Foundations of Parallel Computation

Abhiram Ranade

In preparation.
Contents

1 Introduction

1.1 Parallel Computer Organization .. 7
1.1.1 Network Model (Fine-grained) ... 9
1.2 Coarse grained models ... 9
1.3 Parallel Algorithm Design .. 10
1.3.1 Matrix Multiplication .. 11
1.3.2 Prefix computation ... 13
1.3.3 Selection ... 15

2 Model (fine-grained)

2.1 Model ... 20
2.2 Input Output protocols ... 20
2.3 Goals of parallel algorithm design 21
2.3.1 Fast but inefficient computation 22
2.4 Lower bound arguments .. 22
2.4.1 Speedup based bounds .. 22
2.4.2 Diameter Bound ... 22
2.4.3 Bisection Width Bound .. 23
2.5 Exercises ... 24

3 More on prefix

3.1 Recognition of regular languages 25

4 Simulation

4.0.1 Simulating large trees on small trees 28
4.0.2 Prefix Computation .. 29
4.0.3 Simulation among different topologies 29

5 Sorting on Arrays

5.1 Odd-even Transposition Sort .. 31
5.2 Zero-One Lemma ... 31
5.3 The Delay Sequence Argument ... 32
5.4 Analysis of Odd-even Transposition Sort 33
5.5 Exercises ... 34
18.5 Evaluating Expression Trees .. 99

19 Convex Hull in two dimensions .. 101
19.1 Preliminaries .. 101
19.2 Uniprocessor Algorithm .. 101
19.3 N processor, log$^2 N$ time algorithm 103
19.4 Brent’s scheduling principle ... 103
19.5 $N/\log N$ processor, log$^2 N$ time algorithm 104
19.6 A Tree algorithm ... 104
19.7 Butterfly Network ... 105
19.8 Other networks .. 106
19.9 Exercises ... 106

20 VLSI Layouts .. 107
20.1 Layout Model .. 107
 20.1.1 Comments .. 108
 20.1.2 Other costs .. 109
20.2 Layouts of some important networks 109
 20.2.1 Divide and conquer layouts .. 109
20.3 Area Lower bounds .. 110
20.4 Lower bounds on max wire length 110

21 VLSI Lower bounds ... 112
21.1 Model ... 112
21.2 Lower bounds on chip area .. 113
 21.2.1 Cyclic Shift Lower bound ... 113
 21.2.2 Generalizations of the cyclic shift problem 114
 21.2.3 Further generalization .. 115
 21.2.4 Integer Multiplication ... 115
21.3 Summary of Area Bounds ... 116
21.4 AT bounds ... 116
21.5 AT^2 Bounds .. 116
21.6 Cyclic Shift .. 117
 21.6.1 Summary .. 118
21.7 Matrix multiplication .. 118
 21.7.1 Proof Outline: ... 118
21.8 Proof .. 119
21.9 Sorting .. 120
21.10 Concluding remarks .. 120
 21.10.1 An interesting observation ... 121
21.11 Exercises ... 121

22 Area Universal Networks .. 122
22.1 Fat Tree ... 122
22.2 Simulating other networks on $F_h(h)$ 123
 22.2.1 Simulating wires of G .. 123
 22.2.2 Congestion .. 123
Chapter 1

Introduction

A parallel computer is a network of processors built for the purpose of cooperatively solving large computational problems as fast as possible. Several such computers have been built, and have been used to solve problems much faster than would take a single processor. The current fastest parallel computer (based on a collection of benchmarks, see http://www.top500.org/lists/2015/06/) is the Tianhe-2 system from China, containing 3,120,000 processors. This computer is capable of performing 55×10^{15} floating point computations per second (often abbreviated as 55 Petaflops). Parallel computers are routinely used in many applications such as weather prediction, engineering design and simulation, financial computing, computational biology, and others. In most such applications, the computational speed of the parallel computers makes them indispensible.

How are these parallel computers built? How do you design algorithms for them? What are the limitations to parallel computing? This course considers these questions at a foundational level. The course does not consider any specific parallel computer or any specific language for programming parallel computers. Instead, abstract models of parallel computers are defined, and algorithm design questions are considered on these models. We also consider the relationships between different abstract models and the question of how to simulate one model on other model (this is similar to the notion of portability of programs).

The focus of the course is theoretical, and the prerequisites are an undergraduate course in Design and Analysis of Algorithms, as well as good background in Probability theory. Probability is very important in the course because randomization plays a central role in designing algorithms for parallel computers.

In this lecture we discuss the general organization of a parallel computer, the basic programming model, and some algorithm design examples. We will briefly comment on issues such as parallel programming languages, but as mentioned earlier, this is beyond the scope of the course.

1.1 Parallel Computer Organization

A parallel computer is built by suitably connecting together processors, memory, and *switches*. A switch is simply hardware dedicated for handling messages to be sent among the processors.

The manner in which these components are put together in a parallel computer affects the ease and speed with which different applications can be made to run on it. This relationship is explored in the following sections. The organization of the parallel computer also affects the cost. Thus the main concern in parallel computer design is to select an organization/network which keeps cost low while enabling several applications to run efficiently.
Figure 1. Parallel Computer Organizations
Figure 1 schematically shows the organization of several parallel computers that have been built over the years. Circles in the Figure represent a node which might consist of a processor, some memory, and a switch. The memory in a node is commonly referred to as the local memory of the processor in the node. Nodes are connected together by communication links, represented by lines in the Figure. One or several nodes in the parallel computer are typically connected to a host, which is a standard sequential computer, e.g. a PC. Users control the parallel computer through the host.

