φ}
in H,so by co-equalizer construction this element is deleted in H.

(c) element not mapped by m and not mapped by r in G, Consider
such x ∈ G as described above, then by pushout construction this
element forms it’s own equivalence in H and is preserved.

Finally to prove that r∗ is surjective, Assume there exists an element
x ∈ H which is not an image of any element in G via r∗ . Then it must
came in H through L → R → Hwhich means that x in an image of
some element b ∈ R which was not mapped by any element in L via r
, which is a contradiction since r is surjective.

58



2. (proof of second property i.e., r injective implies r∗ injective) Assume
that r∗ is not injective. i.e, there exists an element h ∈ H s.t.,
r∗(a) = r∗(b) = h and a 6= b in G. as shown in the following dia-
gram.

wlg assume that there are elements e, e
′ ∈ L , c, c

′ ∈ R s.t. m(a) = a
and m(e

′
) = b,and m∗(c) = h = m∗(c

′
). Now observe that when we

constructed H , (c, a) and (c
′
, b) form two different equivalence classes

in H. The only way by which (c, c′, a, b) = h is that there must exist
another element e′′ ∈ L to equate these two classes, i.e., m(e′′) = a
and r(e′′) = c

′
or m(e′′) = b and r(e′′) = c in either case we have r as

non-injective which is a contradiction.

3. (proof of third property i.e., r∗ and m∗ are jointly surjective.) This
property states that there does not exist h ∈ H which not mapped
either by r∗ or m∗ which is not possible by the construction of pushout

59



itself, since elements of H are equivalences classes made up from ele-
ments of R and G.

4. (proof of fourth property i.e., m conflict-free implies m∗ total.) Assume
that m∗ is not total but m is conflict-free. Consider an element c ∈ R
which was not mapped under m∗ in H. This means that c did not
land up in it’s equivalence class, i.e, it got deleted while construction
of pushout. This is possible through only two cases:

In first case c was mapped under r by some element a ∈ L as shown
in diag 1 of following figure, r(a) = c, but b was not mapped under
r. and both of them mapped to same element d ∈ G.So, equivalences
classes formed are (d, c) and (d, φ) leading to (d, c, φ) which means c
was deleted as a result. but this case implies that m is not conflict free,
since m(a) = m(b) = d and a 6= b.

In second case c was not mapped by any element in L via r, then

60



either c was new element to be added, in that case it must have formed
it’s own equivalence class leading to contradiction that it was mapped
under m∗ or c was the element to be deleted again which is considered
in first case as described above.

Definition 3.1.11. (Translation of double-pushout transformations)
If r : L → R is a production rule in SPO, D(r) = (l : Lr → L, r

′
: Lr → R)

denotes it’s translation to the double-pushout rule, where l is the inclusion
of Lr in L and r

′
is the domain restriction of r to Lr. Conversely for a

double-pushout rule p = (l : K → L, r : K → R), S(p) : L → R denotes it’s
translation to single-pushout rules, where LS(p) = l(K) and S(p) = r ◦ l−1.

Theorem 3.1.12. (Embedding of the DPO approach)

If the object H is the result of transforming an object G with rule p at
match m in the double-pushout framework, the translation of p to a single
pushout rule i.e., S(p), transforms G to H at the same match m in the single
pushout setting.

Conversely, if G can be transformed to H with rule r at match m by a
single pushout transformation, the translation of r to a double pushout rule
, i.e., D(r), is applicable to G at m in the double pushout-framework iff m is
d-injective and d-complete. In this case, the double pushout transformation
of G with D(r) at m results in the same object H.

Proof. (SPO⇒ DPO)

Ls is preimage of s : L→ R and Gsm is preimage of sm : G→ H.
We have m(Ls) ⊆ Gsm , ms : R → H is total, and m(L − Ls) ⊆ G − Gsm

since m is d-injective and d-complete.
Consider following diagram.
we construct pushout (2) as follows. Interface graph K = Ls, context

graph D = Gsm , l is identity map from Ls → L, l∗ is identity map from
Gsm → G, k : K → D is (l∗)−1 ◦m ◦ l , since l, m, l∗ are injective, k is also
injective and total. It is easy to see that < D, k, l∗ > is pushout-complemet
of < K, l,m > and since l, m, are injective it is unique. Therefore (2) is
pushout.

