
Hypercubes,Product Graphs CS 408/Abhiram Ranade

There are various ways to de�ne a hypercube. Here is one. The hypercube
Qk on k dimensions has 2k nodes each labelled by a distinct k bit string, so
that all the di�erent k bit strings get used up. Then there is an edge from
node u to node v if the labels of u and v di�er in exactly 1 bit.

Another de�nition stresses the heirarchical structure. The hypercube Q0

is simply a single vertex. The hypercube Qk is obtained by taking two copies
of Qk�1 and joining corresponding nodes in the two copies. It should be clear
that this is the same as the �rst de�nition.

Yet another de�nition uses the notion of graph products.

1 Product Graphs

The productG2H of graphsG;H is de�ned to have the vertex set V (G2H) =
the cartesian product V (G)�V (H), and there is an edge from (g; h) to (g0; h0)
in G2H i� (a) g = g0 and h; h0 are neighbours in H, or (b) h = h0 and g; g0

are neighbours in G.
Clearly, jV (G2H)j = jV (G)j � jV (H)j.
Here is a way to visualize a G2H. Consider jV (G)j rows, each containing

jV (H)j vertices. Label the rows by labels of vertices V (G), and the columns
by Vertices V (H). On the vertices in each row, put down a copy of H, with
h in row labelled h. Similarly, in each column, put down a copy of G. This
then is the product G2H.

Here is an example. Let G = P2, the path on 2 vertices, just an edge.
Then P22P2 is simply a square. (P22P2)2P2 is a cube, in fact Q3, and so
on.

It is customary to say that g is the �rst coordinate of vertex (g; h) of
G2H, and h the second.

Lemma 1 2 is commutative and associative.

Proof: Need to show that G2H is isomorphic to H2G. Recall that X is
isomorphic to Y if there exists a bijection f from V (X) to V (Y ) s.t. (x; x0)
is an edge in X i� (f(x); f(x0)) is an edge in Y . The vertices in G2H are

1



(g; h) and those in H2G are (h; g) where g 2 V (G); h 2 V (H). We use
f((g; h)) = (h; g).
There is an edge from (g; h) to (g0; h0) in G2H

, either (a) g = g0 and h; h0 are neighbours in H, or (b) h = h0 and g; g0 are
neighbours in G.
, There is an edge from (h; g) to (h0; g0) in H2G.
, There is an edge from f((g; h)) = (h; g) to f((g0; h0)) = (h0; g0) in H2G.
Thus f is the required isomorphism. Associativitity is similar.

Let D(G) denote the diameter of G, and d(u; v) the length of the shortest
path from u to v.

Lemma 2 D(G2H) = D(G) +D(H)

Proof: Say an edge ((g1; h1); (g2; h2)) is of type G if h1 = h2, and of type H
if g1 = g2.

Consider any pair of vertices (g; h) and (g0; h0) in G2H. We will show
that there must exist a shortest path between them in which all G edges
occur before all H edges. The Lemma will then follow.

Consider a shortest path from (g; h) to (g0; h0) in which an H edge ei =
((a; b); (a; c)) is followed by a G edge ei+1 = ((a; c); (d; c)). Clearly, (b; c) 2
E(H), and (a; d) 2 E(G). Thus, G2H must also contain the edges e0

i
=

((a; b); (d; b)), and e0
i+1 = ((d; b); (d; c)). If we replace ei; ei+1 by e0

i
; e0

i+1, P
continues to remain a shortest path. But in this operation we have moved
one H edge beyond a G edge. Continuing in this way, we can ensure that all
G edges, if any, precede all H edges, if any.

Let P be one such shortest path, i.e. it is made of segments P1 and P2
consisting respectively of entirely G and H edges. Clearly P1 must end at
(g0; h), and must stay within a column as per the above visualization. Thus
the length of P1 is exactly the distance from g to g0 in G. Similarly, the
length of P2 is at most the distance from h to h0 in H. Thus the length of P
is at most D(G) +D(H), with equality arising when the distance from g to
g0 in G is D(G), and that from h to h0 in H is D(H).