Figure 1.1 shows an organization called a two dimensional array, i.e. the nodes can be thought of as placed at integer cartesian coordinates in the plane, with neighboring nodes connected together by a communication link. This is a very popular organization, because of its simplicity, and as we will see, because of the ease of implementing certain algorithms on it. It has been used in several parallel computers, including The Paragon parallel computer built by Intel Corporation. Higher dimensional arrays are also used. For example, the Cray T3E parallel computer as well as the IBM Blue Gene computer are interconnected as a 3 dimensional array of processors illustrated in Figure 1.2.

Figure 1.3 shows the binary tree organization. This has been used in some parallel computers. Our real reason for including it, however, is that it is useful in demonstrating some important parallel algorithms. These algorithms can execute on other organization/networks too: we simply use only a suitable spanning tree in network and ignore the other communication links.

Besides two and three dimensional arrays and binary trees, several other organizations have been used for interconnecting parallel computers. We will study some of them later on in the course.

1.1.1 Network Model (Fine-grained)

At a fundamental level, a parallel computer is programmed by specifying the program that each processor in it must execute. In most common parallel computer organizations, a processor can only access its local memory. The program provided to each processor may perform operations on data stored in its local memory, much as in a conventional single processor computer. But in addition, processors in a parallel computer can also send and receive messages from processors to which they are connected by communication links. So for example, each processor in Figure 1.1 can send messages to upto 4 processors, the ones in Figure 1.2 to upto 6 processors, and in Figure 1.3 to upto 3 processors.

For estimating the execution time of the programs, it is customary to assume that the programs can perform elementary computational operations (e.g. addition or multiplication) on data stored in local memory in a single step. For much of the course we will assume that it takes a single time step to send one word of data to a neighboring processor. This is a reasonable assumption for physically small parallel computers. It is also a good assumption for understanding parallel algorithm design. Further, many of the algorithms we design will be useful even if communication is more expensive.

1.2 Coarse grained models

The programming model described above can be considered to be "fine-grained" because communication could happen inexpensively in every step.

For most large scale computers, a coarse grained model is more suitable. In this, each processor can perform unit computation on local data at each step as in the fine grained model. However, the
communication, even with neighbouring processors, takes longer. To send \(w \) words, it takes time \(L + wg \), where \(L, g \) are parameters, typically both greater than 1. In this model unit communication could be as much as \(L + g \) times as expensive as unit computation. Thus this model discourages communication. Note further that if you wish to send 2 words, it is faster to send them in a single communication step which takes \(L + 2g \) steps, rather than in two steps which will together take \(2(L + g) \) steps. Thus this model encourages grouping communication together. Hence the name coarse grained.

There is another feature of large parallel computers that deserves mention: these computers typically have processors specialized for computation and for communication. The communication processors facilitate the communication between the computational processors. They may serve like a telephone system or a postal system connecting the computational processors, i.e. allow one computational processor to send data to any processor in the network rather than only those to which it is directly connected. Note that the communication processors are not expected to be programmed by the users; the users only decide what runs on the computational processors.

We will also consider how such communication processors and the network connecting them ought to be designed.

1.3 Parallel Algorithm Design

In order to solve an application problem on a parallel computer we must divide up the computation required among the available processors, and provide the programs that run on the processors. How to divide up the computation, and how to manage the communication among the processors falls under the subject of parallel algorithm design. Parallel algorithm design is a vast field. Over the years, parallel algorithms have been designed for almost every conceivable computational problem. Some of these algorithms are simple, some laborious, some very clever. I will provide a very brief introduction to the field using three examples: matrix multiplication, a problem called prefix computation, and the problem of selecting the \(r \)th largest from a given set of \(n \) numbers. These three examples will in no way cover the variety of techniques used for parallel algorithm design, but I hope that they will illustrate some of the basic issues. All these problems will be considered in the network model.

One strategy for designing a parallel algorithm is to start by understanding how the problem might have been solved on a conventional single processor computer. Often this might reveal that certain operations could potentially be performed in parallel on different processors. The next step is to decide which processor will perform which operations, where input data will be read and how the data structures of the program will be stored among the different processors. For high performance, it is desirable that (1) no processor should be assigned too much work—else that processor will lag behind the others and delay completion (2) The processors should not have to waste time waiting for data to arrive from other processors: whatever data is needed by them should ideally be available in their local memories, or arrive from nearby processors. The algorithms we present for matrix multiplication and for selection essentially use this strategy: the operations in well known sequential algorithms are mapped to the different processors in the parallel computer.

Sometimes, however, the natural algorithm used on single processors does not have any operations that can be performed in parallel. In this case we need to think afresh. This is needed in the algorithm for prefix computation.

When designing parallel algorithms, an important question to be considered is which model
1.3.1 Matrix Multiplication

I shall consider square matrices for simplicity. The sequential program for this problem is shown in Figure 2.

