
CS 408 Spectral Graph Theory Abhiram Ranade

We often think of graphs geometrically, i.e. we see vertices as points on a
plane or in space, with edges as lines connecting them. When speci�ed alge-
braically (e.g. by its adjacency matrix), the geometrical imagery is absent.
Can we somehow create it from the algebraic description? The geometric
representation might be useful in itself, say because we want to draw the
graph on paper. But once a graph is embedded in space, in a nice manner,
say whereby neighbouring vertices are placed close, perhaps problems such as
partitioning a graph might be solved by partitioning the associated volume.

We can start with any algebraic representation of the graph, but a con-
venient one is the node-edge incidence matrix B of a graph G with n vertices
and m edges. B has n rows and m columns, and bie = 1 if vertex i is an
endpoint of edge e, and 0 otherwise. Clearly, every column of B has exactly
two 1s and rest 0s. Note that1 BBT = A + D where A is the adjacency
matrix, in which aij = 1 if (i; j) is an edge and 0 otherwise, and D a diagonal
matrix in which the iith entry equals the degree di of vertex i.

For d-regular graphs, the matrix B readily yields a nice geometric rep-
resentation: we consider the elements of the ith row Bi of the incidence
matrix B as the coordinates of vertex i in m dimensional space. If (i; j) is
an edge, then the distance between i; j is

p
2d� 1, whereas otherwise it isp

2d. That neighbours are located nearer than non neighbours seems like a
good property.

Suppose now that we want to partition this graph into equal sized sub-
graphs (as possible) by removing minimum number of edges. We instead
look to partition the point cloud formed by the vertices. It turns out (ex-
ercises) that simply by slicing the cloud by a hyperplane, we can generate
essentially any partition. The key question then is how do we �nd the hy-
perplane which gives us the partition we want. If our point cloud is in some
sense homogeneous, it may seem natural to �nd the direction in which the
point cloud is long, and cut perpendicular to that direction, expecting we
will cut a small cross section of the cloud and hence presumably a small
number of edges.2 Likewise, suppose we want to draw a picture of the graph,

1Let Bi denote the ith row of B. Then (BBT )ij = BiB
T
j . This evaluates to the degree

di of vertex i if i = j, to 1 if (i; j) is an edge, and 0 otherwise.
2It is not clear, a priori, that it is even possible to get the best cut using just a
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we could project the cloud onto two dimensions. Presumably the dimensions
on which to project might correspond to the directions in which the cloud
is longest, thereby reducing the amount of superposition of the vertices, i.e.
the likelihood of unrelated vertices projecting on top of each other.

The key questions in all this are to �nd the directions in which the point
cloud is long { this is precisely the question answered in Singular value de-
composition (SVD), which we study next. SVD of the node-edge incidence
matrix is intimately related to eigenvalue decomposition of the adjacency
matrix, and also another matrix called the Laplacian matrix which we also
study.

For non-regular graphs the SVD as above doesnt seem to be of much
value. However, the situation can be �xed as follows: we de�ne a normalized
incidence matrix C where cie = bie=

p
di. Alternately C = D�1=2B. The

matrix C can be seen to have the property that non-adjacent vertices are
located farther than adjacent vertices. Note however, that lengths of di�erent
edges is di�erent, whereas it was the same for the regular case. Alternatively,
we can directly study the eigenvalue decompositions of the adjacency matrix
and the Laplacian matrix. These decompositions are still useful, but they do
not have as intuitive a rationale as the node-edge incidence embedding.

The eigenvalues of a matrix (or its singular values) are said to constitute
its spectrum. Hence the name Spectral Graph Theory.

1 Singular value decomposition

Note that the discussion in this section applies to any matrix B, not just the
incidence matrix considered above.

Given an n � m matrix B, its �rst (right) singular vector, customarily
denoted as v1, is de�ned as a unit vector that maximizes jjBv1jj2. In order for
the norm to be maximized, it is necessary, in some sense, that v1 approximate
the \dominant" direction among the rows of B. If our point cloud were
ellipsoidal and centered at the origin, v1 would indeed be vaguely parallel
to the longest axis. If the point cloud is far away from the origin, then v1
generally points towards the center of the cloud, and the second singular
vector would then (roughly) identify the longest axis, as we will see.