Paths which �rst travel through the column and then through the row (or
vice versa), \correcting coodinate in succession", will be called a canonical

paths.
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1.1 Multiple products

If G = G12G22 � 2Gk, then its vertices will have k coordinates, the ith co-
ordinate being a vertex from Gi. Vertices of G di�ering in the ith coordinate
will be said to di�er in the i dimension. The notion of canonical paths again
naturally generalizes. Also D(G) =

P
iD(Gi).

1.2 Implications for the hypercube

Clearly the hypercube Qk has diameter k, and to go from one vertex to
another vertex, we can use a canonical path, correcting the dimensions in
say, a least signi�cant to most signi�cant order.

Note that because of associativity of 2, a hypercube on k = k1 + k2 di-
mensions can be viewed as a product of hypercubes on k1 and k2 dimensions.

2 Symmetries of the hypercube

It may be obvious that all vertices of a hypercube are symmetrical. This is
formalized using the notion of a automorphism. An automorphism is simply
an isomorphism from a graph to itself.

It will be convenient to think of vertices as k bit strings. It will also be
useful to have the notation u � v which denotes the bit-wise exclusive or of
u and v. Note that � is associative and commutative, and that the all 0s
string is the identity and each element is its own inverse. Further, suppose
u; v are neighbours. Thus they must di�er in just one bit. Say it is the ith
least signi�cant bit. Then we may write u = v � 2i.

We will show that there is an automorphism f on Qk that maps any
vertex u to any vertex v. Consider f(x) = x� w where w = (u� v).

1. f(x) = f(y) ) x � w = y � w ) x � w � w = y � w � w ) x = y.
Thus f is a bijection.

2. f(u) = u� w = u� u� v = v. Thus f maps u to v as required.

3. Consider a vertex x and its neighbour x�2i. Then we have f(x�2i) =
x� 2i �w = x�w� 2i = f(x)� 2i. Thus f(x� 2i) and f(x) are also
neighbours across dimension i.

Thus f is the required automorphism.
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Exercises

1. Show that there is an automorphism of the hypercube that maps any
given edge to any given edge.

2. In the graph colouring problem, we are required to assign a colour
to each vertex such that adjacent vertices in the graph get di�erent
colours. The minimum number of colours which can be used to colour
a graph G satisfying the above requirement is said to be its chromatic
number, denoted !(G). Show that !(G2H) = max(!(G); !(H)). Ob-
serve this for the hypercube, and produce a colouring for Q3 using
!(Q3) colours. Prove it in general. Hint: Start by colouring one row
of G2H as per the optimal colouring of H. Derive the colours for the
next row in some systematic manner.

3. In the permutation routing problem each processor sends a message to
a unique processor. Consider this on the hypercube Q3 and suppose
that the canonical path is used: correct bits from lsb to msb. Suppose
processor i sends a message to i + 5 mod 8. Draw the paths. The
maximum number of messages travelling on each link in any single
direction is said to be its congestion. Observe that the congestion is at
most 1. This phenomenon persists for other hypercubes and all cyclic
shift like permutations, but you are not expected to prove this, yet.

4. Consider a Pn2Pn2Pn, also called an n � n � n 3 dimensional pro-
cessor array. Consider the permutation routing problem and suppose
the canonical path is used: �rst correct the x coordinate, then the y
coordinate, then the z coordinate. Show that there exists a way to
assign destinations such that some link gets �(n2) congestion for some
direction. The congestion is important because it is a lower bound on
the time to �nish message transmission { since only one message can
go through a link at any step (assume messages are 1 word long). Since
the network diameter is 3n�3 we might expect that message movement
should �nish in O(n) time for all permutation problems. However, this
exercise shows that 
(n2) time might well be needed.
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