The program is very simple: it is based directly on the definition of matrix multiplication \(c_{ij} = \sum_k a_{ik} b_{kj} \). More sophisticated algorithms are known for matrix multiplication, but this is the most commonly used algorithm. It is clear from the code that all the \(n^2 \) elements of \(C \) can be calculated in parallel! This idea is used in the parallel program given in Figure 3.

An \(n \times n \) two dimensional array of processors is used, with processors numbered as shown. All processors execute the program shown in the figure. Notice that each basic iteration takes 3 steps (after data is ready on the communication links), I will call this a macrostep.

Matrix \(B \) is fed from the top, with processor 1\(i \) receiving column \(i \) of the matrix, one element per macrostep, starting at macrostep \(i \). Processor 11 thus starts receiving its column in macrostep 1, processor 12 in macrostep 2, and so on. This is suggested in Figure 3 by staggering the columns of \(B \). Likewise, matrix \(A \) is fed from the left, with processor \(j \)1 receiving row \(j \), one element per macrostep, starting at macrostep \(j \). The code for each processor is exceedingly simple. Each processor maintains a local variable \(z \), which it initializes to zero. Then the following operations are repeated \(n \) times. Each processor waits until data is available on the left and top links. The numbers read on the two links are multiplied and the product added to the local variable \(z \). Finally, the data read on the left link is sent out on the right link, and the data on the top sent to the bottom link.

I will show that processor \(ij \) in the array will compute element \(C(i, j) \) in its local variable \(z \).
To see this notice that every element \(A(i, k) \) gets sent to every processor in row \(i \) of the array. In fact, observe that processor \(ij \) receives elements \(A(i, k) \) on its left link at macrostep \(i + j + k - 1 \). Similarly processor \(ij \) also receives \(B(k, j) \) on its top link at the same step! Processor \(ij \) multiplies...
CODE FOR EVERY PROCESSOR

local x,y,z,i

z = 0
do i = 1 to n
 Receive data on top and left links
 x = data read from left link
 y = data read from top link
 z = z + x*y
 Transmit x on right link, y on bottom link
endo
these elements, and notice that the resulting product $A(i,k) \cdot B(k,j)$ is accumulated in its local variable z. Thus it may be seen that by macrostep $i + j + n - 1$, processor ij has completely calculated $C(i,j)$. Thus all processors finish computation by macrostep $3n - 1$ (the last processor to finish is nn). At the end every processor ij holds element $C(i,j)$.

The total time taken is $3n - 1$ macrosteps (or $9n - 3$ steps), which is substantially smaller than the approximately cn^3 steps required on a sequential computer (c is a constant that will depend upon machine characteristics). The parallel algorithm is thus faster by a factor proportional to n^2 than the sequential version. Notice that since we only have n^2 processors, the best we can expect is a speedup of n^2 over the sequential. Thus the algorithm has achieved the best time to within constant factors.

At this point, quite possibly the readers are saying to themselves, “This is all very fine, but what if the input data was stored in the processors themselves, e.g. could we design a matrix multiplication algorithm if $A(i,j)$ and $B(i,j)$ were stored in processor ij initially and not read from the outside?” It turns out that it is possible to design fast algorithms for this initial data distribution (and several other natural distributions) but the algorithm gets a bit more complicated.

1.3.2 Prefix computation

The input to the prefix problem is an n element vector x. The output is an n element vector y where we require that $y(i) = x(1) + x(2) + \cdots + x(i)$. This problem is named prefix computation because we compute all prefixes of the expression $x(1) + x(2) + x(3) + \cdots + x(n)$. It turns out that prefix computation problems arise in the design of parallel algorithms for sorting, pattern matching and others, and also in the design of arithmetic and logic units (ALUs).

On a uniprocessor, the prefix computation problem can be solved very easily, in linear time, using the code fragment shown in Figure 4. Unfortunately, this procedure is inherently sequential. The value $y(i)$ computed in iteration i depends upon the value $y(i-1)$ computed in the $i-1$th iteration. Thus, if we are to base any algorithm on this procedure, we could not compute elements of y in parallel. This is a case where we need to think afresh.

Thinking afresh helps. Surprisingly enough, we can develop a very fast parallel algorithm to compute prefixes. This algorithm called the parallel prefix algorithm, is presented in Figure 5. It runs on a complete binary tree of processors with n leaves, i.e. $2n - 1$ processors overall.
procedure for leaf processors
local val, pval

read val
send val to parent

Receive data from parent
pval = data received from parent
write val+pval

end

procedure for internal nodes
local lval, rval, pval

Receive data from left and right children
lval = data received from left child
rval = data received from right child
send lval+rval to parent

Receive data from parent
pval = data received from parent
send pval to left child
send pval+lval to right child

end

procedure for root
local lval, rval

Receive data from left and right children
lval = data received from left child
rval = data received from right child

send 0 to left child
send lval to right child

end

Figure 5. Parallel Prefix Computation
The code to be executed by the processors is shown in Figure 5. The code is different for the root, the leaves, and the internal nodes. As will be seen, initially all processors except the leaf processors execute receive statements which implicitly cause them to wait for data to arrive from their children. The leaf processors read in data, with the value of $x(i)$ fed to leaf i from the left. The leaf processors then send this value to their parents. After this the leaves execute a receive statement, which implicitly causes them to wait until data becomes available from their parents.

For each internal node, the data eventually arrives from both children. These values are added up and then sent to its own parent. After this the processors wait for data to be available from their parent.