The �rst left singular vector could be de�ned as the right singular vector

hyperplane. See exercise 11.
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of the matrix BT . However, there is an elegant joint de�nition of both left
and right singular vectors:

u1; v1 = unit vectors that maximize uT1Bv1

Note that this immediately shows (exercise) that the direction of Bv1 must
be the same as that of u1, and that of uT1B the same as that vT1 . Further, we
de�ne �1 = jjBv1jj2 = jjuT1Bjj2 as the �rst singular value.

Next we formalize the intuition that v1 is a \rough" estimate of the direc-
tions of the rows of B. In particular, noting that Bv1 gives the projections
of the rows of B on v1, the rank 1 matrix B1 = Bv1v

T
1 = �1u1v

T
1 can be

considered to be a rank 1 approximation to B. In fact we can prove that B1

is the best such matrix in the sense of the Frobenius norm:

jjB �B1jjF = min
R
jjB �RjjF

where R is any rank 1 matrix. Note that the Frobenius norm jjBjjF of a
matrix is simply the sum of the squares of all its entries.3

Writing B0 = B�B1, we simply repeat the above procedure on B0 to get
u2; v2; �2; B2, where B

0v2 = �2u2, u
TB0 = �2v

T
2 and B2 = �2u2v

T . Thus we
have:4

1. B0v1 = Bv1�Bv1vT1 v1 = 0, and hence the rank of B0 will be 1 less than
that of B, and hence the process will terminate after r steps, where r
is the rank of B.

2. We know that rows of B0 are orthogonal to v1. But �2v2 = uT2B
0 is

a linear combination of the rows of B0, hence v1; v2 are orthogonal.
Similarly u1; u2 are orthogonal.

3For a proof, suppose that we write the rank 1 matrix R as R = xyT where y is a
unit vector. Then we want minx;y jjB � xyT jj2F = minx;y

P
i jjB(i) � xiy

T jj2
2
, where we

have used B(i) to mean the ith row of B, and xi is the ith component of x. But now
for �xed y, the sum can be minimized term wise. But jjB(i)� xiy

T jj2
2
will be minimized

if B(i) � xiy
T is the component of B(i) perpendicular to yT . This happens when we

choose xi = B(i)y, or x = By. Applying the Pythagorean theorem to the components
of B(i) perpendicular and parallel to y we get the perpendicular component squared to
be jjB(i)jj2

2
� jjB(i)yyT jj2

2
. So minx;y jjB � xyT jj2F = miny

P
i jjB(i)jj2

2
� jjB(i)yyT jj2

2
=

miny jjBjj2F �jjByjj2
2
= jjBjj2F �maxy jjByjj2

2
. But this maximum is attained when y = v1,

which gives R = ByyT = Bv1v
T
1
= �1u1v

T
1
as desired.

4In class we de�ned Bk =
Pk

i=1 �2uiv
T
i .
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3. We have �2u2 = Bv2 because Bv2 = B0v2 +B1v2 = B0v2 + �1u1v
T
1 v2 =

B0v2 = �2u2.

Let ui; vi; �i; Bi, for i = 1 to r be obtained in this manner. These re-
spectively give the ith left singular vector, the ith right singular vector, and
the ith singular value. Obviously B =

Pr
k=1Bk. Reasoning as above we

have that all vi are mutually orthogonal, all ui are mutually orthogonal, and
�iu

T
i = Bvi.
It is customary to de�ne Uk as consisting of the matrix made up by using

u1; : : : ; uk as its columns. Likewise Vk. �k is de�ned to be a k � k diagonal
matrix with �1; : : : ; �k along the diagonal. Then clearly, BVr = Ur�r. Let V
be any orthogonal matrix obtained by extending Vr by including any columns
that are orthogonal to the columns in Vr and to each other. Note that these
newly added columns must be orthogonal to the rows of B. Likewise add
columns to Ur to extend it to an orthogonal matrix. Also extend �r into an
n �m matrix by adding 0s. Then we have BV = U�. Alternately, we can
write this as a decomposition of B, noting that V T = V �1.

B = U�V T

This is the Singular Value Decomposition (SVD) of B and it can be computed
in time O(mn2 +m2n), see [2].

We note that it is easily proved that
Pk

i=1Bi is the best rank k approxi-
mation to B:

jjB �
kX
i=1

BijjF = min
Rjrank(R)=k

jjB �RjjF

Further the error jjB �Pk
i=0BijjF =

q
�2k+1 + : : :+ �2r .

