
Home Page

Title Page

JJ II

J I

Page 1 of 48

Go Back

Full Screen

Close

Quit

Globally Asynchronous Locally Synchronous Systems
(GALS):

Modeling and Verification

S. Ramesh
CSE Dept.

IIT Bombay
INDIA

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 2 of 48

Go Back

Full Screen

Close

Quit

Concurrent Systems

• Multiple threads or processes

• Most applications are concurrent in nature

– Hardware Designs, Operating Systems

– Networking Software, Embedded Software

– Auotomative Electronics, System-on-Chip Solutions

• Concurrent Systems hard to develop and verify

• Deadlocks, Livelocks, Fairness, Mutual Exclusion

• Irreproducibility of errors

• Exponential number of runs

• Very Little training in curriculum

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 3 of 48

Go Back

Full Screen

Close

Quit

Model-based development

• Model-Verify-debug-refine(code-generate) paradigm

• Models are abstract descriptions of relevant behaviors

• High level, platform independent descriptions

• Much simpler and more general than real implementation

• Precise formal semantics (formal languages)

• Verification and performance analysis possible

• Early bug removal, evaluation and design space exploration

• Models refined to implementation automatically

• Correct models lead to correct implementations

• verification of implementation related to models

• Various modeling languages

• Statecharts, Esterel, UML, State machines, Petri nets, SDL

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 4 of 48

Go Back

Full Screen

Close

Quit

Classical Models of Concurrent Systems
Asynchronous

• Loosely coupled processes

• Concurrency is physical (run-time tasks)

• Communication takes time and usually between pairs

• Nondeterminitistic behaviour

• Useful for pure distributed applications

• CSP, CCS, ADA, SDL, OCCAM,· · ·
Synchronous

• Tightly coupled processes

• Logical concurrency (for SW implementation)

• Instantaneous broadcast communication.

• Deterministic behaviour

• Useful for localized embedded applications

• Esterel, Lustre, Signal, Statecharts,· · ·

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 5 of 48

Go Back

Full Screen

Close

Quit

Inadequacy of Classical Models

• Many recent applications are neither synchronous nor asynchronous

– Distributed Control Applications

– Industrial Process Controllers

– Many common embedded applications

∗ Aircraft and automobile controllers, ATM networks

– Multi-agent Robotics

– System-on-Chipsolutions

• These applications consist of

– Network of Reactive Nodes

– Nodes have independent I/O interfaces & clocks

– They synchronize & exchange messages with each other

– System-wide global constraints

– Two kinds of concurrency & interaction patterns

• They are calledGlobally Asynchronous Locally Synchronous (GALS)

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 6 of 48

Go Back

Full Screen

Close

Quit

Example 1:
Automatic Teller Machines Network:

Central
Database

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

���������
���������
���������
���������

���������
���������
���������
���������

���������
���������
���������
���������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 7 of 48

Go Back

Full Screen

Close

Quit

ATM Network isLocally Reactive

• Sensing the card

• reading the user input

• validation, rejection/acceptance

Global Computation

• connects to the central database

• checks the account status

• updates the accounts

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 8 of 48

Go Back

Full Screen

Close

Quit

Example 2: InfoPhone

• A standard example for OMAP application

• A High Level view:

• Network of ARM Core, DSP Core, Web server

• Each run at different clocks

• Three different programs run on each of these

• ARM program processes user commands

• DSP does speech processing

• Web server responds to the queries

• Local Computation with Global Constraints

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 9 of 48

Go Back

Full Screen

Close

Quit

Example 3:
Track Controller:

block (i-1) block i block (i + 1)

• Trains enter/exit blocks

• cannot enter without permission

• cannot exit without indication

• Safety property:No two trains in the same block

• Liveness property:Trains able to move from one block to another

• Problem :Design appropriate controllers for each block

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 10 of 48

Go Back

Full Screen

Close

Quit

GALS Solution :

• A Distributed Controller Network

• One controller per block

• each controller is locally reactive

– senses entry/exit of trains

– exchanges signals with the train on the block

• Adjacent controllers talk to each other for controlling entry/exit of trains

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 11 of 48

Go Back

Full Screen

Close

Quit

CRSM

• Communicating Reactive State Machines

• A language for such GALS systems

• Combines capabilities of asynchronous & synchronous languages

• Derived from our earlier works
CRP (Berry, Ramesh, Shyam)