The root waits for data to arrive from its children, and after this happens, sends the value 0 to the left child, and the value received from its left child to its right child. It does not use the value sent by the right child.

The data sent by the root enables its children to proceed further. These children in turn execute the subsequent steps of their code and send data to their own children and so on. Eventually, the leaves also receive data from their parents, the values received are added to the values read earlier and output.

Effectively, the algorithm runs in two phases: in the “up” phases all processors except the root send values towards their parent. In the “down” phase all processors except the root receive values from their parent. Figure 6 shows an example of the algorithm in execution. As input we have used $x(i) = i^2$. The top picture shows values read at the leaves and also the values communicated to parents by each processor. The bottom picture shows the values sent to children, and the values output. Figure 6 verifies the correctness of the algorithm for an example, but it is not hard to do so in general. The two main insights are (a) Each internal node sends to its parent the sum of the values read in its descendant leaves, and (b) Each non root node receives from its parent the sum of the values read to the left of its descendant leaves. Both these observations can be proved by induction.

In the “up” phase, the leaves are active only in the first step, their parents only at step 2, their parents in turn only at step 3, and so on. The root receives values from its children in step $\log n$, and sends data back to them at step $(\log n) + 1$. This effectively initiates the “down” phase. The down phase mirrors the up phase in that activity is triggered by the root, and the leaves are the last to get activated. Thus the entire algorithm finishes in $2\log n$ steps. Compare this to the sequential algorithm which took about n steps to complete. $2\log n$ is much smaller!\(^1\)

In conclusion even though at first glance it seemed that prefix computation was inherently sequential, it was possible to invent a very fast parallel algorithm.

1.3.3 Selection

On a single processor, selection can be done in $O(n)$ time using deterministic as well as randomized algorithms. The deterministic algorithm is rather complex, and the randomized rather simple. Here we will build upon the latter.

The basic idea of the randomized algorithm is: a randomly choose one of the numbers in the input as a splitter. Compare all numbers to the splitter and partition them into 3 sets: those which are larger than the splitter, those which are equal to the splitter, and those that are smaller than

\[^1\text{We can devise an algorithm that runs in essentially the same time using only } p = n/\log n \text{ processors. This algorithm is more complex than the one described, but it is optimal in the sense that it is faster than the sequential version by about a factor } p.\]
Figure 6. Execution Example for Parallel Prefix
the splitter. The problem of finding the rth smallest from the original set can now be reduced to
that of finding the r'th smallest from one of the sets, which set to consider and the value of r' can
both be determined by finding the sizes of the three sets.

We next describe the parallel algorithm. For even modestly complicated algorithms, we will
typically not write the code for each processor as in the previous examples, but instead present a
global picture. This includes the description of what values will be computed (even intermediate
values) on which processors, followed by a description of how those values will be computed. The
latter will often be specified as a series of global operations, e.g. “copy the value $x[1]$ in processor
1 to $x[i]$ in all processors i”, or “generate array y by performing the prefix operation over the
array x”. Of course, this way of describing the algorithm is only a convenience, it is expected that
from such a description it should be possible to construct the program for each processor.

The parallel algorithm will also run on a tree of processors with n leaves. The input, $a[1..n]$
will initially be stored such that $a[i]$ is on the ith leaf, and r on the root. The algorithm is as
follows.

1. Construct an array $active[1..n]$ stored with $active[i]$ on processor i initialized to 1. This
is used for keeping track of which elements are active in the problem being solved currently.

2. Next, we pick a a random active element as a splitter as follows:

 (a) First the $rank$ array is constructed, again with $rank[i]$ on leaf i. This simply numbers all
active elements from 1 to however many active elements there are. This is simply done by
running a prefix over the array $active[1..n]$, i.e. $rank[i] = active[1] + active[2] + \ldots + active[i]$. Note that $rank$ is also defined for non active elements, but this
is ignored.

 (b) Note now that $rank[n]$ will equal the number of active elements. This value is also
obtained at the root as a part of the prefix computation. Call this value N_{active}. The
root processor picks a random integer $srank$ between 1 and N_{active}. This integer is
sent to its children, and so on to all the leaves. Each leaf i checks the value it receives,
and if $active[i]=1$ and $rank[i]=srank$ then it sets $splitter=a[i]$. Notice that only
one leaf i will set $splitter=a[i]$. This leaf sends the value back to the root.

3. Next we compute the number of elements which are smaller than the leaf. For this the root
sends $splitter$ to all leaves. Each leaf i sets $val[i]=1$ if $a[i]<splitter$ and $active[i]=1$. The
sum of all $val[i]$ can be obtained at the root using the up phase of the prefix algorithm.
This is retained at the root as the value $small$. Likewise the root computes the values $equal$
and $large$.

4. Now the root compares r to $small$ and $small+equal$. If $small < r \leq small+equal$, then we
know that the rth smallest must equal the splitter, and so the root returns $splitter$ as the
result, and the execution halts. If $r \leq small$, then we know that the set of active keys with
value smaller than the splitter must participate in the next iteration. So if $r \leq small$, then
the root sends a message “small” to all leaves. On receiving this, each leaf i sets $active[i]=0$
if $a[i] \geq splitter$. Similarly if $r>large$ then the root sends the message “large” to all
leaves. On receiving such a message each leaf i sets $active[i]=0$ if $a[i] \leq splitter$.