We construct pushout (3) as follows. r is identity map from Ls → R,
r∗ : Gsm → H is restriction of of sm to Gsm . It is easy to see that < D, k, r∗ >

61



is pushout-complemet of < K, l,m > and since r and k are injective it is
unique. Therefore (3) is pushout.

(DPO⇒ SPO)

Since we are starting with a DPO construction , we know that m satisfies
gluing condition, which implies thatm is d-injective and d-complete.Therefore
m∗ is total. Let S(l, r) be the translation for s ,and S(l∗, r∗) be the transla-
tion for s∗ in pushout (3).

Now consider following diagram.
Construction of pushout (4) is trivial since, dom(m) = L, idL : L →

dom(m), G
′

= G and idG : G → G
′
. Therefore m

′
= m, Hence it is easy to

see that (4) is a pushout.

62



We construct pushout (5) in the diagram as follows. dom(s) = l(k);
s : L → R is defined as for all e ∈ l(k) s(e) = r(l−1(e)); l : dom(s) =
l(K) → L; r : dom(s) = l(K) → R; We construct g′′ as pushout of
< L, r|K : L → R,m : L → G > as shown in the pushout (6) where r∗|D is
a map from G → G′′. It is clear that (5) is a pushout of total morphisms,
dom(s) → K → G′ and dom(s) → R. Graph G′′ contains all the original
elements of G and added elements from R.

Now construct the co-equalizer < H,G′′ → H > of total morphisms
L → G → G′ → G′′ and L → R → G′′. Which will delete elements
specified by pushout (1), Since elements coming through morphism L →
G → G′ → G′′ are not mapped by L → R → G′′they will be deleted and
will preserve elements as required since they will be mapped by both the
morphisms considered, since elements to be preserved are specified by l(K)
which are mapped in both the morphisms, and all the component morphisms
are total.

Morphism s∗ is G→ G
′ → G′′ → H as required for the pushout (3).

63



3.2 Parallelism in SPO approach

There are two ways to model concurrent computations, the interleaving and
truly concurrent model.

3.2.1 Interleaving

In interleaving model two actions are concurrent i.e. potentially in parallel,
if they may be performed in any order with the same result. Single actions
are modeled by direct derivations. Again from two different points of view
this notion of parallelism is studied, parallel independence and sequential
independence.

Parallel independence
Parallel independence condition ensures that two alternative derivations

are not mutually exclusive .
A direct derivation d1 = (p1,m1 : G⇒ H1) does not affect d2 = (p2,m2 :

G⇒ H2), if d1 does not delete elements in G which are accessed by d2. The
vertices deleted from G by d1 are those in m1(L1 − dom(p1)). An edge will
be deleted from G if it is in m1(L1−dom(r1)). or one of it’s incident vertices
is deleted.

Definition 3.2.1. (parallel independence )
Let d1 = (p1,m1 : G ⇒ H1) and d2 = (p2,m2 : G ⇒ H2) be two alternative
direct derivations. Then we say that d2 is weakly parallel independent of d1
iff m2(L2)∩m1(L1−dom(p1)) = φ. We call the derivations d1 and d2 parallel
independent if they are mutually weakly parallel independent.

64



Lemma 3.2.2. (categorical characterisation of weak parallel inde-
pendence)
Let d1 = (p1,m1 : G⇒ H1) and d2 = (p2,m2 : G⇒ H2) be two direct deriva-
tions. Then d2 is weakly parallel independent of d1 iff p∗1 ◦m2 : L2 ⇒ H1 is
a match for p2.

Proof. (⇒) Assume that we have a match p∗1 ◦m2 : L2 ⇒ H1 as described
above then we have to prove that d2 is weakly parallel independent of d1 i.e.,
m2(L2) ∩m1(L1 − dom(p1)) = φ.

m2(L2) ⊆ dom(p∗1) by definition of composition. Now, L1 − dom(p1 con-
tains elemets which are not mapped in R i.e, these are the elements which
are deleted. Therefore by commutativity of pushouts m2(L2) ∩ m1(L1 −
dom(p1)) = φ.

To be more descriptive assume that there was such an element c ∈ G
such that c ∈ m2(L2) ∩m1(L1 − dom(p1)) , then by pushout commutativity
of right pushout this element is deleted in H1, but this is not possible since
it is mapped to some element of L2 via existence of m′2, which was needed
by m2 which is total morphism, leading to contradiction.

