Home Page

Title Page

Page 1 of 48

Go Back

Full Screen

Globally Asynchronous Locally Synchronous Systems
(GALS):
Modeling and Verification

S. Ramesh

CSE Dept.

IIT Bombay
INDIA

http://sharat-lap/~sharat

Home Page

Concurrent Systems

Title Page

e Multiple threads or processes

<o e Most applications are concurrent in nature

— Hardware Designs, Operating Systems
« | — Networking Software, Embedded Software
— Auotomative Electronics, System-on-Chip Solutions

Page 2 of 48 e Concurrent Systems hard to develop and verify

o e Deadlocks, Livelocks, Fairness, Mutual Exclusion
e Irreproducibility of errors

Full Screen e Exponential number of runs

e \ery Little training in curriculum

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 3 of 48

Go Back

Full Screen

Close

Quit

Model-based development

e Model-Verify-debug-refine(code-generate) paradigm

e Models are abstract descriptions of relevant behaviors

e High level, platform independent descriptions

e Much simpler and more general than real implementation
e Precise formal semantics (formal languages)

e \erification and performance analysis possible

e Early bug removal, evaluation and design space exploration
e Models refined to implementation automatically

e Correct models lead to correct implementations

e verification of implementation related to models

e Various modeling languages

e Statecharts, Esterel, UML, State machines, Petri nets, SDL

http://sharat-lap/~sharat

Classical Models of Concurrent Systems
Asynchronous

Home Page

e Loosely coupled processes
Tile Page e Concurrency is physical (run-time tasks)

e Communication takes time and usually between pairs
S e Nondeterminitistic behaviour
e Useful for pure distributed applications

e CSP, CCS, ADA, SDL, OCCAM, - -

Page 4 of 48

Synchronous

e Tightly coupled processes

Go Back
e Logical concurrency (for SW implementation)
Full Screen e Instantaneous broadcast communication.
e Deterministic behaviour
Close

e Useful for localized embedded applications

Quit e Esterel, Lustre, Signal, Statecharts,

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 5 of 48

Go Back

Full Screen

Close

Quit

Inadequacy of Classical Models

e Many recent applications are neither synchronous nor asynchronous

— Distributed Control Applications
— Industrial Process Controllers
— Many common embedded applications
x Aircraft and automobile controllers, ATM networks
— Multi-agent Robotics
— System-on-Chiolutions
e These applications consist of
— Network of Reactive Nodes
— Nodes have independent I/O interfaces & clocks
— They synchronize & exchange messages with each other

— System-wide global constraints
— Two kinds of concurrency & interaction patterns

e They are calledslobally Asynchronous Locally Synchronous (GALS)

http://sharat-lap/~sharat

Home Page

Title Page

Page 6 of 48

Go Back

Full Screen

Example 1:
Automatic Teller Machines Network:

Central
Database

http://sharat-lap/~sharat

Home Page

Title Page

Page 7 of 48

Go Back

Full Screen

ATM Network is Locally Reactive
e Sensing the card
e reading the user input
e validation, rejection/acceptance
Global Computation
e connects to the central database
e checks the account status

e updates the accounts

http://sharat-lap/~sharat

Home Page

Example 2: InfoPhone

Title Page

e A standard example for OMAP application

“« » e A High Level view:
e Network of ARM Core, DSP Core, Web server
e Each run at different clocks

page 8 of 48 e Three different programs run on each of these
e ARM program processes user commands

o0 Bk e DSP does speech processing
e \Web server responds to the queries

Full Screen

e Local Computation with Global Constraints

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

Page 9 of 48

Go Back

Full Screen

Example 3:
Track Controller:

block (i-1) block i block (i + 1)

e Trains enter/exit blocks

e cannot enter without permission

e cannot exit without indication

e Safety propertyNo two trains in the same block

e Liveness propertyTrains able to move from one block to another
e Problem :Design appropriate controllers for each block

http://sharat-lap/~sharat

Home Page

Title Page

Page 10 of 48

Go Back

Full Screen

GALS Solution :

e A Distributed Controller Network
e One controller per block
e each controller is locally reactive

