
CS 408 The Multibuttery Network Abhiram Ranade

We have been considering the problem of designing a non-blocking net-
work, i.e. a network in which we can simultaneously connect every input
i to an output �(i) where � can be any permutation. We considered two
candidates for this: the Buttery and the Benes. On the Buttery we saw
that for some permutations � it was indeed possible to make all N connec-
tions, where N is the number of inputs, but for some others it was possible
to connect only

p
N of the inputs to the required outputs. On the Benes, we

found that the connections could be made for all �.
An important issue in designing such networks is the algorithm for setting

up the connections. To solve the problem on the Benes network, we needed
to solve a colouring problem. While the algorithm for this is simple, it is
not distributed { essentially we need to have one computer know all of �
and calculate the paths, and send that con�guration to the network. It
is preferred, if instead, the input nodes (which have a limited amount of
processing in them) can decide only how to establish connections locally,
based on some local querying, i.e. each node coordinates with its neighbours
to determine the path for the message it holds. Unfortunately, it doesnt seem
that such a distributed algorithm is possible for the Benes network.

The Multibuttery network[4] solves this problem and others. A variant
of this which we will call the reduced multibuttery, will be seen to have
the non-blocking property, i.e. disjoint paths can be established for any
permutation �. Further, the paths can be found using a distributed algorithm
that runs in time O(log2N). There exists a more complex O(logN) time
algorithm as well, but we will not discuss this.

Multibutteries also possess some fault-tolerance properties, and a few
other interesting properties which we will not study.

1 Multibutteries

The overall structure of a multibuttery is quite similar to a buttery. An
(�; �;N; d) multibuttery B has N inputs and N outputs, and is made up
of 3 networks:

1. An (�; �;N; d) splitter network X on N = 2k inputs and two sets of

1



outputs, respectively called the up outputs and down outputs, each of
size N=2. The precise wiring between the inputs and the outputs is
discussed later.

2. Two (�; �;N=2; d) multibuttery networks Bu; Bd.

The inputs of X form the inputs of B. The up and down outputs respectively
form the inputs of Bu; Bd. The outputs of Bu; Bd form the outputs of B. The
parameters �; � will explained later. The parameter � is also known as the
expansion of the splitter.

Like a buttery, a multibuttery has (n+ 1)2n nodes, arranged in n+ 1
levels, and the recursive structure is also similar. The key di�erence between
the buttery and the multibuttery is the splitter { it provides a much richer
connection than what is available in the buttey.

1.1 Concentrators and Splitters

A splitter is made out of two concentrators.
A (�; �;N; d) concentrator has two sets of vertices, U; V , with jU j = N

and jV j = N=2. The max degree of any node in U is d, and that in V is 2d.
Further every subset of U having k � �N nodes is required to be connected
to at least �k nodes in V .

Since we can choose k = �N , we require ��N � jV j = N=2, i.e. �; �
may only be chosen such that �� � 1=2. Typically we will be interested in
� > 1, and �; d to be constants independent of N . Whether this choice of
parameters is feasible is discussed later.

A (�; �;N; d) splitter has three sets of vertices, U; Vu; Vd, with jU j = N
and jVuj = jVdj = N=2. The subgraph on vertex sets U and Vu as well as
the subrgaph on vertex sets U; Vd are each required to form an (�; �;N; d)
concentrator. The set U is called input, the set Vu as the upper outputs, and
the set Vd as the down/lower outputs, and the corresponding concentrators
as the upper and lower concentrators.

2 Constructing a concentrator

We de�ned a concentrator graph, but that does not mean that it exists for
interesting values of the parameters!

2



In fact explicitly constructing such graphs (i.e. writing down their adja-
cency matrix) turns out to be a very hard problem, requiring a fair amount
of sophisticated mathematics. Proving existence is easier { and the proof is
non-constructive.

The proof is based on the so called \probabilistic method". In this we
give a procedure for constructing a graph, and show that there is non-zero
probability that the constructed graph will have all properties required of a
concentrator. The probability is typically small, and this procedure is thus
not too useful for the actual construction; it nevertheless shows that a graph
with the required properties exists! Otherwise how could we get non-zero
probability?

Theorem 1 For all � > 0, � > 1 s.t. �� < 1=2, there exists an (�; �;N; d)
concentrator, for

d > � + 1 +
� + 1 + ln 4�

ln 1
2��

Proof: The construction is as follows: (1) Start with 2 sets, U , and V
containing respectively N;N=2 vertices. (2) Expand each vertex in U and V
into d and 2d vertices respectively. Call the resulting sets ofNd vertices U 0; V 0

respectively. (3) Pick a random perfect matching on U 0 and V 0. (4) Collapse
each d-tuple of vertices in U 0 and 2d tuple in V 0 back to the vertex from
which they were created. At this point we will have a multigraph in which
each vertex has degree d; 2d in U; V respectively. (5) Convert this to a graph
by replacing multiple edges (if any) connecting the same pair of vertices with
a single edge. This �nishes the construction.

