
CS 408 Genome Assembly Abhiram Ranade

Every organism has a genome in its cell nucleus which encodes the features
of the organism. The genome is generally organized in chromosomes, and is a
polymer molecule. Ignoring many details, it su�ces to say that the genome is
a sequence of so called nucleotides: Adenine, Guanine, Cytosine and Thymine
(in DNA; while Uracil takes the place of Thymine in RNA). Writing down
this sequence is an important problem in Biology: it is expected that it
would lead to early detection of predisposition to diseases, development of
new kinds of treatment of diseases, improving yield of plants, or even new
forms of life.

The Human genome is about 3 billion nucleotides long. We may think
of it as a string over the alphabet fA;G;C; Tg, respectively representing
the 4 DNA nucleotides. No direct techniques are available for reading o� the
sequence of nucleotides in molecules this long. Direct reading of the sequence
is possible only for fragments which are around 700-1000 nucleotides long.
So the following approach is used for reading long genomes:

1. Make many copies of the genome.

2. Break each copy (independently) randomly into small pieces, say about
700 nucleotides long.

3. Identify the sequence for each piece by direct techniques. Once the
sequence is read, it is customary to call each piece a read.

4. If a long enough su�x of one read is identical to the pre�x of another
read, consider it to be evidence that the two pieces in fact overlap in
the original genome. Thus they may be merged into a longer piece.

5. Repeat the above as possible.

There are many variations on this theme, but the basic idea is to detect
and use overlaps between the pieces to assemble larger and larger fragments.
There are many ways of doing this, we will discuss one such approach.
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0.1 Overview

The approach has two main ideas. The �rst idea is to use the reads to
construct a representation of all plausible genomes which could give rise to
the given set of reads. The second idea is to determine which of these is
most likely to have been the genome from which the reads resulted. In this
we think of the process of chopping up the genome as a random process,
and the reads as the outcome of the random process. The goal is to �nd the
reconstruction which has the maximum probability of being the one from
which the reads resulted. Usually, we cannot identify a single unique genome
as the answer, instead we merely identify fragments (much larger than the
reads themselves) that are likely to be parts of the genome.

1 Shortest Superstrings vs. Euler tours

Our algorithm starts with a set of n reads, R = fr1; : : : ; rng. The goal is to
reconstruct the genome G from which the reads arose.

Clearly, G should contain each read, possibly in an overlapped manner.
Indeed, one possible but clearly inappropriate solution is simply the concate-
nation of the reads. This is deemed an unlikely solution, because it does not
contain any overlaps, which would almost surely be present if the reads came
from random fragmentation of identical copies of the genome. Early formu-
lations of the problem therefore suggested that the reconstructed genome G
should be be the shortest possible string that contains all the reads. Unfor-
tunately, �nding such a shortest superstring of R turns out to be an NP-
complete problem.

There are actually several problems with this formulation. If a genome
contains long repeated subsequences, the above method would never discover
them, because this would go against the goal of shortening the reconstructed
string.

It was also felt that not only should all reads appear in the assembled
genome, but all the (signi�cant) overlaps must also occur. The rationale was
that if a long su�x (say longer than some parameter � to be suitably �xed)
of a read appears as a pre�x of another read, then we should expect to �nd
the reads in the overlapped manner in the genome. This gives rise to the
Euler tour formulation of the assembly problem as follows.

We begin by �xing � , a reasonable value is 100. If you assume (gross
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approximation, of course) that the genome is a random string, then the
probability that two reads have an overlap of 30 is 4�100 � 10�20. So a string
of length 100 is unlikely to appear twice even in a billion long genome. Thus
if two reads have a su�x-pre�x overlap of 100, there is very good chance that
they came from the same region of the genome.

The (�) overlap graph for a read set R is a directed, weighted (called
length in what follows), labelled graph de�ned as follows.
Vertices: For each read ri that is not contained in any other read1 we
construct one vertex. We will refer to this vertex as vertex i.
Edges: If there exits an overlap of length at least � between a su�x of ri
and a pre�x of rj, we construct a directed edge from vertex i to vertex j, i.e.
edge (i; j).
Labels and lengths: Suppose (i; j) is an edge. Let rj be a concatenation of
string s followed by a string l, where s speci�es the pre�x overlapping with
ri. Then the edge (i; j) is labelled l, and is assigned length jlj, i.e. the length
of the string l.

