
CS 408 Embeddings and MIS Abhiram Ranade

In this lecture we will see another application of graph embedding. We
will see that certain problems (e.g. maximum independent set, MIS) can
be solved fast for a graph if it has a low congestion embedding in any tree.
Later we will see a di�erent kind of embedding in which vertices of the guest
graph are mapped to not just one node but a set of nodes. This will lead to
the notion of treewidth, and we will also see an application to solving linear
systems de�ned on graphs which arise in engineering calculations.

1 Maximum Independent Set

In a graph G = (V;E), we call V 0 � V independent if u; v 2 V 0) (u; v) =2 E.
In the maximum independent set problem, the requirement is to �nd an
independent set V 0 of maximum cardinality. In the natural weighted version,
for each vertex u we are given a weight wu and the weight wU of a set of
vertices U is de�ned as the sum of the weights of the vertices in U . The
goal is to �nd an independent set of maximum total weight. The maximum
independent set problem, weighted or unweighted, is NP-complete, and hence
unlikely to have a polynomial time algorithm in general.

1.1 A divide and conquer strategy

The basic idea of the algorithm we discuss is divide and conquer. Of course,
just dividing the graph into two parts, and taking the union of the MIS of the
two parts will not work. This is because the union may not be independent:
a vertex u in the right MIS may have an edge to a vertex v in the left
independent set.

Instead we consider the following stronger boundary constrained MIS

problem to solve in the recursion. Let G0 be any subgraph of G, and let
@G0 denote those nodes of G0 that have edges outside G0. Let s denote a sub-
set of @G0. Then for each G0 and s, we must �nd SsG0 , the maximum weight
independent set in G0 which must contain the vertices in s, and not contain
any vertex in @G0 � s. We will use As

G0 to denote the weight of this set. In
fact, we will only worry about �nding As

G0 , �nding the set itself is a minor

1

extension which we will not discuss. If the vertices in s are not independent
in G0, then SsG0 is not de�ned, and it will be expected that As

G0 = �1 will
be returned. The solution to a boundary constrained MIS problem for a
subgraph G0 is simply the collection AG0 of the values As

G0 for the di�erent s.
At the leaf level, AG0 is evaluated by a brute force strategy, We discuss

this for the general case in Section 1.3, where we also show how to combine
solutions. Before that, we design an algorithm for trees based on this idea.

1.2 Algorithm for binary trees

We describe the algorithm directly, and then later show how it �ts into the
general scheme.

1. Pick an arbitrary node and designate it as the root r. For each vertex
de�ne the notion of parents and children with respect to r.

2. For each vertex u we will compute Pu, the weight of the MIS for the
subtree below u constrained to contain u, and Qu, the weight of MIS
for the subtree under u constrained to not contain u.

(a) For each leaf u of the tree Pu = wu, Qu = 0.

(b) Pick any node u such that P;Q have been computed for all its
children, say v; w. Then Pu = wu+Qv+Qw. Qu = max(Pv; Qv)+
max(Pw; Qw). In this way we can calculate Pu; Qu for all non-leaf
nodes.

3. Return max(Pr; Qr).

It will be seen that the algorithm runs in linear time.
Suppose T (u) denotes the subtree under node u. Then note that AT (u) =

fPu; Qug, noting that the boundary of T (u) is simply the vertex u. The base
case for the recursion is simply when u is itself a leaf, step 2a above. Step
2b shows how smaller solutions are combined together; this combination is
quite simple for trees.

1.3 General scheme

To solve our problem for a subgraph G0 which we have decided is a base
case for the recursion, we will evaluate AG0 by brute force. Consider the

2

computation of As
G0 for a certain s. By �xing s we have determined which

nodes of @G0 will be in the independent set. That only leaves nodes in
V (G0)� @G0. A simple algorithm for this is:

1. For each t � V (G0)�@G0: Check if s[t is independent. If so calculate
its weight, and keep track of the maximum weight seen.

2. As
G0 = max weight seen, = �1 if s [t is not independent.

There are 2j@G
0j choices for s, and 2jV (G0)j�j@G0j choices for t. Thus the for

loop runs 2jV (G0)j times. In each loop, checking for independence and com-
puting the weight may take O(jE(G0)j) time, which should multiply the time
estimate. We will use the notation ~O(f) to mean O(fg) where f involves
exponentials and g only involves polynomial terms.1 Thus our time taken is
~O(2jV (G0)j).