1.1 Examples

Our �rst example decomposition is

A =

 
1 1
0 1

!
=

 
0:85 �0:53
0:53 0:85

! 
1:62 0
0 0:62

! 
0:53 0:85
�0:85 0:53

!

Note here that direction of the �rst right singular vector

 
0:53
0:85

!
is some-

where between the directions of the rows of A.
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Our second decomposition example is

B =

 
2 0
0 1

!
=

 
1 0
0 1

! 
2 0
0 1

! 
1 0
0 1

!

In this case note that the �rst right singular vector

 
1
0

!
snaps to the

direction of the �rst row, does not point somewhere in between the directions
of the two rows. In some sense it can be seen to identify the dominant

direction. This happens when the rows are orthogonal, unlike the case for
matrix A earlier.

Our �nal example consists of the matrrix

C =

0
BBBBBBBB@

1 0 1 0 0 0 0
0 1 1 0 0 0 0
1 1 0 0 0 0 0
0 0 0 1 0 1 1
0 0 0 0 1 1 0
0 0 0 1 1 0 1

1
CCCCCCCCA

C has a block diagonal structure, with the blocks being of size 3�3 and 3�4.
In this case it turns out that the matrix inherits the singular values of the
blocks. The singular vectors are also suitably padded by zeros and inherited.
In this case the largest singular value 2.36 comes from the second block, and
the second largest, 2.00 from the �rst block. Both these are singular val-
ues of C. The �rst singular vector of the second block is (:56 :44 :44 :56)T ,
and so the �rst singular vector of C will be (0 0 0 :56 :44 :44 :56)T . The
next singular value 2 comes from block 1. The singular vector in that
block is (0:58 0:58 0:58)T . So the second singular vector for C will be
(0:58 0:58 0:58 0 0 0 0)T .

1.2 Singular values vs. Eigenvalues

The problem of �nding the �rst singular vector v1, i.e. the problem of maxi-
mizing jjBv1jj22 can be analyzed using Lagrangian multipliers (for simplicity
we maximize the square of the length rather than the length itself). We are
maximizing f(x) = jjBxjj22 = xTBTBx subject to g(x) = jjxxT jj22 � 1 = 0.
Thus we need r f = �r g. Let P = BTB. Then f(x) = xTPx, and
@f
@xi

= @
@xi

(piix
2
i +
P

j 6=i(pij+pji)xixj) = 2
P

j pijxj, noting that pij = pji. Thus
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r f = 2Px. Similarly r g = 2x. Thus we need Px = �x, i.e. BTBx = �x.
Thus v1 must simply be the largest eigenvector of BTB. In a similar manner
we argue that u1 is the largest eigenvector of BB

T .
We have that uTi BB

T = �iv
T
i B

T = �i(Bvi)
T = �2i u

T
i . Thus every ui is an

eigenvector of BBT of eigenvalue �2i . Likewise vi is a eigenvector of BTB of
eigenvalue �2i . Note that the eigenvalues are squares of the singular values.

The matrices BBT and BTB are symmetrical matrices, n�n and m�m
respectively. So we expect them to have respectively n and m orthogonal
eigenvectors. On the other hand, our process of determining singular vectors
only give r singular vectors, where r is the rank of B. How do we get
the additional eigenvectors? This may be resolved as follows. We simply
interprete the extra columns (if any) added to V also as right singular vectors
of singular value 0 { notice that these columns are orthogonal to each row of
B and hence their product with B is indeed 0. Likewise we may interprete
the additional columns added to U as left singular vectors, also of singular
value 0.

The following facts are important for �nding eigenvalues and eigenvectors
and are easily veri�ed.

1. If �; x are respectively an eigenvalue and eigenvector of a matrix M ,
then k + l�; x are of kI + lM , for any real l; k.

2. If �; x are respectively an eigenvalue and eigenvector of a matrix M ,
then �;Q�1x are of Q�1MQ, for any matrix Q.

Using the �rst and noting that BBT = A +D, and noting that D = dI for
d-regular graphs, we have that the adjacency matrix of a d-regular graph has
eignevalues �2i � d, and the eigenvectors are same as the left singular vectors
ui of BB

T .
The second will be useful for normalized adjacency matrix, see the exer-

cises.
While singular vectors can be thought of as approximating the directions

of the rows/columns of a matrix, such an interpretation is not interesting for
eigenvectors.

