
CS 408 Page Rank Abhiram Ranade

An internet search engine must perform two tasks: (i) decide which pages
on the net are relevant in some way as responses to your query, and, (ii)
produce a ranking of the relevant pages in order of importance. In this lecture
we consider the second task: ranking by importance. It is reasonable to
assume that each page j has an importance coe�cient xj which is independent
of the query q, and a relevance coe�cient rqj which depends upon the query.
Thus in response to a query q, we may perhaps present pages to the user
in non-increasing order of xj � rqj. In this lecture we will not worry about
relevance, but merely importance.

One heuristic for this is: a page is as important as the number of other
pages pointing to it. But then, clearly we should not count just how many
pages point to a page, but give more weightage to whether the pages pointing
to you are themselves pointed to by other pages, and so on. Also, perhaps
if a page points to many pages, then it is not recommending anyone page
very strongly, so its recommendation should be taken less seriously. These
concerns can be summarized by saying that each xj satisfy the following
recurrence:

xj =
X

iji points to j

xi=di+

We are assuming in this that each page i has positive outdegree di+.
It is convenient to de�ne a matrix W with wij = 1=di+ if (i; j) 2 E, and

0 otherwise where the web is represented as a directed graph G = (V;E).
Then if x denotes the vector with components xj, then the above recurrence
is equivalent to:

x = xW

Thus we are asking that x be a left eigenvector of W of eigenvalue 1. W
is called the walk matrix of G, why is explained shortly. In the rest of this
lecture, we will see that under reasonable assumptions this requirement is
satis�ed nicely.

Example: Say our graph has vertex set f1; 2; 3g and (directed) edge set
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f(1,2),(1,3),(2,1),(3,2)g. Then its walk matrix is:

W =

0
@ 0 0:5 0:5

1 0 0
0 1 0

1
A

Simply writing xT = xTW will not enable us to solve for x; clearly if x is a
solution so is any multiple. So we will assert that the sum of the entries of x
be 1. With this additional equation, we should get the required eigenvector,
(0.4 0.4 0.2). Even in this example, you should get some intuition: 1,2 in
some ways are more important than 3: 2 is pointed to by 1,3, and 1 is pointed
to by an important node 2.

1 Eigenvalues of a stochastic matrix

A matrix P is right stochastic if its entries are non-negative real numbers
and rows (left if columns) add up to 1. Clearly, W de�ned above is right
stochastic. The notion of stochasticity arises from the context of performing
a random walk on a graph with n vertices, where entries pij represent prob-
abilities of transiting from state i to state j. Our matrix W can indeed be
interpreted in this manner; if x gives the current probability distribution of
where the walker is, then xW gives the probabilities for the next step. The
condition xW = x is equivalent to asking for a stationary distribution. A
stochastic matrix is simply a generalized walk matrix; we allow the walk to
have di�erent probabilities for each outgoing edge, and also allow self loops.

Although we are concerned with left eigenvectors and eigenvalues of P ,
it is useful to note the following for any right stochastic matrix:

P1 = 1

In this equation, by 1 we mean the vector consisting of all 1s. Equality
clearly holds because rows sum to 1.

Note now that the left and right eigenvalues of any matrix M are the
same (but not necessarily the eigenvectors). This is because the expression
xM = �x maybe written as x(M � �I) = 0, which requires that M � �I be
singular, and thus the eigenvalues � be solutions to jM � �Ij = 0. This is
a polynomial in � and the same polynomial results if we consider the right
eigenvalues, because the determinant of a matrix is the same as that of its
transpose.
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In fact, right multiplication by a right stochastic matrix has a very simple
interpretation. For y = Wx, yi =

P
j wijxj. Thus each yi may be viewed

as a weighted average of x, because
P

j wij = 1. We will work with right
multiplication wherever possible because of this reason, say when we only
want to consider properties of eigenvalues and not eigenvectors.

So we know that 1 is a (left) eigenvalue of any right stochastic matrix P .
The question that now arises is: does only one eigenvector have eigenvalue
1, or are there many eigenvectors (to within scaling) with eigenvalue 1? In
other words, does the eigenvalue have multiplicity 1?

