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Concurrent Systems

Title Page

e Multiple threads or processes

<o e Most applications are concurrent in nature

— Hardware Designs, Operating Systems
« | — Networking Software, Embedded Software
— Auotomative Electronics, System-on-Chip Solutions

Page 2 of 48 e Concurrent Systems hard to develop and verify

o e Deadlocks, Livelocks, Fairness, Mutual Exclusion
e Irreproducibility of errors

Full Screen e Exponential number of runs

e \ery Little training in curriculum
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Model-based development

e Model-Verify-debug-refine(code-generate) paradigm

e Models are abstract descriptions of relevant behaviors

e High level, platform independent descriptions

e Much simpler and more general than real implementation
e Precise formal semantics (formal languages)

e \erification and performance analysis possible

e Early bug removal, evaluation and design space exploration
e Models refined to implementation automatically

e Correct models lead to correct implementations

e verification of implementation related to models

e Various modeling languages

e Statecharts, Esterel, UML, State machines, Petri nets, SDL
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Classical Models of Concurrent Systems
Asynchronous

Home Page

e Loosely coupled processes
Tile Page e Concurrency is physical (run-time tasks)

e Communication takes time and usually between pairs
S e Nondeterminitistic behaviour
e Useful for pure distributed applications

e CSP, CCS, ADA, SDL, OCCAM, - -

Page 4 of 48

Synchronous

e Tightly coupled processes

Go Back
e Logical concurrency (for SW implementation)
Full Screen e Instantaneous broadcast communication.
e Deterministic behaviour
Close

e Useful for localized embedded applications

Quit e Esterel, Lustre, Signal, Statecharts,
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Inadequacy of Classical Models

e Many recent applications are neither synchronous nor asynchronous

— Distributed Control Applications
— Industrial Process Controllers
— Many common embedded applications
x Aircraft and automobile controllers, ATM networks
— Multi-agent Robotics
— System-on-Chiolutions
e These applications consist of
— Network of Reactive Nodes
— Nodes have independent I/O interfaces & clocks
— They synchronize & exchange messages with each other

— System-wide global constraints
— Two kinds of concurrency & interaction patterns

e They are calledslobally Asynchronous Locally Synchronous (GALS)
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Example 1:
Automatic Teller Machines Network:

Central
Database
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ATM Network is Locally Reactive
e Sensing the card
e reading the user input
e validation, rejection/acceptance
Global Computation
e connects to the central database
e checks the account status

e updates the accounts
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Example 2: InfoPhone
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e A standard example for OMAP application

“«  » e A High Level view:
e Network of ARM Core, DSP Core, Web server
e Each run at different clocks

page 8 of 48 e Three different programs run on each of these
e ARM program processes user commands

o0 Bk e DSP does speech processing
e \Web server responds to the queries

Full Screen

e Local Computation with Global Constraints
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Quit
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Example 3:
Track Controller:

block (i-1) block i block (i + 1)

e Trains enter/exit blocks

e cannot enter without permission

e cannot exit without indication

e Safety propertyNo two trains in the same block

e Liveness propertyTrains able to move from one block to another
e Problem :Design appropriate controllers for each block
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GALS Solution :

e A Distributed Controller Network
e One controller per block
e each controller is locally reactive

— senses entry/exit of trains
— exchanges signals with the train on the block

e Adjacent controllers talk to each other for controlling entry/exit of trains
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CRSM

Home Page

e Communicating Reactive State Machines
Title Page
e A language for such GALS systems
“«  » e Combines capabilities of asynchronous & synchronous languages

e Derived from our earlier works
« [ CRP (Berry, Ramesh, Shyam)

e Pictorial Language like UML, Statecharts, Stateflow
A CRSM

Page 11 of 48

Go Back e Network of Reactive nodes
e Reactive nodes have independent I/O interface and clocks
e e Synchronize to achieve system-wide global constraints
Close e Two types of concurrency primitives

e Two types of communication

Quit
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CRSM Nodes
e Structured Mealy Machines

Home Page

Tite Page e Argos/Statecharts
Simple CRSM Node

—» Idle [*

Card/enter_pin

B

Page 12 of 48 Pin/chk_pin

Y

Go Back Rt_pin/enter_tr

v n/eject

Full Screen Tr/form_data
another_

/result//’ Time_out/eje

No_tr/ ej ect
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Nodes

Home Page e Normal states

e Rendezvous or communication States for interaction between nodes

Title Page

e These states have channel names as labels
pva e Communicating nodes have same channel names
e Channels shared between exactly two nodes
« [ e Normal and Special Exit edges
e EXit edges for communication states
— e Leaving via exit edges when communication is completed
Go Back e Waiting for communication can be preempted

e Edge Labels, in general are:

Full Screen _ b/o
— b - booleans expression over input signals
— 0 - set of output signals

Close

e Start state, no final state (Reactive Systems)
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Composition Operators of CRSM
1. Hierarchical Composition

car/

set_T/

T_out/

T_out/

_ red
C /set_T,set_t,clict

t_out/click A»

)

e Red is a super state
e Entry to a super state

— entry to a sub state through default arrow
e Exiting a super state

— Preempting the ‘sub’ computation
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2. Synchronous Parallel Composition

Counting
nz 12/end | 1111t1 o | tick . tick /1t1
i i

e Multiple Control Points
e Transitions can trigger one another (Broadcasting)
e Simultaneous Transitions (Synchrony Hypothesis)

oo
alo

e If ‘A’ is input, ¢4, 1, T3 all are taken!
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Causality Problems

e Absence of behaviours

e Nondeterminism

e correct programs anmeactive, deterministic and causal

e Execution is a series ahacro steps

e Each macro step is a consistent, complete and causal seriegmf

steps
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3. Signal Hiding

Counting
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e internal ‘It1,It2’ invisible outside
e external ‘It1,It2’ cannot influence
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Network of CRSM nodes

Ni//...]] Ny

| )| e

e rendezvous nodes agree to take exit edges ‘simultaneously’

e Synchronised Transitions
e clock ticks at communication points are synchronized

e Waiting for communication is preemptible.
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Example: InfoPhone

e Consists of three nodes
e ARM, DSP and Web

ARM application

Complete
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Speech_Recognition

DSP application

Home Page
Title Page
Page 20 of 48
Full Screen
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EXAMPLE : Track Controller (Fischer et al '92)
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block 1 block 2

Page 21 of 48 block, - ctrlr block, - ctrlr block, - ctrlr

Nodel Node 2 Node 3
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Asynchronous Channels
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time_out

ok2

Page 22 of 48 enter &okl
ok
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Block Controller
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General CRSM

e Various extensions tpure CRSM
e Valued signals

e Variables and assignments

e Entry and exit functions

e Buffered communications

e value-passing communications
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Formal Semantics of CRSM

Node Semantics (similar to Esterel)

e An execution is a series of reaction instants

e In each reaction instant, a set of input signals is consumed and a set «
output signals is generated.

e input signals include rendezvous requests

e set of infinite traces

e Each entry at the ticks of clock of the node
Network semantics (similar to CSP, CCS)

e interleaving of traces of nodes

e synchronization of rendezvous points

e clocks have common ticks at communication instants
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Formal Verification
What?

e Rigorous checking of programs against specifications
e Specifications are properties
e Properties expressed in logic (CTL, LTL, etc.)
Why?
e Problems with traditional verification
e Need for rigorous Verification
e Safety-critical and high quality applications
How?
e Verification usingModel-checking or theorem proving
e Many tools exist: SPIN, SMV, VIS, PVS, sTeP, etc.
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Problems with Formal Verification
e Problem of specifying
e State explosion problem (model-checking)
e High human expertise (theorem proving)
e Huge extra effort
e Verification of the models rather than the real implementation
e Confusion over choice of methods and tools
Rest of the talk

e Our attempts to solve some of the problems in the context of CRSM
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Formal Specification Problem

e One of our major concerns

e Independence from code/design

e Consistency

e Completeness

e Complex specification languages (LTL, CTL, CTL*, FOL, etc.)
e Two languages (Specification and modelling)

e different skills for mastering them

e lack of training/experience in specification

e quality of specification influences that of verification

e additional steps in development
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Observer based verification
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e an attempt to solve some of these problems

Title Page

e |[dea:

— properties often can be viewed and modelledlaservers
— observers camonitorthe system states and
— complain wherbadstates are reached (properties violated)

4« 44

Example: Absence of unsolicited response

Page 32 of 48
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e Observers can be written as another program in the same language a

developed hand-in-hand
4« 42

e Observation can be modelled sgmchronous parallel composition

« [ e Observer and program run together synchronously and run-time check
made

Page 33 of 48

e Or the combined state space of observer plus the program can be sta
cally computed and analysed for reachability of bug states

Go Back

e Synchronous parallel operator comes in handy here
Full Screen > One Ianguage approaCh

e Verification limited to safety properties
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Distributed Observers
4« 144

e CRSM program consists of multiple synchronous nodes
« | e For verification, we employ one observer per node

e these observers monitor the local nodes
Page 34 of 48 . .
e also communicate with each other
e Program + observer is a CRSM program