Consider an Euler tour which visits every vertex of the overlap graph at
least once. The label of an edge (i; j) is simply the sequence that takes us
from the end of read ri to the end of read rj. By concatenating the labels
along the tour, we indeed get a string which contains all reads except the one
corresponding to the starting vertex (See [1]), as well as a signi�cant number
of the overlaps between reads. Note that it is possible that the tour need
not be simple, i.e. the tour may pass through certain vertices/edges more
than once. This will correspond to genomes in which there are repeated
substrings. Such repetition is common, say in plant genomes.

The overlap graph is thus a representation of all plausible genomes which
can give rise to R. Two points must be noted, however. First, we do not use
the overlap graph directly, some simplifying transformations can be applied
to it[1]. Second, typically, from all the set of plausible reconstructions as
de�ned by the overlap graph, we will not be able uniquely identify a single
Euler tour as the correct one. The best we can do is to decide how many
times each edge of the overlap graph is traversed. The traversal counts will
further enable us to simplify the graph. In the end it is the simpli�ed graph
that we output. Any tour in it which con�rms to the traversal counts we
predict is a possible assembly. Alternately, we can say that every edge in our

1However, the contained vertices are not completely ignored; they will �gure in the

subsequent processing, see paper.
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�nal overlap graph is a fragment of the genome from which R was obtained.
The traversal counts are predicted using a maximum likelihood formula-

tion as follows.

2 Maximum Likelihood

We �rst describe the maximum likelihood idea in general, and only later apply
it to the problem of predicting traversal counts. The basic idea is to simply
consider all possible genomes which contain all the reads that have been
observed, and pick the one which has the greatest probability of generating
the observed read set.

Here is a probabilistic model of the generative process. First, a genome
G is picked "from the wild" with probability P [G]. It is randomly broken
into the read set R. We wish to �nd that G such that Pr[GjR] is maximum.

Pr[GjR] = Pr[GR]=Pr[R] = Pr[RjG]P [G]=P [R]

This quantity is to be maximized over di�erent G. For this maximization
P [R] does not change with G. It is customary to assume that all genomes
G are likely to be chosen in the �rst step, thus P [G] is the same for all G,
and so does not matter for the purpose of maximization. So we pick that G
which maximizes Pr[RjG]. This is the so called maximum likelihood method.
Notice that we wanted to �nd a G that maximizes P [GjR] { we are instead
�nding a G which maximizes P [RjG] which is a much simpler problem.

For calculating Pr[RjG], remember that you actually have each ri and you
have �xed a G. To estimate the probability, we need to de�ne our generative
model further. After selecting G we generate the ith read as follows. LG

denotes the length of G.

1. Select a length li from a �xed distribution P (independent of the
genome G).

2. Pick a starting point for the read. There are LG � li � LG choices
for this. The sequence of nucleotides from the chosen position of the
chosen length then becomes a read.

So now we can estimate the probability that the given read set R got gener-
ated in the given order. Suppose a read ri appears �i times in a candidate
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genome G. Then since the starting point is picked at random, the proba-
bility of ri of length Li being generated is simply P (Li)�i=(LG � Li), where
P (Li) denotes the probability of selecting a length Li for the read from the
length distribution. The probability of generating the set R in the sequence
r1; : : : ; rn is simply

Q
i P (Li)�i=(LG�Li). However, the same read set R can

be generated through other permutations, e.g. if all reads are distinct, then
the probability of observing R is n! times the probability above. In general
the exact probability is �

Q
i P (Li)�i=(LG � Li), where � depends upon the

read set R but not on the genome G. Assuming LG � Li we may write
LG � Li � LG, and observing that

Q
i P (Li) also does not depend upon G,

we may write the probability PG of generating R from G as:

PG = �0

nY

i=1

�i
LG

where �0 = �
Q

i P (Li) is a constant depending on R (and the length distribu-
tion) but not on G. Our goal is to �nd G that maximizes PG, or equivalentlyQ

i �i=LG. The maximization must satisfy certain constraints, which we de-
scribe next.

For the rest of the story, please refer to [1].

Exercises

1. Consider the read set R = fACTG;CTGG;GGACg, and assume that
tau=2. (a) Draw the overlap graph, showing all the labels and weights.
Include the source and sink vertices, but do not perform transitive
reduction or any other optimizations. (b) Calculate the probability
that these reads result from genomes ACTGGAC, CTGGACTG, ACT-
GCTGGGGAC? Do not use the approximations LG � li � LG but use
the exact values.

2. Use some public domain solver to �nd the optimal value for the traversal
counts. On the basis of these state what you think is the most likely
genome from which R as above results.
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