Lemma 1 If a graph G is strongly connected, then its walk matrix W has
largest eigenvalue 1, of multiplicity 1.

Proof: Since each term of Wx is a weighted average of the values in x, Thus
the maximum entry of Wx cannot be bigger (or smaller) than the maximum
(or minimum) entry in x. Thus all eigenvalues must be at most 1. With
slightly more work, you should be able to show that the eigenvalues cannot
be smaller than -1 either (exercise).

We next show that 1 is the only right eigenvector for eigenvalue 1. Sup-
pose some other x is also an eigenvector of value 1. An eigenvector remains
an eigenvector after uniform scaling, so we assume the largest entry in xi is
1. But xi is a weighted average of the values all its out neighbours, and these
values are themselves at most 1. The only way the average can be 1 is if the
values are all 1. So all out neighbours must have xv = 1. But this applies
to all their out neighbours, and so on to all the vertices since the graph is
strongly connected. But then we have established that x = 1 as well.

Lemma 2 For the walk matrix W of a strongly connected graph G, the
unique (to within scaling) left eigenvector of eigenvalue 1 has all positive
entries.

A plausible line of proof is: suppose I start a random walk in the graph
from some vertex. I keep walking, and eventually in the limit as the number
of steps goes to in�nity, the probability distribution should tend to a limit {
and that limit would have to be a stationary distribution x, i.e. satisfying x =
xW . Further, since the graph is strongly connected, every vertex should have
a nonzero probability of being visited from any other vertex, and thus every
vertex must appear with a positive probability in the stationary distribution.
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Unfortunately, in general, a random walk in a graph may not tend to a
stationary distribution. Consider just a directed 2 cycle. If the walk starts
with the distribution (p; q) at step 0, then at all even time steps the dis-
tribution will be just this, and at all odd time steps, the distribution will
be (q; p). So there is no single limit as the number of steps increases! The
problem clearly is that our walk has a periodicity. If we could construct a
matrix W 0 which has the same eigenvectors as W but which does not have
this periodicity, perhaps we would be done. This indeed works out.

Proof: Consider the matrix W � = 1

n

Pn�1
i=0 W

i. Let x denote the left eigen-
vector of W of eigenvalue 1. Clearly x is a left eigenvector of eigenvalue 1 of
any W k. Thus xW � = 1

n

Pn�1
i=0 x = x. Hence x is also a left eigenvector of

eigenvalue 1 of W �. It should also be clear tht W � is also stochastic.
We next establish that every entry wij of W � is positive. Since G is

strongly connected, there must be a path from i to j of length k � n � 1.
Thus there is positive probability of visiting j in k steps starting at i. Thus
the ij entry ofW k must be positive, and this positiveness is preserved inW �.

Note that x cannot be identically zero, so after multiplying by -1 (which
still keeps an eigenvector) there must be at least one xi > 0. Suppose
x+; x�; x0 denote the subvectors of x with positive, negative and 0 values.
Multiplying a vector x by a stochastic matrix causes xi at any node to be sent
to its out neighbours. Each neighbour receives such contributions and adds
them up. Now the total contribution leaving the nodes in x+ is

P
i2x+

xi.
But this total contribution leaves x+ since every vertex has an edge to every
vertex in W �. The contribution received in x+ from x�; x0 is non-negative.
Thus at the end of the step

P
i2x+

xi must reduce. But this is not possible
because x has eigenvalue 1. Thus if some xi is positive, then all xi must be
positive.1

Note that while W might have been periodic, W � is not. Indeed it is
possible to show that starting from any initial distribution x, x(W �)t tends
to the eigenvector with eigenvalue 1.

1A di�erent proof: Suppose x is not sign uniform. Since x = xW � we have xj =P
i w

�

ijxi. Since w
�

ij > 0, and x not sign uniform, it follows that jxj j <
P

j w
�

ij jxij. Thus
x0 < x0W � where x0 is the vector obtained from x by taking absolute value of every entry.