2 Drawing regular graphs

Let u1; u2; : : : and v1; v2; : : : and �1; �2; : : : respectively denote the left singular
vectors, right singular vectors and the singular values of B. Then v1 gives an
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approximation to the direction of the rows of B in the Frobenius norm. It
will be seen that the point cloud is relatively far from the origin, and hence
v1 merely gives the general direction in which the point cloud lies. From
the point of view of understanding the shape of the point cloud, v1 is not
interesting.

The second right singular vector v2 is an approximation to the general
direction of the rows of A after removing the components in the direction of
v1. It turns out that this roughy discovers the \length" of the point cloud!
The next singular vector v3 likewise discovers the \breadth", albeit in a
heuristic sense.

So for the purpose of drawing, we consider the dimensions v2; v3. So we
need coordinates of all vertices along these dimensions. The coordinate of a
vector Bi along direction v2 is simply bi �v2. Thus B �v2 gives the coordinates
of all vertices in a single vector. Note further that B � v2 = �2u2. Thus u2
gives the coordinates of each vertex in the direction v2 (within scaling) and
likewise u3 the coordinate along direction v3.

Next, note that u2 is the second left eigenvector of BBT . But BBT =
A+D. For a k-regular graph, D = kI. Hence BBT has the same eigenvectors
as A, or for that matterD�1A. So for regular graphs, this discussion indicates
that we may draw a graph using the eigenvectors of A or those of W =
D�1A = A=k.

2.1 General graphs

It appears that using the eigenvectors of the walk matrix also works reason-
ably for general graphs[3]. Note however that W does not have the same
eigenvectors as BBT for general graphs. Nor are the eigenvectors of W the
same as those of CCT , although they are related, as will be seen in the next
section.

Let x2; x3 be the second and third eigenvectors, and �2; �3 be the sec-
ond and third eigenvalues of W . Then Wx2 = �2x2, and hence x2(i) =
(Wx2)i=�2 = (

P
jj(i;j)2E x2(j)=di)=�2. Now

P
jj(i;j)2E x2(j)=di is simply the

mean of the coordinates of the neighbours of i. Thus this embedding places
vertex i at (x2(i); x3(i)) which is nearly the center of mass of where its neigh-
bours are placed, if �2; �3 are reasonably close to 1. For the binary hypercube
Qn, the second and third eigenvalues are 1� 2=n, and are thus close to 1 for
large n. A similar situation also holds for the grid.
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3 Graph Partitioning

We have looked at the mincut problem, where we wanted to split a graph by
removing as few edges as possible. However, in that problem, there was no
restriction on how large the parts had to be.

In many applications, it is required that a none of the parts be too small.
Say you have a circuit that you want to place on multiple printed circuit
boards. Typically, within a board there can be many wires, but each board
has only a few \pins" to connect to the external world. So the partitioning
must have the property that relatively large subgraphs are created, but with
as few wires connecting the subgraphs as possible. In divide and conquer
graph algorithms, it is again useful to split graphs into equal parts; the
amount of work that needs to be done while putting together the solutions
for the parts depends upon the number of edges cut, and this needs to be
minimized.

We might ask for graph bisection, and ask for algorithms that �nd the
bisection width, i.e. the minimum number of edges that need to be removed
so that the resulting two subgraphs have equal number of vertices. In many
cases, a more general de�nition might be more useful.

Let G = (V;E) be the graph and S � V . Let E(S; V � S) denote the
number of edges with one endpoint in S and the other in �S = V � S.

The sparsity of a cut (S; �S) is de�ned as

sp(S; V � S) =
jE(S; V � S)j

min(jSj; jV � Sj)
The sparsity of a graph is de�ned as sp(G) = minS sp(S; V � S).

Another measure is the ratio of a cut:

r(S; V � S) =
jE(S; V � S)j
jSjjV � Sj

It is easily seen that r(S; V � S)jV j=2 � sp(S; V � S) � r(S; V � S)jV j, so
these measures are not really too di�erent. The latter might be preferred
only because it seems to avoid the non-linear operator min. The cut ratio
for a graph is de�ned as r(G) = minS r(S; V � S).

