
CS 408 Tree Decomposition Abhiram Ranade

We will see a di�erent kind of embedding into trees, called tree decom-
position, in which each vertex of the guest graph may be mapped to a set
of nodes rather than a single node. This will lead to the notion of treewidth.
Graphs that have good decompositions will be seen to have faster algorithms
for MIS and several other NP-complete problems. Tree decompositions are
useful in many areas, including probabilistic inference. We will see a connec-
tion to solving linear systems de�ned on graphs which arise in engineering
calculations.

As we will see in the exercises, tree decompositions and standard embed-
dings into trees are related.

1 Tree Decomposition

Let G be an undirected unweighted graph. Then a tree decomposition for
G consists of a tree T and a map f : V (G) ! fsubtrees of Tg, such that
(u; v) 2 E(G)) f(u); f(v) have a non empty intersection.

For each vertex u de�ne its load Vu as the set of vertices of G whose
subtrees contain u. The width of the decomposition (T; f) is maxu jVuj � 1.
The treewidth of a graph is the minimum possible depth, over all possible
choices of T; f . For a collection of vertices U we will use VU to denote [u2UVu.
While we will refer to the decomposition by (T; f), the decomposition is also
speci�ed completely by giving T and all the Vu.
Example: For any graph G, consider a tree decomposition in which T is
a single node, and all vertices of G are mapped to subtrees consisting of a
single node. This is a trivial example, but it demonstrates that every graph
does have a tree embedding.
Example: Find tree embeddings for Pn, Cn, complete binary tree. Make
the width as small as possible.

It turns out that every tree has a tree embedding of treewidth 1, in fact
that is why we subtracted 1 from the de�nition of width.

Lemma 1 A connected graph has treewidth 1 if and only if it is a tree.

1



Proof: Suppose G is a tree. Then it has a (G; f) decomposition as follows.
Root G at any vertex r. Assign Vr = frg, and for u 6= r assign Vu = fu; pg
where p is the parent of u. Each vertex is thus mapped to a subtree consisting
of itself and its children, and hence each child subtree intersects with its
parent tree.

We prove the converse later.

First we establish the decomposition properties provided by (T; f).

Lemma 2 Suppose (T; f) is a tree decomposition of G. Suppose t is a node

in T , and on removal of t we get subtrees T1; : : : ; Tk. Let Gi denote the

subgraph induced by VTi � Vt. Then Gi have no vertices in common, nor do

any edges connect them. Further Gi are also obtainable from G by removing

the vertices in Vt and their incident edges.

Proof: We show that (Ti; f) is a decomposition for Gi, from which the result
follows. Gi only contains vertices u such that f(u) intersects with VTi � Vt.
Suppose f(u) is only partially contained in Ti, i.e. f(u) contains a node
x 2 Ti as well as a node y outside of Ti. But in T there is a unique path
from x to y and this passes through t. Since f(u) is a subtree of T , t must
also belong to f(u). But then u 2 Vt, and thus u =2 VTi�Vt. Thus u is not in
Gi. Thus Gi only contains vertices whose trees are completely contained in
Ti. If u; v have an edge in Gi, then they have an edge in G, and hence their
trees intersect. Thus (Ti; f) is a decomposition for Gi.

Since Ti are disjoint, it follows that Gi cannot share vertices. Also, be-
cause the subtrees of vertices in distinct Gi are fully contained in Ti, they
cannot intersect. Thus they would not have an edge between them in G.

The only vertices and edges absent in Gi together are the vertices Vt and
their incident edges. Hence removing the vertices in Vt from G should give
Gi.

Lemma 3 Suppose (T; f) is a tree decomposition of G. Suppose e = (x; y) 2
E(T ). On removing e suppose we get subtrees Tx; Ty with x; y in each respec-

tively. Let Gx be the graph induced by VTx�(Vx\Vy), and similarly Gy. Then

(Tx; f) is a decomposition for Gx, and similarly for Gy. Further, Gx; Gy are

vertex disjoint, nor is there any edge in G connecting the graphs together.

Further, Gx; Gy are obtained by removing Vx \ Vy from G.