Now x0 � 1 < x0W � � 1. But 1 is a right eigenvector, and hence x0 � 1 < x0 � 1 and we have a

contradiction. Thus, all elements of x0 must have the same sign, say positive, or be zero.

But now suppose xj = 0. Some such j must have an edge from i where xi > 0. But

this is not possible since xj =
P

i xi=di+ � xi=di+ > 0. Which proof do you like better?
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2 The real Page rank algorithm

Our assumption of the graph being a strongly connected component does
not hold for the web graph. It can be in several components, and there can
be important pages with no outdegree. There may also be pages with no
indegree, or pages all of whose in neighbours have zero indegree.

The original pagerank algorithm proposed by the founders of google han-
dled this with an interesting variation. They augment the random walk
model described above with \random restarts". The random walk can be
thought of as modelling a user who keeps following random links from the
page he is currently at. In the new model, at each step, the user tosses a
biased coin. If a head appears, which say happens with probability �, then
the user picks a completely random page on the web and jumps to that. If a
tail appears, i.e. with probability 1� � picks one of the outgoing links from
the current page with equal probability. The recommended value is � = 0:15.
So if Y is the transition matrix of this new walk, we have:

yij = �=n if (i; j) =2 G

= �=n+ (1� �)wij if (i; j) 2 G

where W is as de�ned earlier. De�ne

Y = (1� �)W + �J=n

where J is a n � n matrix of all 1s. Then the importance coe�cient x is
simply the left eigenvector of eigenvalue 1 of Y , i.e. x = xY . Notice that Y
already has all entries positive, and is stochastic. Thus it will have a unique
eigenvector of eigenvalue 1. But once we know that uniqueness is guaranteed,
we can solve for x more directly. Noting that xJ = 1, we get

x = xY = (1� �)xW + (�=n)1

or alternatively
x(I � (1� �)W ) = (�=n)1

Thus we simply need to solve this linear system. The matrix inverse can
be approximated, noting that (I � M)�1 =

P1
i=0M

i, as long as the sum
converges. Thus we have

(I � (1� �)W )�1 =
1X
i=0

(1� �)tW t
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Since (1��) = :85 by our choice, the terms become small very rapidly. So we
�nd an approximate inverse Z by taking just a few terms of the series, and
then set x = (�=n)1Z. The approximation requires a few multiplications
with the sparse matrix W , and will run in time O(n) if the average degree
is constant assuming the matrix is represented suitably. Performing the
full Gaussian Elimination will invariably introduce �ll-in, making the matrix
dense, and thus requiring O(n3) time.

Exercises

1. Which of the following matrices are stochastic? Which are walk matri-
ces? Draw the graphs associated with those that are. For all �nd the
left and right eignvectors and eigenvalues.0

@ 0 1 0
0 0 1
1 0 0

1
A ;

0
@ 0 1 0

1 0 0
0 0 1

1
A ;

�
1 2
4 3

�
;

�
0:5 0:5
0:5 0:5

�

2. Suppose W is a walk matrix of some strongly connected graph. Is W k

also necessarily a walk matrix of a strongly connected graph? Is it also
stochastic?

3. Argue thatW �I for a strongly connected graph must have rank n�1.

4. Suppose G consists of k disjoint strongly connected components. Show
that W has eigenvalue 1 with multiplicity k.

5. Complete the arguement that the smallest eigenvalue of W cannot be
smaller than -1.

6. Consider an n� n stochastic matrix W in which each wij > � > 0, for
some constant �. Assume that wii > � as well. Let x be a (row) vector of
average value 0, i.e. x �1 = 0. For any vector x, Let P (x) =

P
ijxi>0

xi.

Let x(t) = xW t.

(i) Show that P (x(t+1)) � P (x(t))(1�n�). Hint: How much positive
charge is annihilated in each step?

(ii) Suppose y is a probability (row) vector. Show that yW t tends to z
where z is the stationary distribution of W . Hint: Consider x = y� z.
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