If the graph is not a concentrator, then there is some S � U of size
k � �N and T � V of size �k, such that all the neighbors of vertices in
S are strictly contained in T . We �rst consider the probability that this
happens for �xed sets S and T . Then we sum over all choices of S; T to get
the probability that the resulting graph is not a concentrator with the given
parameters.

We need the probability that the neighbours of S are a proper subset
of T , we will instead consider the overestimate: the probability that the
neighbours of S are contained in T . Let S 0 and T 0 denote the sets resulting
from S and T respectively in step 2 above. The number of ways in which the
kd vertices in S 0 can be matched with the Nd vertices in V 0 is

jV 0j (jV 0j � 1) : : : (jV 0j � jS 0j+ 1) = Nd(Nd� 1) : : : (Nd� kd+ 1)

3



The number of ways in which the kd vertices of S 0 can be matched with the
2�kd vertices in T 0 is

jT 0j (jT 0j � 1) : : : (jT 0j � jS 0j+ 1) = 2�kd(2�kd� 1)(2�kd� kd+ 1)

Thus the probability that S 0 has all its neighbors in T 0 is

2�kd � 2�kd� 1 � 2�kd� 2 : : : � 2�kd� kd+ 1

Nd �Nd� 1 �Nd� 2 : : : �Nd� kd+ 1
�
 
2�kd

Nd

!kd

=

 
2�k

N

!kd

This upper bounds the probability that neighbours of S are properly con-
tained in T . Now, observe that there are

�
N
k

�
ways of choosing S, and

�
N=2
�k

�
ways of choosing T for every k � �N Thus, the probability that the graph
is not an expander is at most:

�NX
k=1

 
N

k

! 
N=2

�k

! 
2�k

N

!kd

�
�NX
k=1

8<
:
 
k

N

!d���1

e�+1(2�)d��

9=
;
k

�
kNX
K=1

n
�d���1e�+1(2�)d��

ok

Using
�
n
r

�
�
�
ne
r

�r
, and noting that k

N
� �. The series above is geometric,

and will be smaller than 1 if we choose

�d���1 � e�+1 � (2�)d�� � 1=2

Taking natural log and simplifying we get:

d > � + 1 +
� + 1 + ln 4�

ln 1
2��

For this choice of d, the probability that the graph is not a concentrator
is stictly less than 1, i.e. there is non zero probability of �nding a (�; �;N; d)
concentrator, i.e. such concentrators exist.

Note that by choosing larger values of d we can boost up the probability
and make it extremely likely that the above construction gives concentrators
(Exercises). Note, however, that in any case no e�cient procedure is known
for verifying that the graph we generated is an expander!

Instead of randomized constructions such as the one above, one might
attempt a more direct, deterministic construction. Such constructions have
been found quite hard, and the bounds obtained are weaker[3].

For now, the best course is very likely to use the randomized construction
and use simulations to see how well the graph does on standard packet routing
problems. This has been found to be quite promising[2].

4



2.1 Establishing paths on Multibutteries

Path selection on a multibuttery is similar to a Buttery, in level 0 we
determine whether the packet is destined for outputs belonging to the up-
per submultibuttery or lower, and continue the process recursively. This,
as in the Buttery, can be done by considering the bits in the destination
address. The crucial di�erence from the Buttery is that we are no longer
restricted to a unique path from any input to output. Each node in level 0
has d edges going to the top multibuttery and d edges going to the bottom
multibuttery. Thus at each level each path can be extended forward in d
ways.

3 Non-blocking properties

We will show that given any permutation �, it is possible even in the worst
case, to establish paths from input i to output �(i) for about 2�N inputs, in
an (�; �;N; d) expander having � � 1. This is much better than the Buttey
in which only

p
N paths are possible in the worst case. This worse than

the Benes network, in which we could establish all N paths. However, by
modifying the multibuttery network slightly, we can build a network that
establishes all paths. Furthermore, for suitable choices of the parameters, we
can get a fast distributed algorithm to establish the paths, which does not
appear to be possible for a Benes network.

Theorem 2 Suppose � is a permutation over f0; : : : ; N � 1g. Let L � 1=2�
be as large a power of 2 as possible. It is possible to establish vertex disjoint

paths from input i to output �(i) of an (�; �;N; d) multibuttery for all i
such that �(i) = a(modL) for any integer a, provided � � 1.

Proof: Without loss of generality, let a = 0. Consider only the requests
to destinations 0(modL). So there are only N/L requests. Suppose we have
been able to build paths for these requests till some level i of the multibut-
tery. Let us consider how the paths can be extened to level i+ 1.

Consider any splitter S with inputs in level i. It has m = N=2i inputs,
and m=2 outputs connected to the top (sub)multibuttery Mt, and m=2 to
the bottom (sub)multibuttery Mb. Let It denote the set of inputs of S
which have received paths that need to be connected to Mt. We know that
m=2L of the m=2 outputs of Mt (whose numbers are multiples of L) will

5



receive requests. These must come through splitter S, and hence we have
jItj = m=2L � m�. We will show that the paths of all the requests in It can
be extended to level i+ 1.