• Pictorial Language like UML, Statecharts, Stateflow

A CRSM

• Network of Reactive nodes

• Reactive nodes have independent I/O interface and clocks

• Synchronize to achieve system-wide global constraints

• Two types of concurrency primitives

• Two types of communication

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 12 of 48

Go Back

Full Screen

Close

Quit

CRSM Nodes

• Structured Mealy Machines

• Argos/Statecharts

Simple CRSM Node

 Idle

Card/enter_pin

Pin/chk_pin

Rt_pin/enter_tr

Tr/form_data

Time_out/eject/result

Wr_pin/eject

another_tr/

No_tr/

Card_rmd/

B!

eject

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 13 of 48

Go Back

Full Screen

Close

Quit

Nodes

• Normal states

• Rendezvous or communication States for interaction between nodes

• These states have channel names as labels

• Communicating nodes have same channel names

• Channels shared between exactly two nodes

• Normal and Special Exit edges

• Exit edges for communication states

• Leaving via exit edges when communication is completed

• Waiting for communication can be preempted

• Edge Labels, in general are:

– b/o

– b - booleans expression over input signals

– o - set of output signals

• Start state, no final state (Reactive Systems)

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 14 of 48

Go Back

Full Screen

Close

Quit

Composition Operators of CRSM
1. Hierarchical Composition

Green

go!

wait

red

stop!

car/

set_T/

T_out/

T_out/

/set_T

T_out/

t_out/click

/set_T,set_t,click

• Red is a super state

• Entry to a super state

– entry to a sub state through default arrow

• Exiting a super state

– Preempting the ‘sub’ computation

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 15 of 48

Go Back

Full Screen

Close

Quit

2. Synchronous Parallel Composition

Counting

lt2 lt2 / end

C1

C0

lt1 / lt2lt1

B0

B1

tick / lt1tick

A1

A0

• Multiple Control Points

• Transitions can trigger one another (Broadcasting)

• Simultaneous Transitions (Synchrony Hypothesis)

a
b

t

b
c

t

c

d

t3
21

• If ‘a’ is input, t1, t2, t3 all are taken!

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 16 of 48

Go Back

Full Screen

Close

Quit

Causality Problems

 −a/a
 −a/b −a&b/c

• Absence of behaviours

• Nondeterminism

• correct programs arereactive, deterministic and causal

• Execution is a series ofmacro steps

• Each macro step is a consistent, complete and causal series ofmicro
steps

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 17 of 48

Go Back

Full Screen

Close

Quit

3. Signal Hiding

lt1 , lt2

Counting

lt2 lt2 / end

C1

C0

lt1 / lt2lt1

B0

B1

tick / lt1tick

A1

A0

• internal ‘lt1,lt2’ invisible outside

• external ‘lt1,lt2’ cannot influence

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 18 of 48

Go Back

Full Screen

Close

Quit

Network of CRSM nodes

N1 // . . . // Nk

C ! C !

• rendezvous nodes agree to take exit edges ‘simultaneously’

• Synchronised Transitions

• clock ticks at communication points are synchronized

• Waiting for communication is preemptible.

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 19 of 48

Go Back

Full Screen

Close

Quit

Example: InfoPhone

• Consists of three nodes

• ARM, DSP and Web

ARM application

Ready

Idle

Stock! Wthr! Flt!

Tm?

Close!

/xit

xit

Complete

st_req w_req flt_req

req

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 20 of 48

Go Back

Full Screen

Close

Quit

DSP application

Stock?

Flt?

Speech_Recognition

fin

wreq!

wresp?

tm_out

/comp

comp

Wthr?

Close?

/term

term

Tm!

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 21 of 48

Go Back

Full Screen

Close

Quit

EXAMPLE : Track Controller (Fischer et al ’92)

block 1 block 2 block 3

block - ctrlr block - ctrlr block - ctrlr1 2 3

Node1 Node 2 Node 3

Asynchronous Channels

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 22 of 48

Go Back

Full Screen

Close

Quit

Block Controller

 ok

resv_next resv_prev

go_ahead go_ahead

D

E

F

G

cn?,cp?

cn! cp!