We would like to �nd the (cuts corresponding to) r(G) or sp(G).
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3.1 Formulation as a numerical optimization

This formulation is from Spielman[3]. Represent a set of vertices S by its
characteristic vector x, i.e. xi = 1 if i 2 S and 0 otherwise. We �rst consider
the ratio cut r(S) = jE(S;V�S)j

jSjjV�Sj because it is algebraically easier:

The numerator may be written as
P

(i;j)2E(xi � xj)
2; for each edge that

crosses from S to V � S we get a 1, so that the total is jE(S; V � S)j.
The denominator requires a contribution of 1 for every i; j where i 2

S; j 2 �S. Thus we may write this as
P

i>j(xi � xj)
2. So the problem of

�nding a set of minimum ratio is equivalent to solving

rG = min
S

r(S) = min
x2f0;1gn

P
(i;j)2E(xi � xj)

2P
i>j(xi � xj)2

Solving for integer values is harder than solving for reals, typically. So we let
x range over real vectors. This will allow the right hand side expression to
possibly take even smaller values than what might be possible with integers,
so we only get a lower bound. Note further that since only di�erences xi�xj
appear in the expression, we can uniformly increment all numbers without
changing the value. So we may assert

P
i xi = 0, i.e. x � 1 = 0, or x ? 1 .

Thus we get

rG � min
x?1

P
(i;j)2E(xi � xj)

2P
i>j(xi � xj)2

The numerator and the denominator are quadratic in xi, hence they can
be written in the form xTHx where H is a suitably chosen matrix. For the
numerator we use H = L = D�A which is called the Laplacian of the graph.
It maybe seen that xTLx =

P
i;j lijxixj =

P
i dix

2
i �

P
i 6=j aijxixj =

P
i dix

2
i �P

(i;j)2E 2xixj =
P

(i;j)2E(xi � xj)
2. Further note that the denominatorX

i>j

(xi � xj)
2 = (n� 1)

X
i

x2i � 2
X
i>j

xixj = n
X
i

x2i � (
X
i

xi)
2 = n

X
i

x2i

since
P

i xi = 0 by assumption. Thus we get

rG � min
x?1

xTLx

nxTx

Notice that the denominator xTx in this expression is simply the Euclidean
length of x. Asserting that this be 1 does not change the minimum. Thus
we may write:

rG � min
x?1;jjxjj2=1

xTLx

n
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Since L is symmetric, it has real eigenvalues �1; : : : ; �n from smallest to
largest (our ordering was reverse of this for eigenvalues and singular values
so far), and orthogonal eigenvectors z1; : : : ; zn. It is also easily seen that
�1 = 0 and z1 = 1.

We next resolve x along the eigenvectors zi, i.e. let ci be such that
x =

P
i cizi. Then Lx =

P
i ciLzi =

P
i ci�izi. Noting that zi � zj = 0 for

i 6= j:
xTLx = (

X
i

cizi) � (
X
i

ci�izi) =
X
i

c2i�i

Since we want to minimize xTLx, it would be desirable to make ci large for
smaller indices, since �i is non-increasing. Note now that x ? 1 = z1. Thus
c1 = 0. Thus to minimize we should set c2 = 1 whereupon xTLx = �2x

Tx.
Thus we have shown

rG � �2
n

3.2 Algorithm

Does the previous formulation help in designing an algorithm?
It is instructive to consider a similar but far simpler problem. Suppose

we want to �nd an integer x such that x2 + 3:1x is minimized. We would
naturally do this by relaxing the condition that x be real, and taking the
derivative, assert that 2x+ 3:1 = 0. This would yield x = �1:55. We would
then venture that a nearby integer value, -2 or �1 would have to be the
answer. We would probably just check both and pick the smaller. Note
however that the integer minimum -2.2 in this case, is not the same as the
real minimum, -2.4025.

We can try something similar for our problem as well. We compute x = z2,
the second smallest eigenvector of the Laplacian matrix L. Then we somehow
determine an S from x. Remember that we started o� by assuming x to be
a bit-vector, which we then shifted by an amount say � so that x � 1 = 0. In
the new x vector there were only 2 values: �, wherever there was a 0 before,
and 1+�, wherever there was a 1 before. If z2 has exactly this form, we can
right away decide which vertex to put in S.

But in general z2 will not have this form. So what do we do? Perhaps
those vertices i whose coordinate z2(i) is large should be put in S. But
how do we decide what \large" means? The simple answer is we try out
all possibilities! After all, there are only n possible thresholds z2(j) for the
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di�erent values of j. So we de�ne Sj = fijz2(i) > z2(j)g. We calculate
r(Sj; V � Sj) and pick the minimum.