Let I 0 � It, and let �(I 0) denote the neighbours of I 0 in Mt. Then
jI 0j � jItj = m=2L � m�. Thus the expansion property applies to every I 0,
and we have j�(I 0)j � �jI 0j � jI 0j. Thus Hall's condition is satis�ed for set
It, and hence we can match every input in It to a distinct input of Mt. In
a similar manner we can also extend the paths of the requests destined for
Mb.

Next, it may be observed that we can prune the multibuttery into a
network with just N 0 = N=L inputs and outputs, say by considering only
inputs f0; : : : ; N 0 � 1g and outputs fiji = 0 (mod L)g. Of course, we can
throw out all nodes of the multibuttery which do not have a path from the
above mentioned inputs, or a path to one of the above mentioned outputs.
Notice that this network, which we will call a reduced multibuttery will have
O(N 0 logN 0) vertices and edges, N 0 inputs and outputs and in which any
permutation can be established from the inputs to the outputs. The reduced
multibuttery is thus similar to the Benes in hardware requirements and
capability.

Do note, however, that �nding the paths is not simple { at each level we
need to run a matching algorithm. We will overcome this problem next.

3.1 Finding the matching quickly

The matching can be found quickly if � > d=2. In this case we have the so
called unshared neighbours property.

De�nition 1 Any (�; �;M; d) splitter has a � unshared neighbour property

if in every subset I of inputs where jIj � M�, there are �jIj nodes in I
that have an up neighbour that is not adjacent to any other node in I, and
similarly for down neighbours.

Lemma 1 Any (�; �;M; d) splitter with � > d=2 has a 2�=d � 1 unshared

neighbour property.

Proof: Consider any set I of inputs with jIj � M�. These have at least
�jIj up neighbours. Of these neighbours, let n1 be incident to exactly one

6



input in I, and n2 to 2 or more inputs. Since from I there are djIj edges
incident on the neighbours we have n1 + 2n2 � djIj. But there are at least
�jIj neighbours, thus n1+ n2 � �jIj. Solving for n1 we get n1 � (2� � d)jIj.
But these neighbours must connect to at least (2�=d� 1)jIj nodes from I.

So now we have the following algorithm to compute the matching:

1. Each input having a request sends a token to all its up neighbours if the
request needs to move up, or to all its down neighbours if the request
needs to move down.

2. Each splitter output receiving just 1 token replies with an \accept"
response to the input from which it received the token.

3. An input that receives an \accept" response sends its request to any of
the nodes from which it received the response.

4. Repeat from step 1 until all tokens have moved.

The key is that in each iteration of the above algorithm, at least a fraction
� of the inputs holding requests must receive an \accept" response. Thus
in time log1=(1��)M� = O(logN) iterations all requests in a splitter move
forward. (Question: can you prove that all requests must move forward? Is
it possible that other requests take all positions that a certain request could
have moved to?)

So the overall algorithm runs in phases; in each phase (of precalculated
duration above) the one more edge is added to each path. The total time is
thus O(log2N).

Exercises

1. Show that an ordinary Buttery is a (1; 0:5; 2n; 2) multibuttery. Show
that it is not really possible to improve the estimates of the �rst two
parameters.

2. Consider the following bipartite graph having 2N left vertices and N
right vertices. Vertex i on the left is connected to vertices i mod N
and i + 3 mod N , with N a power of 2. Does this have � > 1 when
considered a concentrator for any constant �?

7



3. Consider the decision problem of deciding whether a given bipartite
graph is an expander. Show that this is in co-NP.

4. Estimate the values for which the construction will give an expander
with probability at least 0.99.

5. A (�; �;N; d) concentrator has two sets of vertices, U; V , with jU j = N
and jV j = N=2. For this exercise suppose that the degree of every node
in U is exactly d, and that in V is exactly 2d. Further every subset of U
having k � �N nodes is connected to at least �k nodes in V . Suppose
we are also given that �; � are constants such that � > 1; �� > 1=4.

Show that the diameter of this graph is O(logN).

References

[1] S. Arora, T. Leighton, and B. Maggs. On-line algorithms for path se-
lection in a nonblocking network. In Proceedings of the ACM Annual

Symposium on Theory of Computing, pages 149{158, May 1990.

[2] F. T. Leighton and B. M. Maggs. Fast algorithms for routing around
faults in multibutteries and randomly-wired splitter networks. IEEE

Transactions on Computers, 41(5):578{587, May 1992.

[3] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs. Combina-

torica, 8:261{277, 1988.

[4] E. Upfal. An O(logN) deterministic packet routing scheme. In Pro-

ceedings of the ACM Annual Symposium on Theory of Computing, pages
241{250, May 1989.

8