5. The algorithm resumes from step 2.
The algorithm contains several operations such as “root sends message ... to all leaves”, clearly this can be done in $\log n$ steps. Also we know from the preceding section that prefix can be done in $O(\log n)$ steps. Thus a single iteration of the loop can be done in $O(\log n)$ steps. So all that remains to be determined is the number of iterations for which the loop executes.

Let us define an iteration to be good if the number of active elements reduces by a third, the number of active elements after the execution is at most two-third of the number of active elements at the beginning. Then an elementary probability computation shows that every iteration is good with probability at least $1/3$. So now in order for the algorithm to not terminate in $k \log n$ iterations, it must be the case that at least $(k-1) \log n$ iterations must not be good. Since whether an iteration is good or not is independent of the other iterations, the probability of this is at most $(\frac{k \log n}{(k-1) \log n})(\frac{2n}{3})^{(k-1) \log n}$. Using $\binom{n}{r} = \binom{n}{n-r} \leq \left(\frac{ne}{r}\right)^r$ we get the probability to be at most $(\frac{k e}{2/3})^{(k-1) \log n}$. For a constant but large enough k, this can be made $O(1/n)$. Thus with high probability the algorithm will terminate in $O(\log n)$ iterations, or $O(\log^2 n)$ time.\(^2\)

Exercises

1. Consider the following single processor algorithm. The algorithm happens to be solving the knapsack problem - but you don't need to use this information.

 \[
 \text{KP}(C,n,V[1..n],W[1..n])\{
 \]

 Array $P[1..C, 1..n+1]$

 for $i=1..C$

 \[
 P[i,n+1] = 0
 \]

 for $j=n..1$ // j is stepping backwards

 for $i=1..C$

 If $W[j] > i$

 \[
 P[i,j] = P[i,j+1]
 \]

 else if $W[j] = i$

 \[
 P[i,j] = \max(P[i,j+1], V[j])
 \]

 else

 \[
 P[i,j] = \max(P[i,j+1], V[j] + P[i-W[j],j+1])
 \]

 return $P[C,1]$

\]
2. Consider the problem of selecting the rth smallest from a sequence of n numbers. Suppose a splitter s is picked at random, and the problem is reduced to finding r' th smallest from some m elements as discussed. Show that the probability that m is at most $2n/3$ is at least $1/3$.

3. Consider the problem of selecting the rth smallest key from a set of n keys, stored n/p per leaf on a p leaf complete binary tree. Show that by choosing p properly and by modifying the algorithm of the text a little, you can get a speedup of $p/\log \log p$.

4. A 2d torus interconnection is as follows. There are n^2 processors labelled (i, j) for $0 \leq i, j < n$. Processor (i, j) has connections to processors $(i \pm 1 \mod n, j)$ and $(i, j \pm 1 \mod n)$. Suppose processor (i, j) holds elements A_{ij}, B_{ij} of $n \times n$ matrices A, B. Show how their product can be obtained in $O(n)$ time.
Chapter 2

Model (fine-grained)

We define our basic model, and what it means to solve a problem, i.e. how input and output are expected. We conclude by mentioning the overall goal of algorithm design.

2.1 Model

We will use a simple execution model for parallel computers, which is described below. Real parallel machines are more complicated, but our simple model will allow us to better study the fundamental issues. Later we will see how to handle the complications of real machines.

Our model is synchronous: we will assume that there is a single global clock and all processors operate in synchrony with this global clock. Each processor may execute any standard instruction in a single step, or it may send messages on any of the links connected to it. Each processor has its own program stored locally, and can compute using data read from its local memory and data received from neighbouring processors. Messages require one step to traverse the link; so that a message sent on a link in the current step will be received at the other end only in the next step. Each message will consist of a small (fixed) number of words. Unless specified otherwise, we will assume that words are $O(\log p)$ bits long, where p is the number of processors in the network; this is so that one word should be able to hold at least the address of every node.

We will assume that communication statements are blocking, i.e. a processor executing a receive statement waits until the corresponding processor issues a send. Not only that, we will assume that sends also block, i.e. the sending processor must also wait until the receiving processor reads the data being sent.

Each processor in the network may in principle have a distinct program. This generality is usually not utilized; in most of the algorithms we will consider each processor will have the same program running on it. Some algorithms such as prefix described earlier have a few distinct programs, a special program for the root, another one for the internal nodes, and one for the leaves.

2.2 Input Output protocols

In order for a parallel computer to solve an application problem, it is necessary to define protocols by which it can input/output data from/to the external world. Our purpose is to allow the algorithm designer all reasonable flexibility in deciding how the data is to be input/output. Yet, there are some natural restrictions that must be imposed on this flexibility, these we state now.
First, every bit of input data must be read exactly once. The intuition behind this restriction is that if the algorithm needs a particular input value in several processors, it should be the responsibility of the algorithm to make copies of the value and supply it to the different processors; the user should not be expected to make copies and supply them to more than one processor, or even supply it to the same processor more than once.

