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Program Slicing

• Functional Decomposition technique

• Ease of debugging, testing and understanding

• Formal Verification - recent interest

• Sequential Program Slicing (Weiser ’84)

• Notion of slicing criterion:< pc, V ar >

• Definition: slice(P ) w.r.t.< pc, x > isP ′ where,

– P ′ is obtained fromP by removing some statements

– If P reachespc thenP ′ also reachespc and

– x has the same value in bothP, P ′ atpc.

• Our focus is on Syntactic Static Slicing

• Other approahes: Dynamic, Semantic, Amorphous slicing
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Example:
Slicing Criterion:< write(sum), sum >

Entry

read(n)

i:=1

sum:=0

pro:=1

while i<=n

sum:=sum+i

pro:=pro*i

i:=i+1

end while

write(sum)

write(pro)

Exit

Entry

read(n)

i:=1

sum:=0

while i<=n

Exit

sum:=sum+i

i:=i+1

end while

write(sum)
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Issues

• Correctness: Slice includesall necessary statements

• Precision:only reqd. statements

• Only approximate slices possible (termination problem)

• P itself a slice
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Computation of Slices

• Program Dependence Graph:

– Control Dependence edges

– Data Dependence edges

– Example:

Entry

read(n)

sum:=0

sum:=sum+i

pro:=pro*i

i:=i+1

write(pro)

i<=n
pro:=1

i:=1

write(sum)

• Reachability Analysis
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Concurrent Program Slicing

• Cheng ’97, Krinke ’98, Gowri and Ramesh ’00

• Slicing Criteria same

• More elaborate definition:

• Computation of Slices

– Extended PDG - Threaded Program Dependence Graph (TPDG)

– Example:
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Computation of Slices

• Naive reachability analysis is imprecise

• S4 is interference dependent upon S8 and S8 upon S5

• S4 not dependent upon S5

• Interference dependency is not transitive

• Refined reachability analysis

• Notion ofTrace Witness
(n1, ...., nk) in the threaded PDG is a trace witness provided it forms a
subsequence of some execution trace in the program.

• it is part of a valid execution trace

• Definition of Slice:

Slice(p) ={q|q = n1
d1−→n2

d2−→· · · dk−1−−→nk = p,

di ∈ {cd, dd, id}, (n1, · · · , nk) is a trace witness}
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Computation of Slices

• Sophisticated traversal algorithm

• Traversal carries information about nodes already visited in each thread

• Original algorithm due to Krinke.

• Does not work when threads are inside the loop

• inaccurate slices

• Data dependence to be classified as direct and loop-carried dependence
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Start

Start Start

cobegin

coend

  repeat

   until

d = x + 1

c = d + 1

f = x + 1

e = f + 1

e = x + 1

d = e + 1

g = x + 1

f = g + 1

S 2

S 1

S 3

S 4

S 5

S 6

S 7

S 8

S 9

S 0

Control Flow

Interference Dependence

Data Dependence
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Start

Start Start

cobegin

  repeat

S 2

S 1

S 0

c = d + 1

e = f + 1

d = e + 1

f = g + 1

S 3

S 4

coend

   until S 5

Control Flow

Interference Dependence

Loop Carried Data Dependence
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Slicing Algorithm

• state of execution recorded in tuple[t0, t1, . . . , tn]

• performs a backward traversal of TPDG

• for nodesy reached via edgey → x:

– data or control dependence: add y to slice. update tuple.

– interference dependence:

∗ t = last node visited in y’s thread
∗ if trace witness exists for〈y, t〉, add y. update tuple.

– loop-carried data dependence: add y to slice. update tuple.
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Complexity

• Exponential on the number of threads (in theory)

• Many optimisations possible (in practice)

• Inter-procedural slicing

• Nontrivial extension

• Implemented Java Slicer (Gowri’s thesis)

Other works:

• slicing Promela (Millett, Teitelbaum ’98)

• VHDL slicing (Clarke et al. ’99)

• concurrency issues not addressed properly
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Slicing Synchronous Reactive Programs

• Reactive programs are ones that maintain continuous interaction with the
environment

• Contrast with transformational programs

• Termination is a bad behaviour

• Examples of reactive systems:

– Operating systems functions

– Hardware

– Embedded Controllers
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An Example

• ” Five seconds after the key is turned on, if the belt has not been fastened,
an alarm will beep for five seconds or until the key is turned off ”

An Esterel Solution
module belt control:

input reset, key on, key off, belt on,

end 5, end 10;

output alarm(boolean), start timer;

loop

abort

emit alarm(false);

every key on do

abort

emit start timer;

await end 5;

emit alarm(true);

await end 10;

when [key off or belt on];

emit alarm(false);

end

when reset

end.
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Behavior of this program:

Key_on /
Start_timer

Not key_on AND

Alarm (O)

ALARM

WAIT

OFF

Start_timer

Start_timer

NOT key_on AND
NOT key_off AND
NOT belt_on AND

end_5/
alarm(1)

(end_10 OR
belt_on OR
key_off)/
alarm(0)

NOT key_on AND

/ Alarm (O)

Key_on /

(key_off OR Belt_on) /

Key_on /
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Reactive Programs

• reactive programs are event-oriented

• time or event ordering need to be preserved

• Events are more fundamental than program control points

Esterel

• a well-known language for programming embedded control programs

• used in avionics (Aerospatiale), DSP chips (TI France)

• Control flow quite different -back and forth from the enivironment and
program
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Esterel Execution Model

• execution is a series ofreactions.

• invoked from an external ’main’ program repeatedly at discrete points of
time

• one reaction per invocation

• control returns after each reaction

Instance
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Esterel Constructs

• many novel features

– imperative paradigm, synchronous concurrency.

– delay statements

– instantaneous execution

– Signal handling statements

– Preemption and Exception handling statements

– rich in control constructs:

∗ preemption:abort p when S

∗ suspension:suspend p when S

∗ exception handling:trap and exit

– Concurrent statements (synchronous concurrency)

– Communication via broadcast signals

• Challenge for standard program analysis techniques
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Synchronous Parallelism

[stat1 || stat2 || stat3]

• simultaneous (not concurrent) execution of all the statements

• signals are used for communication

• signal emitted by one thread isbroadcastto all other threads

• terminates when everystati terminates

• no sharing of variables

• compare with asynchronous parallelism

Example:
[ emit S

|| present S then emit O1 else emit O2

|| present S then emit O3 else emit O4

]

S,O1 andO3are simultaneously executed
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Preemption Statements
strong abort

abort stat when S

• watchdog primitive

• The bodystat is executed only when S is not present

• Presence of S instantaneously ‘kills’ the body

• No statement instat is executed when S is present

• terminates either when eitherstat terminates or when S is present
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Example:
abort

pause;
emit S1;
pause;
emit S2

when S

• emits S1 in the second instant and S2 in third instant if S is not present
during these instants.

• if S is present in second instant then nothing happens; the whole state-
ment exits.

• if S is not present in second instant and present in third instant then S1
is emitted in the second instant, terminates in the third instant; no S2 is
emitted in the third instant

• S in the first instant is ignoredS in the first instant is not ignored if you
write abort stat when immediate S
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Traps and exits
trap T in

stat1
handle T do

stat2
end trap

• Weak preemption primitive

• The bodystat1 may contain exit statement
exit T

• execution starts with execution ofstat1

• whenexit T is encountered the control jumps to thehandle state-
ment

• handle statement is optional - control then returns to the statementfol-
lowing thetrap statement

• if stat1 is terminated then the whole trap statement is exited -stat2
is not executed
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Slicing Reactive Programs

• Traditional slicing criterion not very natural

• Proposal for a new criterion

• Slicing Criterion:b, an output signal

• Slice ofP w.r.t tob has the same ongoing behaviour asP as far as signal
b is concerned

• That is,b is present in a computation ofP iff it is present in a computa-
tion ofSlice(P )

• Slice(P ) obtained fromP , by removing statements

• More generally,< S, b >, S, a state(ment) andb a signal

• Slice ofP w.r.t< S, b > preserves behaviour w.r.t.b in all computations
that reach state(ment)S.
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Formal Definition:

• M , reactive program

• Ms is the slice w.r.t< S, b > iff

– Ms is obtained by removing zero or more states of M and

– ∀σ, sequence of input signals

∗ (M [σ]/b) = (Ms[σ]/b))

– M [σ], output sequence produced byM on inputσ

– M [σ]/b, sequence restricted to onlyb.