2



Proof: Replace (x; y) with two edges (x;w); (w; y). Let Vw = Vx\Vy. Extend
f to include w. The new tree and extended f also form a tree decomposition
for G. Now remove the node w and use the previous lemma.

Lemma 4 Let (T; f) be a tree decomposition for a graph G. Suppose T
contains an edge (x; y) such that Vx � Vy. Then let T 0 be the graph obtained

by merging x into y, i.e. y acquires all of x's neighbours and Vy remains

unchanged. Then (T 0; f) is also a tree decomposition for G.

Proof: Check that all the properties are maintained.

The above lemma de�nes a notion of a non-redundant decomposition, i.e.
a decomposition which does not contain such edges. Note further that the
contraction operation does not increase the width.

Proof of Lemma 1: (contd.) Suppose a graph G containing a cycle C has
a decomposition (T; f). Consider the subtree TC of T induced by subtrees
f(v) for v 2 V (C). (TC ; f) is a tree decomposition for C because each vertex
v is mapped to a subtree f(v), and (u; v) 2 E(C) ) (u; v) 2 E(G). Thus
f(u); f(v) intersect in T and hence in TC . In TC fewer trees intersect any
node than in T . Hence the width of (TC ; f) is no larger than that of (T; f).
Thus it su�ces if we prove that (TC ; f) has treewidth at least 2.

So without loss of generality let us assume that G is a cycle, having
(T; f) as its decomposition. Further assume it has width 1, i.e. jVtj � 2
for all t 2 V (T ). Without loss of generality, we can assume that T is non-
redundant. Let (x; y) be any edge, and consider what happens after we
remove it. Because of non-redundancy, we know that neither Vx nor Vy
can equal Vx \ Vy. Thus VTx � (Vx \ Vy) and VTy � (Vx \ Vy) must both
be non empty. Thus removing (x; y) splits G into parts. But because of
non-redundancy jVx \ Vyj = 1, and hence in G we have removed only one
vertex. But a cycle cannot split by removing just one vertex. Thus we have
a contradiction.

Exercise: Show that every graph of treewidth k must have a vertex of degree
at most k.
Exercise: Every graph of n vertices and treewidth k must have a tree de-
composition of width k and at most n nodes.

3



2 Computing Treewidth

This is NP-complete.

3 MIS

We wish to �nd a MIS for a weighted graph G with weights w having tree
decomposition (T; f) of width k. We present an algorithm which has a divide-
and-conquer 
avour (and it may also be viewed as dynamic programming),
and it is also brute force in certain parts. The general strategy works not
only for MIS, but for many other problems.

The basic idea is to �nd an MIS (or whatever else we want to �nd)
independently for di�erent regions of the graph, and somehow stitch together
the di�erent solutions. For simplicity, suppose our graph is divided into two
subgraphs G1; G2, which overlap in the set of boundary vertices B such that
the edges in the graph are either entirely within G1, or entirely within G2.
Suppose we solve our problem (say MIS) separately on G1 and on G2. In
general, the solutions, say S1; S2 will not agree on the boundary nodes B
because a certain node in B may be included in S1 but excluded in S2. If we
somehow knew what values SB the optimal solution S takes on B, then we
can ask for an MIS for G1; G2 which is consistent with SB. This is the gist
of the approach, though two points must be noted:

1. On G1; G2 we are no longer solving the original problem, but a bound-
ary constrained problem in which the part SB of the solution on B
is �xed before hand. A boundary constrained MIS problem is really
an MIS problem for a smaller graph; however in general (say for the
node disjoint path problem or the graph colouring problem), the con-
strained problem can be quite di�erent. However, usually it is not
much worse than the original problem. Note also that the solution to
the constrained problems is not obtained directly but recursively.

2. We dont really know SB. So we consider all possible nB ways in which
the solution S could appear on the boundary, and solve boundary con-
strained problems for each such choice. We then stitch together the
solutions for each choice SB, and return that stitched solution that has
the best objective value (the weight of the MIS, or whatever we are
optimizing). Typically nB will be exponential in the size of B, and

4



so we will solve that many boundary constrained problems. However,
if the graph has low treewidth, then the size of the boundary will be
much smaller than the size of the graph. Thus this approach will take
time exponential in the size of the boundary, as opposed to the naive
approach which will require time exponential in the size of G.