(⇐)Assume that d2 is weakly parallel independent of d1 i.e., m2(L2) ∩
m1(L1 − dom(p1)) = φ. and we have to prove that match p∗1 ◦m2 : L2 ⇒ H1

is total.
Let us consider vertices first. Vertex which explicitly deleted by p1 i.e.,

which belongs to m1(L1−dom(p1) is not there in H1. So, it do not belong to
m2(L2) therefore it does not belong to dom(p∗1). Vertex which is not explicitly
deleted by p1 is preserved i.e., present in H1 , and it belongs to dom(p∗1). This
implies that each preimage of v ∈ G under m2 also have an image in H1.

Now consider edges. Each edge e which is preserved by p1, by following
arguments for vertices e ∈ dom(p∗1). Each edge e which is implicitly deleted
by p1 i.e., e ∈ G−m1(L1 − dom(p1)), i.e., an edge which is deleted because
either source or target vertex was deleted i.e., sG(e) ∈ m1(L1 − dom(p1)) or
tG ∈ m1(L1 − dom(p1)). But by definition of parallel independence sG(e) /∈
m1(L1 − dom(p1)) or tG(e) /∈ m1(L1 − dom(p1)) implying that e /∈ m2(L2)
by graph morphisms. Therefore e ∈ m2(L2) implies that e ∈ dom(p∗1).

Sequential independence The condition of sequential independence
ensures that two consecutive direct derivations are not causally dependent.
A direct derivation is weakly sequential independent of the previous one

65



if it could already have been performed before that. Stronger sequential
independence requires that additionally second will not delete anything which
was needed by first one.

Definition 3.2.3. (sequential independence)
Let d1 = (p1,m1 : G ⇒ H1) and d′2 = (p2,m2 : H1 ⇒ X) be two consecutive
direct derivations. Then we say that d′2 is weakly sequentially independent
of d1 if m′2(L2) ∩m∗1(R1 − p1(L1)) = φ. If additionaly m′2(L2 − dom(p2)) ∩
m∗1(R1) = φ, we say that d′2 is sequentially independent of d1,and the deriva-
tion (G⇒p1,m1 H1 ⇒p2,m′2 X) is called sequentially independent.

Lemma 3.2.4. (categorical characterisation of sequential indepen-
dence)
Assume two direct derivations d1 = (p1,m1 : G ⇒ H1) and d2 = (p2,m

′
2 :

H1 ⇒ X) . Then d′2 is weakly sequentially independent of d1 iff there
is a match m1 : L2 → Gfor p2 such that m′2 = p∗1 ◦m2 . The derivation d′2 is
sequentially independent of d1 iff d′2 is weakly sequentially independent
of d1 and d1 is weakly parallel independent of the correspondingly existing
derivation d2 = (p2,m

′
2 : G⇒ H2).

Proof. Let us divide this proof in four parts.

1. Assume that we have there is a match m1 : L2 → G for p2 such that
m′2 = p∗1 ◦m2 we have to prove that d′2 is weakly sequentially inde-
pendent of d1 . i.e., m′2(L2) ∩m∗1(R1 − p1(L1)) = φ.

m′2 = p∗1 ◦m2 ————– (1) (by assumption).
m′2 = p∗1(m2) —————(2) (from 1).

66



m′2 ⊆ dom(p∗1) —————–(3) (be definition of function composition).
p∗1(G) ∩m∗1(R1 − p1(L1)) = φ ——-(4) (by left pushout construction).
p∗1(m2(L2)) ∩m∗1(R1 − p1(L1)) = φ ——–(5)(by 3 and 4).
m′2(L2) ∩m∗1(R1 − p1(L1)) = φ (by 5 and 2).

2. Assume that d′2 is weakly sequentially independent of d1 . i.e.,
m′2(L2) ∩ m∗1(R1 − p1(L1)) = φ, we have to prove that a match m2 :
L2 → G exists for p2 such that m′2 = p∗1 ◦m2 and it is total.

First we construct the required match m2.

For the vertices and edges which are deleted from G either implicitly
or explicitly by application of p1 are not present in H1 so they do not
belong to m′2(L2), so we do not have to bother about them. For a ver-
tex v ∈ G s.t. v ∈ m1(p1(L1)) , v is preserved , consider the situation
given in the diag1 below.

p∗1(v) = v′ = m′2(v
′
2) for some v′2 ∈ L2 and v′ ∈ H1. Then m2(v

′
2) = v

i.e., m2(v
′
2) = p∗

−1

1 (m′2(v
′
2))).