• Useful for formal verification
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Example:
An Argos Example

D2

C1

C2

D1

C DBA a/e e/b

S

S

A1

A2

B1

B2

a/c c/d

  c, e

D2

C1

C2

D1

C Da/e e/b

e

• Slice w.r.tb:

• Slice has the same behaviour as the original program as far asb
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Computing Slices

• Inadequacy of classical dependency

• Very many new dependencies in Esterel

• interference control dependency (arises due to trap statements)

• time dependency (due to pause statement)

• dependency graph is generalised

• Synchronous Threaded Program Dependency Graph (STPDG)
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Pause

X 1 ;
pause ;
X  2 ;
pause ;
X 3 ;

   X 1

   X 2

   X 3

    arbiter
   pause

   handler

 pause

 pause

control comes in control goes out
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Abort

abort

X 1

pause

X 2

pause

X 3

end 

pause

handler

control
goes out

S = ?

arbiter

comes in
control

FT
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Parallel

cobegin

X 1 X 2

arbiter 1 arbiter 2
pause pause 

pause

decision
  maker

coendTo
exit
point

pause handler
To outer

handler
outer pause
From

exit T 
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Exit

trap T

           exit  T
     end ;

end

trap T

exit T

end T

  endExecutable

Non−executable

T

F
     emit Y ;

emit Y

     X1 ;
     X2 ;
     present S then

X1

X2

present S
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Interference Control Dependence
control dependence defn: j control dependent oni iff:

• j does not post dominatei

• ∀ k along pathi to j, j post dominatesk.

trap T

cobegin

coend

present S

exit  T

end 

emit Y

end trap

emit  X

   pause

end module

T F

Executable

Non−executable
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Dependencies in Esterel

• data dependencies: cannot exist across threads in Esterel.

• signal dependencies – three types:

– simple: exist in non-concurrent threads

– loop-carried: actually loop-carried, and cross thread boundaries

– interference: in concurrent threads

• control dependencies – two types:

– induced in non-concurrent threads

– induced in concurrent threads, because of preemption

• time dependencies – captured as control dependencies.
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STPDG

• Synchronous Threaded Program Dependence Graphs

• Slicing involves traversal along this graph

• Notion of Synchronous Trace Witness

• A path in the graph that is a possible execution sequence in the program

• Slice definition:

Slice(s) = { q | Γ = 〈n1, n2, · · · , nk〉,
q = n1 →d1 · · · →dk−1 nk = p,
p is a ‘emit s’ or ‘sustain s’ node,
di ∈Edd ∪ Ecd ∪ Etd ∪ Essd∪

Eisd ∪ Eicd, 1 ≤ i < k,
Γ is a trace witness inG}
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Slicing Algorithm for Esterel

• slicing criterion =〈output signal〉
• state of execution recorded in tuple[t0, t1, . . . , tn]

• performs a backward traversal of TPDG

• for nodesy reached via edgey → x:

– data, control, simple signal dependence: add y to slice. update tuple.

– interference signal or control dependence:

∗ t = last node visited in y’s thread
∗ if trace witness exists for〈y, t〉, add y. update tuple.

– loop-carried signal dependence: add y to slice. update tuple.
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ENTRY

loop −−A

loop −− B

pause

emit lock_door

pause

emit lock_doorloop −− D

loop −− E

emit alarm

loop −− Gloop −− F

pausepauseexit AWAIT1

ign_on  ?

exit AWAIT2

door_locked ?

emit throttle

acc  ?

exit ABORT2

door_open  ?

Time Dependence

Control Dependence

cobegin 1

Interference Control Dependence
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Implementation
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  Flow

  Data Flow

CDS

DDS

PDG

Code
Emitter

 Slicing 
Criterion

Esterel
Program

Final
Slice

  
Slicing 

Algorithm

Analyzer

    Analyzer
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Conclusions

• A New definition of slicing natural for reactive programs.

• Novel dependency graph representation

• A preliminary slicer for Esterel

• Same idea used for other reactive languages

• Slicers for Argos (Statecharts), VHDL