Before we develop this idea further, we need an observation about the
structure implied in the tree decomposition of G. Let r be any node of T
which we designate as root. For any other node u of T let T (u) denote the
subtree under u. Let Hu denote the graph induced by vertices VT (u). The
vertices Vu contain the boundary vertices of Hu in the following sense.

Lemma 5 No vertex in VT (u) � Vu has an edge in G to nodes outside VT (u).

Proof: Similar to the proof of Lemma 2.

For each independent (in G) subset c of the boundary vertices Vu, we will
�nd an MIS of Hu containing exactly the set c from Vu. Such an MIS will be
denoted as Sc

u, and its weight, Ac
u. It will be seen that these can be computed

by a recursive algorithm, and maxcfAc
rg will give us the weight of the MIS

for G.
The basis of the recursion is easy: when u a leaf, then VT (u) = Vu, and so

Ac
u for each independent set c � Vu is just wc. Since jVuj � k + 1, all such

values, for any u can be computed in time1 ~O(2k+1).
The combine step is based on the following lemma. In what follows,

we will use addition to mean set union, and products to mean intersection.
Note that the condition \S contains exactly the set c from a set X" is simply
expressed as SX = c.

Lemma 6 Let u be a node in T , and u1; : : : ; ud its children. Let S be an

MIS for Hu such that SVu = c. Then S = c +
P

i Si where Si is an MIS for

Hui such that SiVui = ci for some set ci such that ciVu = Vuic.

Before we prove the lemma, note that the lemma assures us that Sc
u indeed

can be built from some Sci
ui
. It does not tell us precisely which ci, but we can

simply try out all choices.

1We use ~O(f) to denote O(fg) where g may be any polynomial factor.

5



Proof: The basic idea is to \project" S onto VT (ui). For this �rst note that
VT (u) = Vu +

P
i VT (ui). Noting that S � VT (u), we multiply the above by S

and get
S = SVT (u) = SVu +

X
i

SVT (ui) = c+
X
i

Si

where we de�ne Si = SVT (ui). Noting that VT (ui) = Vui + VT (ui) � Vui , and
also that Si � VT (ui), we have

Si = SiVT (ui) = SiVui + Si(VT (ui) � Vui)

We now de�ne SiVui = ci. The point to note is that S has a �xed part c in
the region Vu, and so this must a�ect ci as well. Thus

Vuci = VuSiVui = VuSVT (ui)Vui = VuSVui = cVui

where VT (ui)Vui = Vui because Vui � VT (ui).
Finally, suppose Si is not a MIS for Hui satisfying SiVui = ci. Suppose

instead there exists an MIS S 0

i of Hui such that S 0

iVui = ci and weight wS0

i
>

wSi . As for Si we know that

S 0

i = S 0

iVui + S 0

i(VT (ui)� Vui)

But SiVui = ci = S 0

iVui . Thus Si; S
0

i di�er only in which elements they pick
out of VT (ui)� Vui . By Lemma 5 there is no edge from VT (ui)� Vui to any
vertex outside of Hui . Thus S

0 = S � Si+ S 0

i will also be an independent set
for Hu satisfying S 0Vu = c, and will have higher weight than S. This cannot
happen and hence S 0

i must not exist.

Thus we have shown that Si = Sci
ui
for some ci which satisfy ciVu = Vuic.

We can try out all possible choices of ci and pick the Sci
ui
of maximum weight.

