
Home Page

Title Page

JJ II

J I

Page 1 of 38

Go Back

Full Screen

Close

Quit

Static Slicing of Reactive Programs

S. Ramesh
Department of Computer Science and Engineering,

Indian Institute of Technology Bombay,

Jointly with A. R. Kulkarni, Veritas India

with support from Centre for Formal Design and Verification of
Software, IIT Bombay

Home Page

Title Page

JJ II

J I

Page 2 of 38

Go Back

Full Screen

Close

Quit

Program Slicing

• Functional Decomposition technique

• Ease of debugging, testing and understanding

• Formal Verification - recent interest

• Sequential Program Slicing (Weiser ’84)

• Notion of slicing criterion:< pc, V ar >

• Definition: slice(P) w.r.t.< pc, x > isP ′ where,

– P ′ is obtained fromP by removing some statements

– If P reachespc thenP ′ also reachespc and

– x has the same value in bothP, P ′ atpc.

• Our focus is on Syntactic Static Slicing

• Other approahes: Dynamic, Semantic, Amorphous slicing

Home Page

Title Page

JJ II

J I

Page 3 of 38

Go Back

Full Screen

Close

Quit

Example:
Slicing Criterion:< write(sum), sum >

Entry

read(n)

i:=1

sum:=0

pro:=1

while i<=n

sum:=sum+i

pro:=pro*i

i:=i+1

end while

write(sum)

write(pro)

Exit

Entry

read(n)

i:=1

sum:=0

while i<=n

Exit

sum:=sum+i

i:=i+1

end while

write(sum)

Home Page

Title Page

JJ II

J I

Page 4 of 38

Go Back

Full Screen

Close

Quit

Issues

• Correctness: Slice includesall necessary statements

• Precision:only reqd. statements

• Only approximate slices possible (termination problem)

• P itself a slice

Home Page

Title Page

JJ II

J I

Page 5 of 38

Go Back

Full Screen

Close

Quit

Computation of Slices

• Program Dependence Graph:

– Control Dependence edges

– Data Dependence edges

– Example:

Entry

read(n)

sum:=0

sum:=sum+i

pro:=pro*i

i:=i+1

write(pro)

i<=n
pro:=1

i:=1

write(sum)

• Reachability Analysis

Home Page

Title Page

JJ II

J I

Page 6 of 38

Go Back

Full Screen

Close

Quit

Concurrent Program Slicing

• Cheng ’97, Krinke ’98, Gowri and Ramesh ’00

• Slicing Criteria same

• More elaborate definition:

• Computation of Slices

– Extended PDG - Threaded Program Dependence Graph (TPDG)

– Example:

Home Page

Title Page

JJ II

J I

Page 7 of 38

Go Back

Full Screen

Close

Quit

θ0

c = x + 1

c = x + 1 c = x + 1

coend

θ1 θ2

S4

c 2

e 2

e 1

a = ...

b = ...

c = ...

cobegin

x = a + b
a = c + 1

cobegin

S1

S2

S3

S5

S8

START

EXIT EXIT

EXIT EXIT

START START

START θ3 START θ4

θ3 θ4

θ1 θ2

coend

... = xS9

S6 S7

���������
	��

�����
����������
�
����������������� 	!�#"%$'&)(*�

θ0

1S
a=...

S3

c=...b=...
S2 9S

...=x

θ1

4S

θ2

8S
a=c+1

START

S5

6S

θ3 θ4

S7

control dependence (cd)

data dependence (dd)

interference dependence (id)

cobegin

START

x=a+b

START

c=x+1

cobegin

START START

c=x+1 c=x+1

2c

1c

�,+-�'".	�
/�����
�

10
�2������34���5��	��6
7����
1�8� �
�����
��9:�
��2
�����
1����
�����;��	<�#">=@?/(�

&A3B��C��6
ED FHG�IKJ%
1���

10

1�����;��34������LA�
	��

�����
1�8���6�����
��9M0

D�N

Home Page

Title Page

JJ II

J I

Page 8 of 38

Go Back

Full Screen

Close

Quit

Computation of Slices

• Naive reachability analysis is imprecise

• S4 is interference dependent upon S8 and S8 upon S5

• S4 not dependent upon S5

• Interference dependency is not transitive

• Refined reachability analysis

• Notion ofTrace Witness
(n1,, nk) in the threaded PDG is a trace witness provided it forms a
subsequence of some execution trace in the program.