I

A

bye

bye
ok

ok2

ok1

time_out

Train Interface

enter&ok2

enter &ok1

(cp,cn)

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 23 of 48

Go Back

Full Screen

Close

Quit

General CRSM

• Various extensions topure CRSM

• Valued signals

• Variables and assignments

• Entry and exit functions

• Buffered communications

• value-passing communications

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 24 of 48

Go Back

Full Screen

Close

Quit

Formal Semantics of CRSM

Node Semantics (similar to Esterel)

• An execution is a series of reaction instants

• In each reaction instant, a set of input signals is consumed and a set of
output signals is generated.

• input signals include rendezvous requests

• set of infinite traces

• Each entry at the ticks of clock of the node

Network semantics (similar to CSP, CCS)

• interleaving of traces of nodes

• synchronization of rendezvous points

• clocks have common ticks at communication instants

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 25 of 48

Go Back

Full Screen

Close

Quit

Semantics

Node 2

Node 1

Node 3

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 26 of 48

Go Back

Full Screen

Close

Quit

Tool Support for CRSM

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 27 of 48

Go Back

Full Screen

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 28 of 48

Go Back

Full Screen

Close

Quit

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 29 of 48

Go Back

Full Screen

Close

Quit

Formal Verification
What?

• Rigorous checking of programs against specifications

• Specifications are properties

• Properties expressed in logic (CTL, LTL, etc.)

Why?

• Problems with traditional verification

• Need for rigorous Verification

• Safety-critical and high quality applications

How?

• Verification usingModel-checking or theorem proving

• Many tools exist: SPIN, SMV, VIS, PVS, sTeP, etc.

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 30 of 48

Go Back

Full Screen

Close

Quit

Problems with Formal Verification

• Problem of specifying

• State explosion problem (model-checking)

• High human expertise (theorem proving)

• Huge extra effort

• Verification of the models rather than the real implementation

• Confusion over choice of methods and tools

Rest of the talk

• Our attempts to solve some of the problems in the context of CRSM

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 31 of 48

Go Back

Full Screen

Close

Quit

Formal Specification Problem

• One of our major concerns

• Independence from code/design

• Consistency

• Completeness

• Complex specification languages (LTL, CTL, CTL*, FOL, etc.)

• Two languages (Specification and modelling)

• different skills for mastering them

• lack of training/experience in specification

• quality of specification influences that of verification

• additional steps in development

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 32 of 48

Go Back

Full Screen

Close

Quit

Observer based verification

• an attempt to solve some of these problems

• Idea:

– properties often can be viewed and modelled asobservers

– observers canmonitorthe system states and

– complain whenbadstates are reached (properties violated)

Example: Absence of unsolicited response

req

grantgrant/bug

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 33 of 48

Go Back

Full Screen

Close

Quit

Observers

• Observers can be written as another program in the same language and
developed hand-in-hand

• Observation can be modelled assynchronous parallel composition

• Observer and program run together synchronously and run-time checks
made

• Or the combined state space of observer plus the program can be stati-
cally computed and analysed for reachability of bug states

• Synchronous parallel operator comes in handy here

• One language approach

• Verification limited to safety properties

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 34 of 48

Go Back

Full Screen

Close

Quit

Distributed Observers

• CRSM program consists of multiple synchronous nodes

• For verification, we employ one observer per node

• these observers monitor the local nodes

• also communicate with each other

• Program + observer is a CRSM program

• which can be analysed statically or at runtime

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 35 of 48

Go Back

Full Screen

Close

Quit

Verification Tool

• We have built a tool based on this idea

• Program + distributed observers translated to PROMELA

• Using SPIN, reachability of bad states is checked

• Necessary property for verification is automatically generated

• SPIN tool modified to generate a counter example which can run in our
simulator

CRSM + Observer

Promela + TL formulae

Error trace

Translator

Modified Spin

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 36 of 48

Go Back

Full Screen

Close

Quit

State Explosion Problem

• Size of the state space analysed is exponential on the number of concur-
rent components

• Various Solutions exists

– Efficient Representations using Symbolic Techniques (BDDs)

– Compositional Reductions: Reduce Components and Combine

– Abstraction: Collapse states ignoring data values, or irrelevant details

– Modular Verification: Verify components

• Many of the tools use one or more of these techniques

• We are exploring some of these reductions at the level of CRSM

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 37 of 48

Go Back

Full Screen

Close

Quit

Modular Verification

• The idea:Given a property, choose an appropriate subprogram and verify
the subprogram

• The property chosen is such that it holds for the original program iff it
holds for the subprogram identified.