— senses entry/exit of trains
— exchanges signals with the train on the block

e Adjacent controllers talk to each other for controlling entry/exit of trains

http://sharat-lap/~sharat

CRSM

Home Page

e Communicating Reactive State Machines
Title Page
e A language for such GALS systems
“« » e Combines capabilities of asynchronous & synchronous languages

e Derived from our earlier works
« [CRP (Berry, Ramesh, Shyam)

e Pictorial Language like UML, Statecharts, Stateflow
A CRSM

Page 11 of 48

Go Back e Network of Reactive nodes
e Reactive nodes have independent I/O interface and clocks
e e Synchronize to achieve system-wide global constraints
Close e Two types of concurrency primitives

e Two types of communication

Quit

http://sharat-lap/~sharat

CRSM Nodes
e Structured Mealy Machines

Home Page

Tite Page e Argos/Statecharts
Simple CRSM Node

—» Idle [*

Card/enter_pin

B

Page 12 of 48 Pin/chk_pin

Y

Go Back Rt_pin/enter_tr

v n/eject

Full Screen Tr/form_data
another_

/result//’ Time_out/eje

No_tr/ ej ect

http://sharat-lap/~sharat

Nodes

Home Page e Normal states

e Rendezvous or communication States for interaction between nodes

Title Page

e These states have channel names as labels
pva e Communicating nodes have same channel names
e Channels shared between exactly two nodes
« [e Normal and Special Exit edges
e EXit edges for communication states
— e Leaving via exit edges when communication is completed
Go Back e Waiting for communication can be preempted

e Edge Labels, in general are:

Full Screen _ b/o
— b - booleans expression over input signals
— 0 - set of output signals

Close

e Start state, no final state (Reactive Systems)

Quit

http://sharat-lap/~sharat

Home Page

Title Page

Go Back

Full Screen

Page 14 of 48

Composition Operators of CRSM
1. Hierarchical Composition

car/

set_T/

T_out/

T_out/

_ red
C /set_T,set_t,clict

t_out/click A»

)

e Red is a super state
e Entry to a super state

— entry to a sub state through default arrow
e Exiting a super state

— Preempting the ‘sub’ computation

http://sharat-lap/~sharat

Home Page

Title Page

Page 15 of 48

Go Back

Full Screen

2. Synchronous Parallel Composition

Counting
nz 12/end | 1111t1 o | tick . tick /1t1
i i

e Multiple Control Points
e Transitions can trigger one another (Broadcasting)
e Simultaneous Transitions (Synchrony Hypothesis)

oo
alo

e If ‘A’ is input, ¢4, 1, T3 all are taken!

http://sharat-lap/~sharat

Causality Problems

e Absence of behaviours

e Nondeterminism

e correct programs anmeactive, deterministic and causal

e Execution is a series ahacro steps

e Each macro step is a consistent, complete and causal seriegmf

steps

http://sharat-lap/~sharat

Home Page

Title Page

Page 17 of 48

Go Back

Full Screen

3. Signal Hiding

Counting

1

|

‘

‘

‘

‘

|

‘

:
‘

|

‘

‘ !
! ek tick /11
‘

‘

|

‘

|
‘

‘

‘

‘

‘

e internal ‘It1,It2’ invisible outside
e external ‘It1,It2’ cannot influence

http://sharat-lap/~sharat

Home Page

Title Page

Page 18 of 48

Go Back

Full Screen

Network of CRSM nodes

Ni//...]] Ny

|)| e

e rendezvous nodes agree to take exit edges ‘simultaneously’

e Synchronised Transitions
e clock ticks at communication points are synchronized

e Waiting for communication is preemptible.

http://sharat-lap/~sharat

Home Page

Title Page

Page 19 of 48

Go Back

Full Screen

Example: InfoPhone

e Consists of three nodes
e ARM, DSP and Web

ARM application

Complete

http://sharat-lap/~sharat

Speech_Recognition

DSP application

Home Page
Title Page
Page 20 of 48
Full Screen

http://sharat-lap/~sharat

Home Page

EXAMPLE : Track Controller (Fischer et al '92)

Title Page

block 1 block 2

Page 21 of 48 block, - ctrlr block, - ctrlr block, - ctrlr

Nodel Node 2 Node 3

Go Back

Full Screen

Asynchronous Channels

http://sharat-lap/~sharat

Interface
Home Page

Title Page

time_out

ok2

Page 22 of 48 enter &okl
ok

Go Back

Full Screen

Block Controller

http://sharat-lap/~sharat

Home Page

Title Page

Page 23 of 48

Go Back

Full Screen

General CRSM

e Various extensions tpure CRSM
e Valued signals

e Variables and assignments

e Entry and exit functions

e Buffered communications

e value-passing communications

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 24 of 48

Go Back

Full Screen

Close

Quit

Formal Semantics of CRSM

Node Semantics (similar to Esterel)

e An execution is a series of reaction instants

e In each reaction instant, a set of input signals is consumed and a set «
output signals is generated.