67



For a vertex v ∈ G s.t. v /∈ m1(p1(L1)), v is not mapped by m1

but is simply copied to H1 as shown in diag2 above. Then m2(v
′
2 =

p∗
−1

1 (m′2(v
′
2)) . For an edge or vertex which is generated by p1 i.e.,

v ∈ m∗1(R1− p1(L1)) and is in match of m′2. but this violates the given
condition therefore we do not have to consider this to construct map
m2.

By construction m2(L2) ⊆ dom(p∗1).

3. Assume that d′2 is sequentially independent of d1 i.e.,

(a) m′2(L2) ∩m∗1(R1 − p1(L1)) = φ.

(b) m′2(L2 − dom(p2)) ∩m∗1(R1) = φ.

Then we have to prove that ,

(a) d′2 is weakly sequentially independent of d1.

(b) d1 is weakly parallel independent of the correspondingly exist-
ing derivation d2 = (p2,m

′
2 : G ⇒ H2). i.e., m1(L1) ∩ m2(L2 −

dom(p2)) = φ.

First part follows by condition (a) of the assumption by definition of
weak sequential indpendence. For the second part consider the follow-
ing diagram described by above situation.

68



If second condition is not satisfied i.e., m1(L1)∩m2(L2−dom(p2)) 6= φ
then there must be some element v ∈ m1(L1) ∩m2(L2 − dom(p2)) i.e.,
which means that v is needed by p1 but deleted by p2. This implies
that v cannot be in domain of p∗1. But by equality m′2 = p∗1 ◦m2 the
same element is deleted by m′2 i.e., v ∈ m′2(L2−dom(p2)). But we have
that v ∈ m1(L1)⇒ v ∈ m∗1(R1) which violates (a) of our assumption.

4. Assume that

(a) d′2 is weakly sequentially independent of d1 i.e., m′2(L2) ∩
m∗1(R1 − p1(L1)) = φ.

(b) d1 is weakly parallel independent of the correspondingly exist-
ing derivation d2 = (p2,m

′
2 : G ⇒ H2). i.e., m1(L1) ∩ m2(L2 −

dom(p2)) = φ.

Then we have to prove that , d′2 is sequentially independent of d1
i.e.,

(a) m′2(L2) ∩m∗1(R1 − p1(L1)) = φ.

69



(b) m′2(L2−dom(p2))∩m∗1(R1) = φ. i.e., p2 do not delete any element
which was generated by p1.

First condition follows by (a) of the assumption. Assume that second
condition is not satisfied then p2 deletes some element generated by p1.
Let that element be v. Then v ∈ m∗1(R1 − p1(L1)) and v ∈ m′2(L2 −
dom(p2)) latter implies that v ∈ m′2(L2). which clearly violates (a) of
our assumption.

Lemma 3.2.5. ( weak independence)
Given a direct derivation d1 = (p1,m

′
1 : G ⇒ H1), the following statements

are equivalent:

1. There is a direct derivation d2 = (p2,m
′
2 : G ⇒ H2) which is weakly

parallel independent of d1.

2. There is a direct derivation d′2 = (p2,m
′
2 : H1 ⇒ X) which is weakly

parallel independent of d1. Up to isomorphism, a bijective correspon-
dence between 1. and 2. above is given by by m′2 = p∗1 ◦m2 and m2 =
(p∗1)

−1 ◦m1.

Proof. 1. and 2. are equivalent by two characterizations (categorical char-
acterisation of sequential independence), and (categorical charac-
terisation of weak parallel independence) given above.

By pushout properties using pushouts preserve injectivity, i.e. p1
injective implies p∗1 injective we have m2 = (p∗1)

−1 ◦ p∗1 ◦ m2. and m′2 =
p∗1 ◦ (p∗1)

−1 ◦m1.

Theorem 3.2.6. (Local Church Rosser) Let d1 = (p1,m1 : G ⇒ H1)
and d2 = (p2,m2 : G ⇒ H2)) be two direct derivations. Then the following
statements are equivalent:

1. The direct derivations d1 and d2 are parallel independent.

2. There is a graph X and direct derivations H1 ⇒p2,m′2 X and H2 ⇒p1,m′1

X such that G ⇒p1,m1 H1 ⇒p2,m′2 X and G ⇒p2,m2 H2 ⇒p1,m′1 X are
sequentially independent derivations.