Notice that we need only consider ci that are independent and satisfying
ciVu = Vuic. Since ci contains only k + 1 vertices, there are at most 2k+1

choices to consider. Letting Ai denote the weight of Si, we have

Ai = max
ci
fAci

ui
jciVu = Vuic; ci is independentg

Thus determining Ai takes time ~O(2k+1). If we write S = c +
P

i Si as
a disjoint union, it will be useful for �nding its weight. Di�erent Si are
mutually disjoint, so it su�ces to write S = c+

P
i Si � cSi. But

cSi = cci + cSi(VT (ui) � Vui) = cci + cSi(VT (ui) � Vui) = SVuSi(VT (ui) � Vui

6



Now ui is between u any vertex in T (ui)� fuig, and so vertices common to
Vu and VT (ui) � Vui must also be present in Vui , i.e VuVT (ui) = VuiVu. But
then we have cSi = cci. Thus we get S = c+

P
i Si� cci, with cci � Si. Thus

we can write
Ac
u = wc +

X
i

Ai � wcci

The time to �nd Ac
u for a single c is ~O(d2k+1) = ~O(2k+1). Because there

are at most 2w+1 choices for c, the total time is ~O(4k+1). Evaluating this
for every node will produce a factor of n or so, which will be ignored in the
~O notation.2 This total time should be compared to the ~O(2n) time for the
brute force method.

4 Chordal Graphs

A graph is said to be a chordal graph if it has maximum number of edges
for a given tree decomposition (T; f). In other words, f(u), f(v) intersect if
and only if (u; v) is an edge.
Examples: Trees, complete graphs.
Non-examples: Cycle on 4 or more vertices. A simple way to show that
this is not chordal is to show that it does not have a perfect elimination
ordering, as discussed below.

Chordal graphs have a so called \perfect elimination ordering". To un-
derstand this, let us consider the elimination problem.

Many engineering problems are solved using the so called �nite element
method. We have some physical object, say a beam, or a plate that is
being heated. The goal is to �nd the stresses or the temperatures as the
object is stimulated by a load or by placing heating elements nearby. It
is customary to consider the value of the physical quantity (temperature,
stress) at some �nite number of points strategically located in the object.
Based on the physics of the problem, for each point, an equation is formed
which relates the magnitude of the quantity at point i with magnitudes of
points geometrically close by (determined suitably). The equations are linear,
and may be considered to be Ax = b where xi is the unknown value of the
magnitude of the quantity at point i. The system may be solved by Gaussian
elimination, and for numerical considerations, it is best to eliminate unknown

2There will not be separate n; d factors, but simply a single factor for the number of
edges in H, and this must be at most n assuming H is non-redundant.

7



xi using the ith equation.3 At the start of the elimination process the matrix
A is symmetric, and sparse. Thus to minimize work when solving it using
Gaussian elimination, it is desirable to maintain sparsity, or minimize �ll-in,
i.e. non-zero elements introduced into the matrix during the elimination.

The non-zero elements in A de�ne a graph: there is an edge (i; j) if
aij 6= 0. While eliminating unknown xi we make akj become non-zero if
aki; aij 6= 0. In other words we introduce �ll-in at aij if edge (i; j) was not
originally present but edges (i; j); (i; k) were present. After eliminating vertex
i we will in general have the complete graph at all its neighbours, and all the
edges might correspond to �ll-in.

Consider now what happens if G is chordal. Assume that we have a non-
redundant tree-decomposition (T; f) of it. Consider any leaf u, we know Vu
must contain some v that does not appear in any other vertex of T . So we
choose to eliminate v from G. This causes a clique to be placed between
all its neighbours; however, the neighbours were already mutually connected
because they are present in Vu and this is a chordal graph! Thus we have
only modi�ed elements in the matrix which were already non-zero, and have
thus introduced no �ll-in.

The new graph has the same tree decomposition, except for removing the
leaf u. But the maximality property holds for other vertices of T , and hence
the new graph is also chordal. So we get a non-redundant representation for
it and repeat the process. So in the entire elimination process no �ll-in is
introduced.

Lemma 7 A graph is chordal if and only if it has a perfect elimination

ordering.

Proof: We have proved the only if direction above. The if direction is an
exercise.

5 Separability

An �-separator for an n vertex graph is a subset S of vertices such that after
removal of S each connected component contains at most �n vertices.

3Because we expect aii to be large, this strategy ensures that there is no over
ow during
elimination, or in general reduces loss of precision.