e input signals include rendezvous requests

e set of infinite traces

e Each entry at the ticks of clock of the node
Network semantics (similar to CSP, CCS)

e interleaving of traces of nodes

e synchronization of rendezvous points

e clocks have common ticks at communication instants

http://sharat-lap/~sharat

Semantics

Home Page

Title Page

Page 25 of 48

Go Back

Full Screen

http://sharat-lap/~sharat

Home Page

Title Page

Page 26 of 48

Go Back

Full Screen

Tool Support for CRSM

http://sharat-lap/~sharat

Home Page

Title Page

Page 27 of 48

Go Back

Full Screen

® Teller
T Automats
® Al

® Authenticare
¢ Al
Correct?
52

o o |
T A2

|- Incorrect?
- 53

Sl
|- GetAmount

Bank
. ;1utumun

1
L
Bl
Correct!
= lnearreat!
Amgunc?
|-B2
ok
Meidk !

Editor

http://sharat-lap/~sharat

Simulator

Title Page

incorrect
=3

5«
CarSnT ount
A unt
B ArmeChhk
- oAl

»

[
Wwz ww
Ny G0

+ s FENTeErAonT

"
0
F

=

Page 28 of 48
ik
B 1
Correct
Imco@rrect
AT S W nT
[

=10
L Dk
Go Back - ES ol ey e

Full Screen

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 29 of 48

Go Back

Full Screen

Close

Quit

Formal Verification
What?

e Rigorous checking of programs against specifications
e Specifications are properties
e Properties expressed in logic (CTL, LTL, etc.)
Why?
e Problems with traditional verification
e Need for rigorous Verification
e Safety-critical and high quality applications
How?
e Verification usingModel-checking or theorem proving
e Many tools exist: SPIN, SMV, VIS, PVS, sTeP, etc.

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 30 of 48

Go Back

Full Screen

Close

Quit

Problems with Formal Verification
e Problem of specifying
e State explosion problem (model-checking)
e High human expertise (theorem proving)
e Huge extra effort
e Verification of the models rather than the real implementation
e Confusion over choice of methods and tools
Rest of the talk

e Our attempts to solve some of the problems in the context of CRSM

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 31 of 48

Go Back

Full Screen

Close

Quit

Formal Specification Problem

e One of our major concerns

e Independence from code/design

e Consistency

e Completeness

e Complex specification languages (LTL, CTL, CTL*, FOL, etc.)
e Two languages (Specification and modelling)

e different skills for mastering them

e lack of training/experience in specification

e quality of specification influences that of verification

e additional steps in development

http://sharat-lap/~sharat

Observer based verification

Home Page

e an attempt to solve some of these problems

Title Page

e |[dea:

— properties often can be viewed and modelledlaservers
— observers camonitorthe system states and
— complain wherbadstates are reached (properties violated)

4« 44

Example: Absence of unsolicited response

Page 32 of 48

req

& @

Full Screen grant/bug grant

Close @

Quit

http://sharat-lap/~sharat

Home Page

Observers

Title Page

e Observers can be written as another program in the same language a

developed hand-in-hand
4« 42

e Observation can be modelled sgmchronous parallel composition

« [e Observer and program run together synchronously and run-time check
made

Page 33 of 48

e Or the combined state space of observer plus the program can be sta
cally computed and analysed for reachability of bug states

Go Back

e Synchronous parallel operator comes in handy here
Full Screen > One Ianguage approaCh

e Verification limited to safety properties

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

Distributed Observers
4« 144

e CRSM program consists of multiple synchronous nodes
« | e For verification, we employ one observer per node

e these observers monitor the local nodes
Page 34 of 48 . .
e also communicate with each other
e Program + observer is a CRSM program

Go Back

e which can be analysed statically or at runtime
Full Screen

Close

Quit

http://sharat-lap/~sharat

Verification Tool

e \We have built a tool based on this idea

Home Page

e Program + distributed observers translated to PROMELA
e Using SPIN, reachability of bad states is checked

Title Page

e Necessary property for verification is automatically generated

“« » e SPIN tool modified to generate a counter example which can run in ou
simulator
< 4
CRSM + Observer
Page 35 of 48
Translator

Go Back

Promela + TL formulae

Full Screen

Close Modified Spln

Quit l Error trace

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 36 of 48

Go Back

Full Screen

Close

Quit

State Explosion Problem

e Size of the state space analysed is exponential on the number of conct
rent components

e Various Solutions exists

— Efficient Representations using Symbolic Techniques (BDDs)

— Compositional Reductions: Reduce Components and Combine

— Abstraction: Collapse states ignoring data values, or irrelevant detail.
— Modular Verification: Verify components

e Many of the tools use one or more of these techniques
e We are exploring some of these reductions at the level of CRSM

http://sharat-lap/~sharat

Home Page

Title Page Modular Verification

e The idea:Given a property, choose an appropriate subprogram and verify

> the subprogram

e The property chosen is such that it holds for the original program iff it
holds for the subprogram identified.

e The subprogram has fewer concurrent components and hence state e
plosion problem is contained

Page 37 of 48

Go Back e This result is somewhat old (Grumberg and Long '91)

e shown the result for an asynchronous model of concurrency

Full Screen

e \\We have extended this to our model

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 38 of 48

Go Back

Full Screen

Close

Quit

Our Result (Ramesh '01):

e \We have defined a notion of refinemeaf s.t.