For the divide step, it is conceivable that we may divide simply by remov-
ing edges, however, (as for trees) it is more convenient to remove a \middle"
region which breaks the problem into \left" and \right" regions. Thus in
the combine step, we will typically combine 3 regions L;R;M into a single
region U which might be smaller than G.

We will assemble Au
U from Al

L; A
r
R; A

m
M . Consider SuU . It must be the union

of sets SlL; S
r
R; S

m
M for some l; r;m that are independent, and u is consistent

with l; r;m. Since the boundary of U is a subset of the boundaries of L;R;M
we must have u = (l [r [m) \ @U . De�ning f(l; r;m) = (l [r [m) \ @U ,
and using I(x) to assert that x is independent, we can write

Au
U = max

l;r;m
fAl

L + Ar
R + Am

M j I(l [r [m); u = f(l; r;m)g (1)

It can be seen thatAu
U for all u together can be computed in time ~O(2j@Lj+j@Rj+j@M j)

as follows:

1. Fix u � @U .

2. Fix t � (@L [@R@M)� @U . Notice that s; t together �x l; r;m.

3. Use equation 1 to �nd Au
U .

Since s; t can together be �xed in time ~O(2j@Lj+j@Rj+j@M j) the bound follows.

1This notation hides polynomial factors, just as O notation hides constant factors.

3

2 Graphs with good tree embedding

Suppose G is a graph with a load L, congestion C embedding on a tree H.
The tree H will determine the structure of our recursion. The algorithm is
as follows.

1. Pick an arbitrary node of H and designate it as the root r. For each
node de�ne the notion of parents and children with respect to r.

2. For each node u let T (u) denote the graph induced in G by the ver-
tices embedded in the nodes of the subtree of H rooted at u. We will
calculate As

T (u) for all s recursively starting from the leaves of H.

(a) For each leaf u of H, we calculate As
T (u) for all s together by brute

force.

(b) Let u be a node of H such that the A values have been calculated
for its children v; w. We show how the A values can be calculated
for u; in this way we can calculate the values for all nodes of H in
the order backwards from the leaves towards the root. Let G(u)
denote the subgraph induced in G by the vertices embedded in
node u of H. The key idea is to use equation 1, noting that T (u)
has been decomposed into subgraphs T (v); T (w); G(u).

Ak
T (u) = max

l;r;m
fAl

T (v) +Ar
T (w) +Am

G(u) j I(l [r [m); k = f(l; r;m)g

3. Return A�
T (r).

For step 2a, because the load is L, we have jV (T (u))j � L. Thus in time
~O(2L) we can �nd the complete AT (u) for any �xed u.

In step 2b, we calculate AG(u) by brute force. This takes time ~O(2L) as
for the leaves in step 2a. Each border node of T (u) must have at least one
edge going outside of T (u), and this edge must be embedded in the edge
from u to its parent. But we know the congestion is C, and hence for all
u, j@T (u)j � C. Further j@G(u)j � jV (G(u)j � L. Thus by the analysis of
the previous section, computing AT (u) is done in time ~O(2L+2C) at each node

of H, and hence ~O(2L+2C) overall (note that ~O will hide the V (H) factor).
This can in general be much less than the ~O(2V (G)) using the brute force
algorithm for all of G.

4

2.1 Remarks

Our analysis is conservative. Suppose a single vertex x is embedded at tree
node v. Suppose x has edges to vertices y; z both embedded at the parent u
of v. The edge (u; v) has congestion 2, whereas j@vj is just 1.

The algorithm presented here makes it important to �nd low congestion
and low load embedding into arbitrary trees. For example, what embedding
would you use for the hypercube Qn?

Exercises

1. Consider the maximum independent set problem on the tree. For the
unweighted case prove that there must exist an optimal solution which
contains all the leaf nodes. Use this idea to give an algorithm to �nd
the optimal solution.

2. Show that there may exist optimal solutions which need not contain all
the leaf nodes. For the weighted case, show that the optimal solution
may not contain a single leaf.

3. Extend the algorithm for �nding the weight of the maximum weight
independent set to �nd the set itself.

4. Design an algorithm to �nd an MIS for G = Pc2Pr, r � c, by embed-
ding it in Pc. If your tree has unary nodes, derive a formula for unary
nodes and use it. Only estimate the exponential terms in the running
time, i.e. give an ~O answer.

5