The second condition is that the input/output should be when and where oblivious. What this means is as follows. Suppose that the algorithm reads bits \(x_0, x_1, \ldots, x_{n-1} \) and generates bits \(y_0, y_1, \ldots, y_{m-1} \), then the time at which \(x_i \) is to be read should be fixed beforehand, independent of the values that these bits may take (when oblivious input). Further, the processor which will read \(x_i \) should also be fixed by the algorithm designer before the execution begins, independent of the values assigned to the inputs (where oblivious input). Similarly, we define when and where oblivious output requirements, i.e. the place and time where each output bit will be generated must be fixed in advance.

The spirit of these requirements is to simplify the task of the user; the user is required to present each input bit at prespecified time and processor, and is guaranteed to receive each output bit at prespecified times and processors.

Notice however, that the above restrictions leave substantial freedom for the algorithm designer. We have said nothing about how the inputs ought to be read; the designer may choose to read all inputs at the same processor, or at different processors, in a pattern that he might deem convenient for future computations. Likewise the output may be generated at convenient times and positions.

As an example, in the prefix algorithm described in the previous lecture, we had the input initially read at the leaves of the tree. This was done only because it was convenient; for other problems, we might well choose to read inputs in all processors in the network if that is convenient. This can be done provided each bit is read just once, and in an oblivious manner as described above.

We may also consider algorithms in which the input is assume to be present in the memories of the processors, and the output is also placed in the memories at the end. In such cases, we assume that there is just one copy of the input. Also, where the input resides initially and where the output is to reside at the end must be declared by the programmer at the beginning of the execution.

2.3 Goals of parallel algorithm design

The main goal of parallel algorithm design is simple: devise algorithms using the time taken is as small as possible. An important definition here is that of speedup:

\[
\text{speedup} = \frac{\text{Best Sequential Time}}{\text{Parallel Time}}
\]

We would like to minimize the parallel time, or maximize the speedup. A fundamental fact about speedup is that it is limited to being \(O(p) \), where \(p \) is the number of processors in the parallel computer. This is because any single step of a \(p \) processor parallel computer can be simulated in \(O(p) \) steps on a single processor. Thus, given any \(p \) processor algorithm that runs in time \(O(T) \), we can simulate it on a single processor and always get a single processor algorithm taking time \(O(pT) \). Thus we get:

\[
\text{speedup} = \frac{\text{Best Sequential Time}}{\text{Parallel Time}} = \frac{O(pT)}{T} = O(p)
\]
So the main goal of parallel computing could be stated as: devise algorithms that get speedup linear in the number of processors.

The above discussion implicitly assumes that the problem size is fixed (or that we should work to get linear speedup on all problem sizes). This is not really required: we expect computers to be used to solve large problems, and parallel computers to be used for solving even larger problems. Thus, we will be quite happy if our algorithms give speedup for large problem sizes, and on large number of processors. It is in fact customary to allow both the number of processors as well as the problem size to become very large, with the problem size increasing faster.

2.3.1 Fast but inefficient computation

For practical purposes, it is important to have high speedup (preferably linear). However, theoretically, it is interesting to focus on reducing time without worrying about the number of processors used. How small can we make the time (say for adding \(n \) numbers, or multiplying \(n \times n \) matrices, or say computing a maximum matching in a graph with \(n \) nodes)? From a theoretical standpoint, it is interesting to ask this question without insisting on linear speedup. Since for most problems \(\log n \) is a lower bound, this question has often been formalized as “Does there exist a \(O(\log^k n) \) time parallel algorithm for a given problem of input size \(n \) using at most \(n^c \) processors where \(c, k \) are fixed constants? Some interesting theoretical results have been obtained for this.

2.4 Lower bound arguments

We discuss some elementary lower bound ideas on the time required by a parallel computer.

2.4.1 Speedup based bounds

The speedup definition might be written as:

\[
\text{Parallel Time} = \frac{\text{Best Sequential Time}}{\text{speedup}} = \frac{\text{Best Sequential Time}}{O(p)} = \Omega \left(\frac{\text{Best sequential Time}}{p} \right)
\]

i.e. the parallel time can at best be a \(p \) factor smaller if \(p \) processors are used. For example, in sorting, since the best sequential algorithm is \(O(N \log N) \), we can at best get an algorithm of \(O(\log N) \) using \(O(N) \) processors. This is a rather obvious bound on the time required by a parallel algorithm, but worth keeping in mind.

2.4.2 Diameter Bound

Diameter of a graph: For any pair of vertices \(u,v \) in graph \(G \), let \(d(u,v) = \text{Length of shortest path from } u \text{ to } v \). Then

\[
\text{Diameter}(G) = \max_{u,v \in G} d(u,v)
\]

Why is this significant? Because this implies that if data from both these sources is required for some computation, then the time taken for that computation is at least half the diameter.
Theorem 1 Suppose in an N processor network G, with diameter D, where each processor reads some x_i. Then the time T taken to compute $x_1 + x_2 \ldots x_N \geq D/2$.

Proof: The sum depends on all x_i's. Suppose the sum is computed at some processor p – this must be fixed because of the obliviousness requirement. If for some u we have $d(p,u) > T$, then it means that the value output by p is the same no matter what is read in u. This cannot be possible, and hence $T \geq d(p,u)$ for all $u \in G$. Now, suppose diameter $D = d(x,y)$. Thus $D = d(x,y) \leq d(x,P) + d(P,y) \leq 2T$.

Notice that this also applies to prefix computation, since the last value in the prefix is simply the sum of all elements.