Up to isomorphism, a bijective correspondence between 1. and 2. above is
given by by m′2 = p∗1 ◦m2 and m′1 = p∗2 ◦m1.

70



Proof. Consider diagram given above. Subdiagrams (1) and (2) describes the
pushouts corresponding derivations d1 and d2 respectively. Subdiagram (3)
describes pushout for p∗1 and p∗2. By composition of pushouts (2) and (3) we
get pushout (2) + (3) which describes derivation for H1 ⇒p2,m′2 X since we
have m′2 = p∗1 ◦m2 by parallel independence of d1 and d2. Similarly we get
derivation H2 ⇒p1,m′1 X by combining (1) and (3). Now the equivalence of
above two statements and isomorphism follows from weak independence
lemma given above.

3.2.2 Explicit Parallelism

Definition 3.2.7. (parallel production and derivations)
Given two productions p1 : L1 → R1 and p2 : L2 → R2, the parallel production
p1 + p2 : (L1 + L2 →p R1 + R2) is composed of the production name p1 +
p2, i.e., the diagram above, and the associated partial morphism p. The
graphs (L1 + L2 and (R1 + R2 (together with the corresponding injenctions
in1
L, in

2
L, in

1
R, in

2
R) are the coproducts of L1, L2 and R1, R2 respectively. The

71



partial morphism L1 + L2 →p R1 + R2 is induced uniquely by the universal
property of the coproduct L1 + L2 such that p ◦ in1

L = in1
R ◦ p1 and p ◦ in2

L =
in2
R ◦ p2. The application of a parallel production p1 + p2 at a match m

constitutes a direct parallel derivation, denoted by G ⇒p1+p2,m X or
(p1 + p2,m : G⇒ X).

By referring to morphisms m1 = m ◦ in1
L and m2 = m ◦ in2

L we also write
p1 + p2,m1 +m2 : G⇒ X.

Theorem 3.2.8. (weak parallelism)
Given productions p1 : L1 → R1 and p2 : L2 → R2, the following statements
are equivalent:

1. There is a direct parallel derivation p1 +p2,m1 +m2 : G⇒ X such that
p2,m2 : G⇒ H2 is weakly parallel independent of p1,m1 : G⇒ H1.

2. There is a weakly sequential independent derivation G⇒p1,m1 H1 ⇒p2,m′2

X.

Up to isomorphism, a bijective correspondence between 1. and 2. above is
given by by m′2 = p∗1 ◦m2.

Proof. (1)⇒ (2)

72



To construct a parallel derivation , in the first step we construct co-
products for in1

L and in2
L as well as for in1

R and in2
R , then in second step we

construct pushout of p and m1 + m2 i.e., to construct co-product of p1, p2,
m1, m2 as shown in the diagram above.

We can construct co-product of p1, p2, m1, m2 in other way as shown in the
figure, Local Church Theorem. Both of these co-product constructions
coincide due to commutativity of co-products construction which ensures
that all co-products can be iteratively obtained from composing partial co-
products.

Therefore, the result of parallel derivation can be obtained from first con-
structing colimit(pushout) of p1, m1 and p2, m2 and second by constructing
colimit(pushout) of p∗1 and p∗2 i.e., first to construct the direct derivations
d1 = (p1,m1 : G ⇒ H1) and d2 = (p2,m2 : G ⇒ H2) represented by
(1) and (2) as shown in the figure Local Church Theorem. but by as-
sumption that d2 is weakly parallel independent of d1 we get a derivation
d′2 = (H1 ⇒p2,m′2 X) represented by (2) + (3). By (categorical charac-
terisation of sequential independence) lemma , d′2 is weakly parallel

73



independent of d1 as required.

(2)⇒ (1)
proof of this can be obtained by applying all the arguments in the reverse

direction.

74



Chapter 4

Conclusion

4.1 Summary

In this thesis we studied SPO and DPO approaches for graph transforma-
tions. As a part of comparison between these two approaches we saw how a
DPO derivation can be embedded in SPO derivation and SPO to DPO under
certain conditions. We also studied how these approaches are exploited to
characterize and prove main results about parallel derivations.

4.2 Future Work

Both graph grammars and Petri nets are well-known specification formalisms
for concurrent and distributed systems. Future work would be to study Petri
net transformations using an algebraic or categorical approach.

.

75