• it is part of a valid execution trace

• Definition of Slice:

Slice(p) ={q|q = n1
d1−→n2

d2−→· · · dk−1−−→nk = p,

di ∈ {cd, dd, id}, (n1, · · · , nk) is a trace witness}

Home Page

Title Page

JJ II

J I

Page 9 of 38

Go Back

Full Screen

Close

Quit

Computation of Slices

• Sophisticated traversal algorithm

• Traversal carries information about nodes already visited in each thread

• Original algorithm due to Krinke.

• Does not work when threads are inside the loop

• inaccurate slices

• Data dependence to be classified as direct and loop-carried dependence

Home Page

Title Page

JJ II

J I

Page 10 of 38

Go Back

Full Screen

Close

Quit

Start

Start Start

cobegin

coend

 repeat

 until

d = x + 1

c = d + 1

f = x + 1

e = f + 1

e = x + 1

d = e + 1

g = x + 1

f = g + 1

S 2

S 1

S 3

S 4

S 5

S 6

S 7

S 8

S 9

S 0

Control Flow

Interference Dependence

Data Dependence

Home Page

Title Page

JJ II

J I

Page 11 of 38

Go Back

Full Screen

Close

Quit

Start

Start Start

cobegin

 repeat

S 2

S 1

S 0

c = d + 1

e = f + 1

d = e + 1

f = g + 1

S 3

S 4

coend

 until S 5

Control Flow

Interference Dependence

Loop Carried Data Dependence

Home Page

Title Page

JJ II

J I

Page 12 of 38

Go Back

Full Screen

Close

Quit

Slicing Algorithm

• state of execution recorded in tuple[t0, t1, . . . , tn]

• performs a backward traversal of TPDG

• for nodesy reached via edgey → x:

– data or control dependence: add y to slice. update tuple.

– interference dependence:

∗ t = last node visited in y’s thread
∗ if trace witness exists for〈y, t〉, add y. update tuple.

– loop-carried data dependence: add y to slice. update tuple.

Home Page

Title Page

JJ II

J I

Page 13 of 38

Go Back

Full Screen

Close

Quit

Complexity

• Exponential on the number of threads (in theory)

• Many optimisations possible (in practice)

• Inter-procedural slicing

• Nontrivial extension

• Implemented Java Slicer (Gowri’s thesis)

Other works:

• slicing Promela (Millett, Teitelbaum ’98)

• VHDL slicing (Clarke et al. ’99)

• concurrency issues not addressed properly

Home Page

Title Page

JJ II

J I

Page 14 of 38

Go Back

Full Screen

Close

Quit

Slicing Synchronous Reactive Programs

• Reactive programs are ones that maintain continuous interaction with the
environment

• Contrast with transformational programs

• Termination is a bad behaviour

• Examples of reactive systems:

– Operating systems functions

– Hardware

– Embedded Controllers

Home Page

Title Page

JJ II

J I

Page 15 of 38

Go Back

Full Screen

Close

Quit

An Example

• ” Five seconds after the key is turned on, if the belt has not been fastened,
an alarm will beep for five seconds or until the key is turned off ”

An Esterel Solution
module belt control:

input reset, key on, key off, belt on,

end 5, end 10;

output alarm(boolean), start timer;

loop

abort

emit alarm(false);

every key on do

abort

emit start timer;

await end 5;

emit alarm(true);

await end 10;

when [key off or belt on];

emit alarm(false);

end

when reset

end.

Home Page

Title Page

JJ II

J I

Page 16 of 38

Go Back

Full Screen

Close

Quit

Behavior of this program:

Key_on /
Start_timer

Not key_on AND

Alarm (O)

ALARM

WAIT

OFF

Start_timer

Start_timer

NOT key_on AND
NOT key_off AND
NOT belt_on AND

end_5/
alarm(1)

(end_10 OR
belt_on OR
key_off)/
alarm(0)

NOT key_on AND

/ Alarm (O)

Key_on /

(key_off OR Belt_on) /

Key_on /

Home Page

Title Page

JJ II

J I

Page 17 of 38

Go Back

Full Screen

Close

Quit

Reactive Programs

• reactive programs are event-oriented

• time or event ordering need to be preserved

• Events are more fundamental than program control points

Esterel

• a well-known language for programming embedded control programs

• used in avionics (Aerospatiale), DSP chips (TI France)

• Control flow quite different -back and forth from the enivironment and
program

Home Page

Title Page

JJ II

J I

Page 18 of 38

Go Back

Full Screen

Close

Quit

Esterel Execution Model

• execution is a series ofreactions.

• invoked from an external ’main’ program repeatedly at discrete points of
time

• one reaction per invocation

• control returns after each reaction

Instance

Home Page

Title Page

JJ II

J I

Page 19 of 38

Go Back

Full Screen

Close

Quit

Esterel Constructs

• many novel features

– imperative paradigm, synchronous concurrency.