For a sequential array, we find that the diameter is $N - 1$. So, any algorithm using a sequential array of N processors will run in time $T \geq (N - 1)/2$. So the time will have to be $\Omega(N)$ with such a network, if each processor reads at least one value.\(^1\)

2.4.3 Bisection Width Bound

Given a graph $G = (V,E)$, where $|V| = n$, its bisection width is the minimum number of edges required to separate it into subgraphs G_1 and G_2, each having at most $[n/2]$ vertices. The resulting subgraphs are said to constitute the optimal bisection. As an example, the bisection width of a complete binary tree on n nodes is 1. To see this, note that at least one edge needs to be removed to disconnect the tree. For a complete binary tree one edge removal also suffices: we can remove one of the edges incident at the root.

To see the relevance of bisection width bounds, we consider the problem of sorting. As input we are given a sequence of keys $x = x_1, \ldots, x_n$. The goal is to compute a sequence $y = y_1, \ldots, y_n$, with the property that $y_1 \leq y_2 \leq \ldots \leq y_n$ such that y is a permutation of x. First, consider the problem of sorting on n node complete binary trees.

We will informally argue that sorting cannot be performed easily on trees. For this we will show that given any algorithm A there exists a problem instance such that A will need a long time to sort on that instance.

We will assume for simplicity that each node of the tree reads 1 input key, and outputs one key. We cannot of course dictate which input is read where, or which output generated where. This is left to the algorithm designer; however, we may assume that input and output are oblivious.

Consider any fixed sorting algorithm A. Because input-output is oblivious, we know that the processor where each y_i is generated (or x_i read) is fixed independent of the input instance. Consider the left subtree of the root. It has $m = n - 1/2$ processors, with each processor reading and generating one key. Let $y_{i1}, y_{i2}, \ldots, y_{im}$ be the outputs generated in the left subtree. The right subtree likewise has m processors and reads in m inputs. Let $x_{j1}, x_{j2}, \ldots, x_{jm}$ be the inputs read in the right subtree.

No consider a problem instance in which x_{j1} is set to be the i_1th largest in the sequence x, x_{j2} is set to be the i_2th largest, and so on. Clearly, to correctly sort this sequence, all the keys read in the right subtree will have to be moved to the left subtree. But all of these keys must pass through

\(^1\)Suppose, however, that we use only p processors out of the N. Now we can apply the theorem to the subgraph induced by the processors which read in values. Then the speedup bound is N/p, and the diameter bound is $(p - 1)/2$. So, $T \geq (N/p, (p - 1)/2)$. This can be minimized by taking $p = O(\sqrt{N})$, so that both lower bounds give us $O(\sqrt{N})$. This bound can be easily matched: read \sqrt{N} values on each of the first \sqrt{N} processors. Processors compute the sum locally in $O(\sqrt{N})$ time, and then add the values together also in the same amount of extra time.
the root! Thus, just to pass through the root the time will be $O(m) = O(n)$. Sequential algorithms sort in time $O(n \log n)$, thus the speedup is at most $O(\log n)$ using n processors.\footnote{Can we somehow compress the keys as they pass through the bisection? If the keys are long enough, then we cannot, as we will see later in the course. For short keys, however, this compression is possible, as seen in the exercises.}

In general, the time for sorting is $\Omega(n/B)$, where B is the bisection width of the network.

Notice that the diameter is also a lower bound for sorting: it is possible that a key must be moved between points in the network that define the diameter. However, sometimes the diameter bound will be worse than bisection, as is the case for trees.

2.5 Exercises

1. We argued informally that the root of the tree constituted a bottleneck for sorting. This argument assumed that all the keys could have to pass unchanged through. An interesting question is, can we somehow “compress” the information about the keys on the right rather than explicitly send each key? It turns out that this is possible if the keys are short.

 (a) Show how to sort n keys each 1 bit long in time $O(\log n)$ on an n leaf complete binary tree.

 (b) Extend the previous idea and show how to sort n numbers, each $\log \log n$ bits long, in time $O(\log n)$.

 Assume in each case that the processors can operate on $\log n$ bit numbers in a single step, and also that $\log n$ bit numbers can be sent across any link in a single step.

2. Consider the problem of sorting N keys on a p processor complete binary tree. Suppose the input consists of one key per processor, with no restriction on where the output can appear. Give lower bounds based on speedup, diameter, and bisection width.
Chapter 3

More on prefix

First, note that the prefix operation is a generalization of the operations of broadcasting and accumulation defined as follows.

Suppose one processor in a parallel computer has a certain value which needs to be sent to all others. This operation is called a broadcast operation, and was used in the preceding lecture in the selection algorithm. In an accumulate operation, every processor has a value, which must be combined together using a single operator (e.g. sum) into a single value. We also saw examples of this in the previous lecture. We also saw the prefix operation over an associative operator “+”. Indeed, by defining \(a + b = a \) we get a broadcast operation, and the last element of the prefixes is in fact the accumulation of the inputs. Thus the prefix is a generalization of broadcasting as well as accumulation. We also noted that these operations can be implemented well on trees.

The prefix operation turns out to be very powerful. When \(x[1..n] \) is a bit vector and + represents exclusive or, the prefix can be used in carry look ahead adders. Another possibility is to consider + to be matrix multiplication, with each element of \(x \) being a matrix. This turns out to be useful in solving linear recurrences, as will be seen in an exercise.