Go Back

e which can be analysed statically or at runtime
Full Screen
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Verification Tool

e \We have built a tool based on this idea

Home Page

e Program + distributed observers translated to PROMELA
e Using SPIN, reachability of bad states is checked

Title Page

e Necessary property for verification is automatically generated

“«  » e SPIN tool modified to generate a counter example which can run in ou
simulator
< 4
CRSM + Observer
Page 35 of 48
Translator
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Promela + TL formulae

Full Screen
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Quit l Error trace
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State Explosion Problem

e Size of the state space analysed is exponential on the number of conct
rent components

e Various Solutions exists

— Efficient Representations using Symbolic Techniques (BDDs)

— Compositional Reductions: Reduce Components and Combine

— Abstraction: Collapse states ignoring data values, or irrelevant detail.
— Modular Verification: Verify components

e Many of the tools use one or more of these techniques
e We are exploring some of these reductions at the level of CRSM
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Title Page Modular Verification

e The idea:Given a property, choose an appropriate subprogram and verify

> the subprogram

e The property chosen is such that it holds for the original program iff it
holds for the subprogram identified.

e The subprogram has fewer concurrent components and hence state e
plosion problem is contained

Page 37 of 48

Go Back e This result is somewhat old (Grumberg and Long '91)

e shown the result for an asynchronous model of concurrency

Full Screen

e \\We have extended this to our model
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Our Result (Ramesh '01):

e \We have defined a notion of refinemeaf s.t.

— (Al||B) ref A (and symmetrically3)
— (Aqgp)) ref A
— If Aref B then
x (A||C) ref (B]|C) for anyC'.
* Cq14) ref Cy ) for anyC' andq in C.
x A® ref B, under some assumptions
e Then we have the result that

—If A ref B andB satisfiesp thenA also satisfies) providedo is a
negation-free LTL formula
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Efficient Verification of Programs
Two Strategies for Verification

1. Break the property into local properties and verify against components
separately

e Local verification is simpler and more efficient
e Not automatic but general.

2. ldentify appropriate subcomponent where the property holds.

e Some kind of signal flow analysis
e Automatic but not general
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Abstracting irrelevant details

“« | » e Main problem here is in identifying which parts are irrelevant
e In observer based verification, this is somewhat easier
e Any state that does not lead to BUG states is irrelevant
Page 40 of 48 e How to identify which states do not lead to BUG states
e Backward flow analysis
Co Back

e |Idea of program slicing

e Similar to Cone of Influence reduction

Full Screen
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e Well-known analysis technique in program analysis
WL e Ease of debugging and testing

e Formal verification would benefit from slicing

e Sequential program slicing (Weiser '84)
Page 41 of 48 e Notion of slicing criterion:< pc, Var >

e Definition: slice(P) w.r.t. < pc, x > is P' where,

Go Back

— P’ is obtained fromP by removing some statements
— If P reachec then P’ also reachegc and
— x has the same value in bofh P’ atpc.
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Entry
read(n)
=1
sum:=0
pro:=1
while i<=n
Sum:=sum-i
pro:=pro*i
=i+l
end while
write(sum)
write(pro)
Exit

Example: Slicing Criterion: < write(sum), sum >

Entry
read(n)
i:=1

sum:=0

while i<=n

SUM;=sum-i

=i+l
end while

write(sum)

Exit
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Slicing Reactive Programs
e Slicing criterion not very natural
e Reactive programs are event-oriented
e Non terminating ongoing behaviour
e Time or event ordering need to be preserved
e Proposal for a new definition suitable for reactive programs
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Definition of Slice

Sl e Slicing Criterion: just a signal or a set of signals
P e Slice of P w.r.t to signalb has the same ongoing behaviourfass far
asb is concerned
age 44 f 45 e That is,b is present in a computation @t iff it is present in a computa-
tion of Slice(P)
Go Back e Slice(P) obtained fromP, by removing edges or states

e Slice of P w.r.t b preserves behaviour w.ri.in all computations of”
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e Our Work (Vinod and Ramesh '02):

— We have defined the notion of slicing
— We have developed the slicing algorithm for CRSM

— Slicing preserves the structure of the program so that other reduction
can be applied
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Application to Verification

e In observer based verification, we are interested in computations the
result in the emission diug

e Slice w.r.tbuggives rise to a (hopefully) smaller state machine
e which is easier to analyse

e For general verification also this will be useful
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Current Work

e Basic Verification engine is ready

e Implementation of modular verification and slicing-based verification in
progress

e Some industrial case studies are being considered

Future Work
e Specification Language based upon Message Sequence Charts (MSC:
e Testing based upon model-checking

e Case studies in robotics and SoC designs
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