– delay statements

– instantaneous execution

– Signal handling statements

– Preemption and Exception handling statements

– rich in control constructs:

∗ preemption:abort p when S

∗ suspension:suspend p when S

∗ exception handling:trap and exit

– Concurrent statements (synchronous concurrency)

– Communication via broadcast signals

• Challenge for standard program analysis techniques

Home Page

Title Page

JJ II

J I

Page 20 of 38

Go Back

Full Screen

Close

Quit

Synchronous Parallelism

[stat1 || stat2 || stat3]

• simultaneous (not concurrent) execution of all the statements

• signals are used for communication

• signal emitted by one thread isbroadcastto all other threads

• terminates when everystati terminates

• no sharing of variables

• compare with asynchronous parallelism

Example:
[emit S

|| present S then emit O1 else emit O2

|| present S then emit O3 else emit O4

]

S,O1 andO3are simultaneously executed

Home Page

Title Page

JJ II

J I

Page 21 of 38

Go Back

Full Screen

Close

Quit

Preemption Statements
strong abort

abort stat when S

• watchdog primitive

• The bodystat is executed only when S is not present

• Presence of S instantaneously ‘kills’ the body

• No statement instat is executed when S is present

• terminates either when eitherstat terminates or when S is present

Home Page

Title Page

JJ II

J I

Page 22 of 38

Go Back

Full Screen

Close

Quit

Example:
abort

pause;
emit S1;
pause;
emit S2

when S

• emits S1 in the second instant and S2 in third instant if S is not present
during these instants.

• if S is present in second instant then nothing happens; the whole state-
ment exits.

• if S is not present in second instant and present in third instant then S1
is emitted in the second instant, terminates in the third instant; no S2 is
emitted in the third instant

• S in the first instant is ignoredS in the first instant is not ignored if you
write abort stat when immediate S

Home Page

Title Page

JJ II

J I

Page 23 of 38

Go Back

Full Screen

Close

Quit

Traps and exits
trap T in

stat1
handle T do

stat2
end trap

• Weak preemption primitive

• The bodystat1 may contain exit statement
exit T

• execution starts with execution ofstat1

• whenexit T is encountered the control jumps to thehandle state-
ment

• handle statement is optional - control then returns to the statementfol-
lowing thetrap statement

• if stat1 is terminated then the whole trap statement is exited -stat2
is not executed

Home Page

Title Page

JJ II

J I

Page 24 of 38

Go Back

Full Screen

Close

Quit

Slicing Reactive Programs

• Traditional slicing criterion not very natural

• Proposal for a new criterion

• Slicing Criterion:b, an output signal

• Slice ofP w.r.t tob has the same ongoing behaviour asP as far as signal
b is concerned

• That is,b is present in a computation ofP iff it is present in a computa-
tion ofSlice(P)

• Slice(P) obtained fromP , by removing statements

• More generally,< S, b >, S, a state(ment) andb a signal

• Slice ofP w.r.t< S, b > preserves behaviour w.r.t.b in all computations
that reach state(ment)S.

Home Page

Title Page

JJ II

J I

Page 25 of 38

Go Back

Full Screen

Close

Quit

Formal Definition:

• M , reactive program

• Ms is the slice w.r.t< S, b > iff

– Ms is obtained by removing zero or more states of M and

– ∀σ, sequence of input signals

∗ (M [σ]/b) = (Ms[σ]/b))

– M [σ], output sequence produced byM on inputσ

– M [σ]/b, sequence restricted to onlyb.

• Useful for formal verification

Home Page

Title Page

JJ II

J I

Page 26 of 38

Go Back

Full Screen

Close

Quit

Example:
An Argos Example

D2

C1

C2

D1

C DBA a/e e/b

S

S

A1

A2

B1

B2

a/c c/d

 c, e

D2

C1

C2

D1

C Da/e e/b

e

• Slice w.r.tb:

• Slice has the same behaviour as the original program as far asb

Home Page

Title Page

JJ II

J I

Page 27 of 38

Go Back

Full Screen

Close

Quit

Computing Slices

• Inadequacy of classical dependency

• Very many new dependencies in Esterel

• interference control dependency (arises due to trap statements)

• time dependency (due to pause statement)

• dependency graph is generalised

• Synchronous Threaded Program Dependency Graph (STPDG)

Home Page

Title Page

JJ II

J I

Page 28 of 38

Go Back

Full Screen

Close

Quit

Pause

X 1 ;
pause ;
X 2 ;
pause ;
X 3 ;