8



The choice � = 2=3 is a very common choice.
Suppose s is a function s : N ! N . An n vertex graph is said to be s-

separable, if either n = 1 or G has 2/3 separator of size s(n), and subgraphs
of G are also s-separable.

Theorem 1 A graph of treewidth k is k + 1-separable, i.e. s(n) = k is a

constant function.

Proof: First consider special case k = 1, i.e. G is a tree. Here we can in
fact �nd a single vertex separator using the algorithm below. Say G has been
rooted, and Separate is called with the root.

Separate(r){

If no child of r has subtrees of size at least 2n/3

return r.

Else,

s = child of r with largest subtree underneath it

among all children.

return separate(s)

}

Separate is to be called with the precondition P (r): the subtree under
r has size at least 2n=3. The precondition is true on the �rst call.

So we must prove correctness ensuring the precondition.
Suppose in a certain execution no subtree of size at least 2n=3 is found.

Because of the precondition, the subtrees together have size at least 2n=3.
Hence the component of the tree containing the parent of r can have size at
most n=3. Thus removal of r will indeed leave all components of size at most
2n=3 as needed.

Suppose a subtree of size 2n=3 is found. Then we recurse on that. But
this guarantees the precondition.

Finally, the program must terminate because the size of the subtree on
which Separate is called keeps decreasing, and it cannot decrease below
2n=3.

For general k, a simple idea is to remove the vertices Vr rather than r.
Then we recurse on the child u such VT (u)�Vr has the largest size. It su�ces
to remove k+1 vertices, the maximum number of vertices in any node r. 4

4Consider the chordal graph whose tree decomposition is a 4 leaf star, in which the root

9



Theorem 2 A k separable graph of n nodes, degree d, has bisection width

O(dk log n:)

Proof: The proof is constructive. We will apply separation and put resulting
pieces into a bin of capacity n=2 till the bin becomes exactly full. We will
then show that not many edges go from the vertices in the bin to those
outside.

At any non terminal step of the algorithm we will have accumulated
some pieces (subgraphs resulting from the separation) in the bin, and also
a set of separator nodes outside the bin. We will also have determined that
some pieces must de�nitely not to be put into the bin, and we will have one
subgraph G which contains more vertices than the un�lled bin capacity. The
subgraphs in the bin will have edges only to the separator nodes. We next
separate G and break it a separator set S and several into pieces. We will
try to put each piece into the bin in turn. Either all pieces �t, in which case
we put in as many nodes from S as needed to �ll the bin. Or, we might �nd
a piece which cannot �t. Then we recurse on that piece.

At the end we will have some subgraphs inside the bin, and some separator
nodes as well. Each subgraph can have edges only to separator vertices,
inside or outside the bin. Thus, to separate the vertices in the bin from those
outside, we might at most have to remove all the edges to all the separator
nodes. But in each separation step, the size of the graph on which we recurse
drops to at most 2/3 the original size. Thus there can be at most log3=2 n
iterations, and hence k + 1 times that many separator vertices. Thus the
total number of edges is O(dk log n).

The above theorem can be used to bound the treewidth of a graph. For
example, for the n node hypercube has bisection width n=2, and degree log n.
Supposing the hypercube is s separable and has treewidth TW (n) we know
that s(n) � TW (n) + 1. Thus from the above theorem we know that the
bisection width n=2 = O((log n)s(n) log n) = O((log n)TW (n) log n). Or in
other words, TW (n) = 
(n= log2 n).

Can we match this? Somewhat. We can �nd a tree embedding of width
O(n=

p
logN) as follows. Do a BFS of the hypercube Qr where r = log n

from any node. There are
�
r
i

�
nodes in level i. The decomposition tree is

contains the vertices fa; b; c; dg, and the leaves respectively contain fa; b; c; 1g, fb; c; d; 2g,
fc; d; a; 3g and fd; a; b; 4g. This has treewidth 3, but no 3-separator.