So the next question is: how much worse than �2=n can the cut ratio of
the cut selected above be?

3.3 Cheeger's Theorem

Theorem 1 (Cheeger) Let L be the Laplacian matrix of a graph G, and
�1; : : : ; �n its eigenvalues ordered from the smallest to the largest. Then

r(G)2n

8dmax
� �2

n
� r(G)

where dmax is the maximum degree. Further there is a simple algorithm to

�nd a cut matching the �rst inequality, i.e. S such that

r(S; V � S) �
p
8dmax�2
n

The second inequality we have proved. The �rst inequality is substantially
harder, and we will not prove. But we note that the algorithm referred to
in the theorem is indeed the algorithm we discussed, and it may not �nd

a cut of ratio �2=n, but will certainly �nd a cut of ratio at most

p
8dmax�2

n
.

Note that the cut found need not be the best, but the best cut ratio must be

somewhere between �2
n
and

p
8dmax�2

n
.

Sometimes the bounds are stated in terms of sparsity:

sp(G)2

2dmax
� �2 � 2 sp(G)

Also, we can �nd a cut (S; V � S) such that sp(S; V � S) � p
2dmax�2.

Cheeger's theorem may be used to ascertain how good spectral parti-
tioning (the algorithm discussed above) works; we can also use it to bound
the second eigenvalue of graphs whose sparsity (or cut ratio) is known. We
discuss both these possibilities in the examples below.

Our �rst example is the cycle Cn. For this, it can be shown that �2 =

O(1=n2). Thus we can �nd a cut of sparsity O(
q
2 � 2 � 1=n2) = O(1=n).

We know this to be true: this cut is obtained by bisecting the cycle, and
indeed has the smallest sparsity. Thus spectral partitioning has worked well.
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Knowing the sparsity to be �(1=n), Cheeger's theorem would have established
that �2 is between �(1=n2) and �(1=n).

Our second example is the binary hypercube. We will shortly establish
that for Qlogn, �2 = 2. This gives us that the sparsity of the cut we get using
the algorithm would be

p
4 log n, whereas we know that cuts of sparsity 1

can be obtained, say by removing the edges along any dimension.
Our �nal example is the class of planar graphs, for which it can be

shown[4] that �2 = O(1=n). This establishes that spectral partitioning would

give us a cut of sparsity O(
q
dmax=n). For graphs of bounded degree, this be-

comes O(1=
p
n). While for speci�c planar graphs we can get cuts of smaller

sparsity (e.g. for Cn), in general improving this is not possible. For example,
for Ppn2Ppn, sparsity is 1=

p
n. Spectral partitioning does not guarantee

balance, i.e. the two sides of the cut may have very di�erent number of ver-
tices. However, by repeatedly applying spectral partitioning on a bounded
degree planar graph, it may be seen that we can get a 1/3{2/3 separation if
we wish, while keeping the number of edges removed O(

p
n). Thus this may

be considered to be another proof of the planar separator theorem (though
it requires �2 to be computed by independent means) for bounded degree
graphs.

3.4 Relationship to incidence matrix embedding

For k-regular graphs, L = D�A = kI�A. Thus L has the same eigenvectors
as A. However, the order is reversed. The eigenvector with the ith smallest
eigenvalue in L has the ith largest eigenvalue in A. Note further that BBT =
A+D = kI +A also has same eigenvectors as A, and hence L. Thus the left
singular vector ui of B of singular value �i is the same as the eigenvector zi
of L of eigenvalue �i.

So the algorithm above was e�ectively: order vertices according to their
coordinate in u2 = z2, and construct set Sj by picking those vertices i whose
coordinate u2(i) = z2(i) is greater than u2(j). Of all sets Sj return the one
which has the least cut ratio.

If we believe that the point cloud obtained from the vertices has its
\length" along direction v2, then it would seem natural to believe that the
\cross section" perpendicular to v2 is the \narrowest". So if we want to
cut very few edges, we should perhaps be partitioning the graph by slicing
perpendicular to v2. In other words we project each vertex onto the direc-
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tion v2, and then take a set of contiguous vertices in that order. But note
that the projection of the vertex i is simply the ith component of Bv2. But
Bv2 = �2u2. Since we do not care about the scale, it is enough to consider
the entries in u2 as giving the projections of the vertices. So to get a \nar-
row" cross section, we should take all vertices having their u2 value above
some threshold. This is exactly what the algorithm described above does!