— (Al||B) ref A (and symmetrically3)
— (Aqgp)) ref A
— If Aref B then
x (A||C) ref (B]|C) for anyC'.
* Cq14) ref Cy) for anyC' andq in C.
x A® ref B, under some assumptions
e Then we have the result that

—If A ref B andB satisfiesp thenA also satisfies) providedo is a
negation-free LTL formula

http://sharat-lap/~sharat

Home Page

Title Page

4« 44

Page 39 of 48

Go Back

Full Screen

Close

Quit

Efficient Verification of Programs
Two Strategies for Verification

1. Break the property into local properties and verify against components
separately

e Local verification is simpler and more efficient
e Not automatic but general.

2. ldentify appropriate subcomponent where the property holds.

e Some kind of signal flow analysis
e Automatic but not general

http://sharat-lap/~sharat

Home Page

Title Page

Abstracting irrelevant details

“« | » e Main problem here is in identifying which parts are irrelevant
e In observer based verification, this is somewhat easier
e Any state that does not lead to BUG states is irrelevant
Page 40 of 48 e How to identify which states do not lead to BUG states
e Backward flow analysis
Co Back

e |Idea of program slicing

e Similar to Cone of Influence reduction

Full Screen
Close

Quit

http://sharat-lap/~sharat

Home Page

Program Slicing

Title Page

e Well-known analysis technique in program analysis
WL e Ease of debugging and testing

e Formal verification would benefit from slicing

e Sequential program slicing (Weiser '84)
Page 41 of 48 e Notion of slicing criterion:< pc, Var >

e Definition: slice(P) w.r.t. < pc, x > is P' where,

Go Back

— P’ is obtained fromP by removing some statements
— If P reachec then P’ also reachegc and
— x has the same value in bofh P’ atpc.

Full Screen

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

Page 42 of 48

Go Back

Full Screen

Entry
read(n)
=1
sum:=0
pro:=1
while i<=n
Sum:=sum-i
pro:=pro*i
=i+l
end while
write(sum)
write(pro)
Exit

Example: Slicing Criterion: < write(sum), sum >

Entry
read(n)
i:=1

sum:=0

while i<=n

SUM;=sum-i

=i+l
end while

write(sum)

Exit

http://sharat-lap/~sharat

Home Page

Title Page

Page 43 of 48

Go Back

Full Screen

Slicing Reactive Programs
e Slicing criterion not very natural
e Reactive programs are event-oriented
e Non terminating ongoing behaviour
e Time or event ordering need to be preserved
e Proposal for a new definition suitable for reactive programs

http://sharat-lap/~sharat

Home Page

Title Page

Definition of Slice

Sl e Slicing Criterion: just a signal or a set of signals
P e Slice of P w.r.t to signalb has the same ongoing behaviourfass far
asb is concerned
age 44 f 45 e That is,b is present in a computation @t iff it is present in a computa-
tion of Slice(P)
Go Back e Slice(P) obtained fromP, by removing edges or states

e Slice of P w.r.t b preserves behaviour w.ri.in all computations of”

Full Screen
Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page Exam p|e:

E | | |
{Al“{Bl“{mU{Dl\

dc| A cd B! de| C! eb| D

(az] | [ez] | [c] | [oz]

[ce]

Page 45 of 48

E—
{er] | {or]

de| Ci eb| D

Go Back

\CZH\DZ\

Full Screen

e

http://sharat-lap/~sharat

Home Page

Title Page

Page 46 of 48

Go Back

Full Screen

e Our Work (Vinod and Ramesh '02):

— We have defined the notion of slicing
— We have developed the slicing algorithm for CRSM

— Slicing preserves the structure of the program so that other reduction
can be applied

http://sharat-lap/~sharat

Home Page

Title Page

Page 47 of 48

Go Back

Full Screen

Application to Verification

e In observer based verification, we are interested in computations the
result in the emission diug

e Slice w.r.tbuggives rise to a (hopefully) smaller state machine
e which is easier to analyse

e For general verification also this will be useful

http://sharat-lap/~sharat

Home Page

Title Page

4«

Page 48 of 48

Go Back

Full Screen

Close

Quit

Current Work

e Basic Verification engine is ready

e Implementation of modular verification and slicing-based verification in
progress

e Some industrial case studies are being considered

Future Work
e Specification Language based upon Message Sequence Charts (MSC:
e Testing based upon model-checking

e Case studies in robotics and SoC designs

http://sharat-lap/~sharat