10



simply the path Pr+1, with nodes 0; : : : ; r. We set Vi to contain all vertices
in level i; i� 1 of the BFS tree, for i = 1 to r. Thus the edge (i� 1; i) is the
subtree for vertices in level i � 1, whereas vertices in level r have node r of
Pr+1 as the subtree. Since edges in the BFS tree only go only from level i to
level i+ 1 we have the overlap between subtrees as desired.

The maximum number of nodes placed in any tree node is
�
r
i

�
+
�

r
i+1

�
. Bi-

nomial coe�cients peak in the middle, and hence this quantity is O(
�

r
r=2

�
) =

O(2r=
p
r) = O(n=

p
log n).

The last connection...

Theorem 3 If a n node graph is k separable, then it has treewidth at most

O(k log n).

We need the notion of a separator tree for the graph. This is a tree in
which the root holds the separator of the entire graph. The subtrees at the
root are the separator trees for the subgraphs resulting from the separation.
The leaves hold single vertices which do not get included in any separator.
The tree has height at most log3=2 n because at each stage the size of the
subgraphs reduces to at most 2/3 the original.
Proof: We construct a decomposition (T; f) as follows. We choose T to
be the same as the separator tree S. The subtree for a vertex is simply the
subtree beneath where it appears in S. Each vertex in any node of S can
have edges to only separator vertices contained in the path from that node
to the root of S. Thus the intersection property is satis�ed for (T; f). Each
node u of T receives subtrees from all vertices in nodes in the path from u
to the root in S. The path length is O(log n) and the number of vertices in
any node of S at most k + 1.

5.1 Planar Separator Theorem

Planar graph: that which can be drawn on the plane without crossings.
Thm: A planar graph has O(

p
n) separator.

Proof: Classical proof later. Today, a non standard proof.
Koebe's theorem: Every planar graph G=(V,E) can be drawn in the plane

such that each vertex u is placed at the center of a circle Cu, The circles are
non-overlapping but may touch, circles touch i� corresponding vertices are
connected by an edge in G.

11



Works also on a sphere!
Centerpoint theorem: Let P be a collection of points in 3 dimensions.

There exists a point c such that every plane through c partitions P such that
at most 1/4 of the points are on each side.

Wont prove this either!
Circles can be found such that center of the sphere is a centerpoint of the

vertices.
Given such a drawing, consider a random plane throug the center. Clearly

it partitions the point set 1/4-3/4 by de�nition. It turns out that the expected
number of circles intersected by the plane is O(

p
n). So such a plane must

exist.
Consider a circle of radius r on the sphere of unit radius. What is the

probability that a random plane touches it? The random plane may be chosen
by picking a north pole at random, and taking its equator. Where should
the north pole be so as to touch the circle? Within a band r of the equator
de�ned by the circle center. So probability = band area/sphere surface area
= cr. The expected number of intersections is thus

P
i cri. But we know

that areas of the circle must add up to at most 4�, thus
P

i r
2
i = O(1). So we

have to maximise the sum of ris subject to the sum squares being a constant.
When does this happen?

When all ri are equal. Hence ri = 1=
p
n. Thus the expected number of

intersections, O(
P

i ri) = O(n=
p
n) = O(

p
n).

Exercises

1. Show that any tree can be split into disconnected forests T1; T2 with at
most 2/3 the number of nodes as the original by removing one node.

2. Show that by removing O(log n) nodes an n node tree can be split into
forests each with 1/2 the nodes.

3. Show that a graph with treewidth k and degree 3 can has bisection
width O(k log n).

4. Suppose G contains the complete graph on r vertices, which may be
considered to be numbered f1; : : : ; rg. Show that the treedecomposi-
tion of r must contain a node u such that Vu � f1; : : : ; rg.

12



5. Show that a every cycle of length 4 or more in a chordal graph must
contain a chord, i.e. an edge connecting to non-adjacent vertices in the
cycle. Hint: suppose there exists a cycle without such an edge { argue
that no vertex in the cycle can be before the others in an elimination
ordering.

6. Let G be a graph with tree decomposition (T; f). Suppose a; b; c are
vertices in G such that (a; b); (b; c); (c; a) are edges in G. Show that
f(a); f(b); f(c) must have at least common vertex t of T .

13