• The subprogram has fewer concurrent components and hence state ex-
plosion problem is contained

• This result is somewhat old (Grumberg and Long ’91)

• shown the result for an asynchronous model of concurrency

• We have extended this to our model

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 38 of 48

Go Back

Full Screen

Close

Quit

Our Result (Ramesh ’01):

• We have defined a notion of refinementref s.t.

– (A||B) ref A (and symmetricallyB)

– (A(q||B)) ref A

– If A ref B then

∗ (A||C) ref (B||C) for anyC.
∗ C(q||A) ref C(q||B) for anyC andq in C.
∗ Aa ref Ba, under some assumptions

• Then we have the result that

– If A ref B andB satisfiesφ thenA also satisfiesφ providedφ is a
negation-free LTL formula

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 39 of 48

Go Back

Full Screen

Close

Quit

Efficient Verification of Programs
Two Strategies for Verification

1. Break the property into local properties and verify against components
separately

• Local verification is simpler and more efficient

• Not automatic but general.

2. Identify appropriate subcomponent where the property holds.

• Some kind of signal flow analysis

• Automatic but not general

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 40 of 48

Go Back

Full Screen

Close

Quit

Abstracting irrelevant details

• Main problem here is in identifying which parts are irrelevant

• In observer based verification, this is somewhat easier

• Any state that does not lead to BUG states is irrelevant

• How to identify which states do not lead to BUG states

• Backward flow analysis

• Idea of program slicing

• Similar to Cone of Influence reduction

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 41 of 48

Go Back

Full Screen

Close

Quit

Program Slicing

• Well-known analysis technique in program analysis

• Ease of debugging and testing

• Formal verification would benefit from slicing

• Sequential program slicing (Weiser ’84)

• Notion of slicing criterion:< pc, V ar >

• Definition: slice(P) w.r.t.< pc, x > isP ′ where,

– P ′ is obtained fromP by removing some statements

– If P reachespc thenP ′ also reachespc and

– x has the same value in bothP, P ′ atpc.

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 42 of 48

Go Back

Full Screen

Close

Quit

Example: Slicing Criterion:< write(sum), sum >

Entry

read(n)

i:=1

sum:=0

pro:=1

while i<=n

sum:=sum+i

pro:=pro*i

i:=i+1

end while

write(sum)

write(pro)

Exit

Entry

read(n)

i:=1

sum:=0

while i<=n

Exit

sum:=sum+i

i:=i+1

end while

write(sum)

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 43 of 48

Go Back

Full Screen

Close

Quit

Slicing Reactive Programs

• Slicing criterion not very natural

• Reactive programs are event-oriented

• Non terminating ongoing behaviour

• Time or event ordering need to be preserved

• Proposal for a new definition suitable for reactive programs

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 44 of 48

Go Back

Full Screen

Close

Quit

Definition of Slice

• Slicing Criterion: just a signal or a set of signals

• Slice ofP w.r.t to signalb has the same ongoing behaviour asP as far
asb is concerned

• That is,b is present in a computation ofP iff it is present in a computa-
tion ofSlice(P)

• Slice(P) obtained fromP , by removing edges or states

• Slice ofP w.r.t b preserves behaviour w.r.t.b in all computations ofP

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 45 of 48

Go Back

Full Screen

Close

Quit

Example:

D2

C1

C2

D1

C DBA a/e e/b

S

S

A1

A2

B1

B2

a/c c/d

 c, e

D2

C1

C2

D1

C Da/e e/b

e

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 46 of 48

Go Back

Full Screen

Close

Quit

• Our Work (Vinod and Ramesh ’02):

– We have defined the notion of slicing

– We have developed the slicing algorithm for CRSM

– Slicing preserves the structure of the program so that other reductions
can be applied

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 47 of 48

Go Back

Full Screen

Close

Quit

Application to Verification

• In observer based verification, we are interested in computations that
result in the emission ofbug

• Slice w.r.tbuggives rise to a (hopefully) smaller state machine

• which is easier to analyse

• For general verification also this will be useful

http://sharat-lap/~sharat

Home Page

Title Page

JJ II

J I

Page 48 of 48

Go Back

Full Screen

Close

Quit

Current Work

• Basic Verification engine is ready

• Implementation of modular verification and slicing-based verification in
progress

• Some industrial case studies are being considered

Future Work

• Specification Language based upon Message Sequence Charts (MSCs)

• Testing based upon model-checking

• Case studies in robotics and SoC designs

http://sharat-lap/~sharat