3.5 General graphs

The algorithm actually also works for general graphs; however, there is no
clear correspondence with the edge incidence embedding. This is because for
general graphs the vectors u2 and z2 will be di�erent.

However, for general graphs, using the normalized incidence matrix does
give an algorithm that �nds a cut of the so-called minimum conductance
(ratio of number of edges cut to the mnimum of the sums of the degrees
on either side of the cut). The second singular vector of the normalized
incidence matrix is in fact the same as the second eigenvector of the so called
normalized Laplacian that is encountered. So even in this algorithm can be
viewed as slicing the point cloud perpendicular to the second singular vector.

But the details get very complicated[1].

4 Eigenvalues of Expander graphs

A (non-bipartite) (�; �; n; d) expander is a graph d regular G = (V;E) with
jV j = n in which any subset S of V has at least �jSj neighbours outside of
S. We can use randomized constructions to construct such expanders.

Given such an expander, we note that by Cheeger's theorem, �2 � r(G)n.
If �(S) denotes the neighbourhood of S, then we have j�(S)j � jE(S; V �
S)=dj. Thus j�(S)j

jSjd � r(S;V�S)jV�Sj
d

� r(G) (1��)n
d

� �2(1��)
d

. Thus, if �2(1��)
d

�
�, we can rest assured that G is indeed an (�; �; n; d) expander.

Something similar works also for the bipartite case.

5 Eigenvalues of the hypercube

It is quite easy to �nd the eigenvalues of the adjacency matrix of the hy-
percube by exploiting its recursive structure. First consider the adjacency
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matrix.
By simple algebra, it can easily be seen that the �1; 1 are the eigenvalues

of Q2. Now observe that if Ai is the adjacency matrix of Qi, then we have:

Ai+1 =

 
Ai I
I Ai

!

From this it is easily veri�ed that if � is any eigenvalue of Ai and x the

corresponding eigenvector, then � � 1 are eigenvalues of Ai+1, and

 
x
�x

!

are the corresponding eigenvectors.
Thus it follows that the adjacency matrix of Qn has eigenvalues n � 2i

with multiplicity
�
n
i

�
, for i = 0 to n. Since Qn is a regular graph, we can

show that the Laplacian will have eigenvalues 2i with multiplicity
�
n
i

�
, i = 0

to n. Thus the second smallest eigenvalue is 2 as claimed earlier.

6 Concluding Remarks

Singular value decomposition is a standard data analysis technique. It has
been used in analysis of web pages for searching, and also various aspects of
image processing.

Many other algorithms are known for graph partitioning. Some of these
(implicitly) build up on the algorithm we discussed.

In general, the idea of viewing a graph (or indeed other objects too) in a
high dimensional space is very powerful. Dont beat up yourself if you cannot
imagine more than 3 dimensions. It is not necessary to do so! Often, we only
look at 2-3 dimensions out of the many, and restricted to these, our notions
of perpendicularity, projections, etc. work nicely. If we need to deal with
many dimensions at the same time our intuition about volumes, areas etc.
will not work; so we make guesses by analogy, prove them correct by algebra,
and then proceed.

Exercises

1. Suppose B is the node-edge adjacency matrix of a graph G, for a cer-
tain numbering of the vertices and edges (remember: the ith vertex
corresponds to the i th row, and jth edge to the jth column). Suppose
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ui; �i; vi are the left singular vector, singular value and right singular
vector of B. Suppose now that the vertices and edges of G are num-
bered di�erently, giving a new matrix B0. Suppose we �nd its singular
vectors and values u0i; �

0
i; v

0
i. How will these compare to ui; �i; vi?

2. From �rst principles (i.e. by using elementary calculus) �nd the singu-
lar value decompositions for the matrices 

1 1
0 1

!
;

 
0 1
0 1

!

You may check correctness by using a program such as scilab.

3. Find the largest singular value and the range of singular values for the
edge incidence matrix of K4, the complete graph on 4 vertices.