 X 1

 X 2

 X 3

 arbiter
 pause

 handler

 pause

 pause

control comes in control goes out

Home Page

Title Page

JJ II

J I

Page 29 of 38

Go Back

Full Screen

Close

Quit

Abort

abort

X 1

pause

X 2

pause

X 3

end

pause

handler

control
goes out

S = ?

arbiter

comes in
control

FT

Home Page

Title Page

JJ II

J I

Page 30 of 38

Go Back

Full Screen

Close

Quit

Parallel

cobegin

X 1 X 2

arbiter 1 arbiter 2
pause pause

pause

decision
 maker

coendTo
exit
point

pause handler
To outer

handler
outer pause
From

exit T

Home Page

Title Page

JJ II

J I

Page 31 of 38

Go Back

Full Screen

Close

Quit

Exit

trap T

 exit T
 end ;

end

trap T

exit T

end T

 endExecutable

Non−executable

T

F
 emit Y ;

emit Y

 X1 ;
 X2 ;
 present S then

X1

X2

present S

Home Page

Title Page

JJ II

J I

Page 32 of 38

Go Back

Full Screen

Close

Quit

Interference Control Dependence
control dependence defn: j control dependent oni iff:

• j does not post dominatei

• ∀ k along pathi to j, j post dominatesk.

trap T

cobegin

coend

present S

exit T

end

emit Y

end trap

emit X

 pause

end module

T F

Executable

Non−executable

Home Page

Title Page

JJ II

J I

Page 33 of 38

Go Back

Full Screen

Close

Quit

Dependencies in Esterel

• data dependencies: cannot exist across threads in Esterel.

• signal dependencies – three types:

– simple: exist in non-concurrent threads

– loop-carried: actually loop-carried, and cross thread boundaries

– interference: in concurrent threads

• control dependencies – two types:

– induced in non-concurrent threads

– induced in concurrent threads, because of preemption

• time dependencies – captured as control dependencies.

Home Page

Title Page

JJ II

J I

Page 34 of 38

Go Back

Full Screen

Close

Quit

STPDG

• Synchronous Threaded Program Dependence Graphs

• Slicing involves traversal along this graph

• Notion of Synchronous Trace Witness

• A path in the graph that is a possible execution sequence in the program

• Slice definition:

Slice(s) = { q | Γ = 〈n1, n2, · · · , nk〉,
q = n1 →d1 · · · →dk−1 nk = p,
p is a ‘emit s’ or ‘sustain s’ node,
di ∈Edd ∪ Ecd ∪ Etd ∪ Essd∪

Eisd ∪ Eicd, 1 ≤ i < k,
Γ is a trace witness inG}

Home Page

Title Page

JJ II

J I

Page 35 of 38

Go Back

Full Screen

Close

Quit

Slicing Algorithm for Esterel

• slicing criterion =〈output signal〉
• state of execution recorded in tuple[t0, t1, . . . , tn]

• performs a backward traversal of TPDG

• for nodesy reached via edgey → x:

– data, control, simple signal dependence: add y to slice. update tuple.

– interference signal or control dependence:

∗ t = last node visited in y’s thread
∗ if trace witness exists for〈y, t〉, add y. update tuple.

– loop-carried signal dependence: add y to slice. update tuple.

Home Page

Title Page

JJ II

J I

Page 36 of 38

Go Back

Full Screen

Close

Quit

ENTRY

loop −−A

loop −− B

pause

emit lock_door

pause

emit lock_doorloop −− D

loop −− E

emit alarm

loop −− Gloop −− F

pausepauseexit AWAIT1

ign_on ?

exit AWAIT2

door_locked ?

emit throttle

acc ?

exit ABORT2

door_open ?

Time Dependence

Control Dependence

cobegin 1

Interference Control Dependence

Home Page

Title Page

JJ II

J I

Page 37 of 38

Go Back

Full Screen

Close

Quit

Implementation

 Parser
+

Front End

CFG
 +

AST

Control
 Flow

 Data Flow

CDS

DDS

PDG

Code
Emitter

 Slicing
Criterion

Esterel
Program

Final
Slice

Slicing

Algorithm

Analyzer

 Analyzer

Home Page

Title Page

JJ II

J I

Page 38 of 38

Go Back

Full Screen

Close

Quit

Conclusions

• A New definition of slicing natural for reactive programs.

• Novel dependency graph representation

• A preliminary slicer for Esterel

• Same idea used for other reactive languages

• Slicers for Argos (Statecharts), VHDL