4. Show that for a regular graph, the �rst singular vector passes through
the center of mass of the vertices.

5. Draw a picture of the edge incidence embedding of all connected graphs
having 3 edges.

6. Show that the �rst singular value of a d-regular graph is
p
2d. What

are the �rst singular vectors? Hint: Thanks to Anvit Singh: the fol-
lowing corollary of the Cauchy Schwarz inequality could be useful:
(
Pk

i=1 xi)
2 � k(

Pk
i=1 x

2
i ).

7. Let B denote the node-edge incidence matrix for a possibly non regular
graph G in which vertex i has degree di. Let d be the maximum degree.
Suppose for each i we add d�di columns having a 1 in row i and zeros
elsewhere, giving us a matrix B0. What is B0B0T ? What can you say
about its eigenvectors and eigenvalues?

8. Show that the normalized node-edge incidence matrix C as de�ned
in the text has the same eigenvectors and eigenvalues as the matrix
D�1=2LD�1=2, the normalized Laplacian. Note that L = D � A is the
Laplacian. What is the relationship between the eigenvalues of the
ordinary and normalized Laplacians?

9. Show that if �i; ui; vi are singular values and singular vectors of B,
then �2i are eigenvalues of BBT and BTB, and ui; vi are eigenvectors
of BBT ; BTB respectively.
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10. Suppose you have a solid body made up of unit masses (discretized)
at points p1; : : : ; pn. Suppose the center of mass of the body is at
the origin. The �rst principal axis of rotation of the solid body is
that line through the origin which minimizes

P
j r

2
j , where rj is the

perpendicular distance to the line from pj. Show that the �rst principal
axis of rotation can be found using singular value decomposition.

11. "Spectral partitioning" essentially partitions a graph as follows: (a)
Embed it in some Euclidean space, say as per the rows of the node edge
incidence matrix. (b) Find a suitable hyperplane H and determine
L;R = sets of vertices on either side of H in the space. (c) Return
the subgraphs induced by L;R. An interesting question is, does there
always exist a Hyperplane H such that it will return a given partition.

Consider C4, the cycle on 4 vertices. Let B be its edge incidence matrix.
Let the cycle be embedded as per the edge incidence embedding. (a)
Find a hyperplane that has vertices 2,3 on one side and 4,1 on the other.
(b) Find a hyperplane that has vertex 1 on one side and 2,3,4 on the
other side. (c) Prove that there is no hyperplane that has vertices 1,3 on
one side and vertices 2,4 on the other side. (d) Let G0; G00 be partitions
of a graph G. Show that if G0; G00 are connected, then there exists
a hyperplane which will return G0; G00 given the node-edge incidence
embedding of G.

12. Show that the expression x21� 3x1x2� 4x23+2x1x3 can be expressed in
the form xTPx where xT = (x1; x2; x3), where P is a symmetric matrix.

13. Show that all eigenvalues of any Laplacian matrix L are non-negative,
and observe that 1 is an eigenvector of eigenvalue 0.

14. What is sp(G) where G is (a) Qn, (b) K3n=4 connected by a single edge
to Kn=4, (c) Ppn2Ppn.

15. The public domain program scilab is very useful to experiment with
singular values and eigenvalues. It contains simple commands to ma-
nipulate matrices, e.g. get their singular/eigenvalues and vectors etc.
(a) Use scilab to draw Q3 using the second and third singular value.
Also try other graphs. (b) Use scilab to �nd a cut of small ratio of
di�erent graphs using the second smallest eigenvector of the Laplacian,

16



say Pn2Pn. (c) Use scilab to �nd �2 for a random d-regular graph for
various values of d. Comment on how much expansion you get.

16. Research Question: The node-edge adjacency embedding given by the
rows of B has the properties that for d-regular graphs, adjacent vertices
are embedded at a distance

p
2d� 1, and non-adjacent vertices at a

distance
p
2d. Suppose we are given an arbitrary embedding (in an

arbitrary number of dimensions) having these two properties. Will SVD
be able to get reasonable partition from that embedding? You might
think that it might su�ce to ask for non-neighbours to be embedded
at least a certain distance rather than exactly a certain distance. Show
that this relaxation does not work: There exists an embedding of a
graph such that each vertex is at a distance

p
2d� 1 from its neighbour,

and such that non-neighbours are at a distance at least (rather than
exactly)

p
2d, but does not have any hyperplane separator of low ratio.

Hint: it su�ces to choose the graph to be a cycle.
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