The algorithm can also be generalized so that it works on any rooted tree, not just complete binary trees. All that is necessary is that the leaves be numbered left to right. It is easy to show that if the degree of the tree is \(d \) and height \(h \), then the algorithm will run in time \(O(dh) \).

3.1 Recognition of regular languages

A language is said to be regular if it is accepted by some deterministic finite automaton. The problem of recognizing regular languages commonly arises in lexical analysis of programming languages, and we will present a parallel algorithm for this so called tokenization problem.

Given a text string, the goal of tokenization is to return a sequence of tokens that constitute the string. For example, given a string

\[
\text{if } x \leq n \text{ then print("x = ", x);}
\]

the goal of the tokenization process is to break it up into tokens as follows, with the white space eliminated (tokens shown underlined):

\[
\text{if } x \leq n \text{ then } \text{print } \{ \text{"x=", } x \};
\]
This can be done by having a suitable finite automaton scan the string. This automaton would scan the text one character at a time, and make state transitions based on the character read. Whether or not the currently read character is the starting point of a token would be indicated by the state that the automaton immediately transits to. The goal of the tokenization process, then, is to compute the state of the finite automaton as it passes over every character in the input string. At first glance, this process appears to be inherently sequential; apparently, the state after scanning the ith character could not conceivably be computed without scanning the first i characters sequentially. As it turns out, the state can be computed very fast using prefix computation if the finite automaton has few states.

More formally, we are given as input a text string $x = x_1, x_2, \ldots, x_n$ of n characters over some alphabet Σ, and a finite automaton with state set S, with $|S| = K$, with one state I designated the start state. The goal is to compute the state s_i that the automaton is in after reading the string x_1, \ldots, x_i having started in the start state. The finite automaton has a state transition function $f : \Sigma \times S \to S$ which given the current state s and the character x read, says what the next state is $(f(x, s))$.

For the parallel algorithm we need some notation. With each text string α we will associate a function $f_\alpha : S \to S$. In particular, if the automaton upon reading string α after starting in state s_j moves to state s_k (after $|\alpha|$ transitions), then we will define $f_\alpha(s_j) = s_k$. Our problem is then simply stated: we need to compute $f_{x_1, \ldots, x_i}(I)$ for all i. Note that for $x \in \Sigma$, we have $f_x(s) = f(x, s)$.

Our parallel algorithm first computes functions $g_i = f_{x_1, \ldots, x_i}$; then applies these functions to I so as to obtain $g_i(I)$, which is what we want. Given a suitable representation of g_i, the second step can be done in a constant amount of time in parallel. The first step, computation of g_i is accomplished fast as follows.

Let α and β be two strings, and let α, β denote the concatenation of the strings. For any α, β, define $f_\alpha \circ f_\beta = f_{\alpha, \beta}$. Alternatively, for any $s \in S$, $(f_\alpha \circ f_\beta)(s) = f_{\alpha, \beta}(s) = f_\beta(f_\alpha(s))$. Thus we have:

$$g_i = f_1 \circ f_2 \circ \cdots \circ f_i$$

But this is just prefix computation over the operator \circ. It is easily verified that \circ is associative, so we can use the algorithm of the previous lecture. All we need now is a good data structure for representing function f_α.

We can easily represent f_α as a vector $V_\alpha[1..K]$. We assume that the states are numbered 1 through K, and $V_\alpha[i]$ denotes the state reached from state i after reading string α. Given vectors V_α and V_β we may construct the vector $V_{\alpha, \beta}$ using the following observation:

$$V_{\alpha, \beta}[i] = V_\beta[V_\alpha[i]]$$

Clearly, the construction takes time $O(K)$ using 1 processor. Thus in time $O(K)$, we can implement the \circ operator.

Thus using the algorithm of the previous lecture, we can compute g_i for all i in time $O(K \log n)$ using $n/\log n$ processors connected in a tree. The sequential time is $O(n)$, so that the speedup is $O(n/K)$. For any fixed language, K is a constant, so that the time really is $O(\log n)$.

Notice that the above algorithm will be useful in practice whenever K is small.

Exercises

1. Show how to evaluate an nth degree polynomial on an n leaf tree of processors.
2. Show how to compute recurrences using parallel prefix. In particular, show how to compute z_1, \ldots, z_n in $O(\log n)$ time where

$$z_i = a_iz_{i-1} + b_iz_{i-2}$$

for $2 \leq i \leq n$ given a_2, \ldots, a_n, b_2, \ldots, b_n, z_0 and z_1 as inputs. (Hint: Express as a suitable prefix problem where the operator is matrix multiplication.)

3. Let $C[1..n]$ denote a string of characters, some of which are the backspace character. We will say that character $C[i]$ is a survivor if it is not erased by the action of any backspace character (if the string were to be typed on a keyboard). Show how to compute an array $S[1..n]$ of bits where $S[i]$ indicates if $C[i]$ is a survivor. Note that you can only transmit a single character on any edge in any step.

4. Consider a one dimensional hill specified by a vector $h[1..n]$, where $h[i]$ is the height of the hill at distance i from the origin. Give an algorithm for computing an array $v[1..n]$ where $v[i] = 1$ iff the point $(i, h(i))$ is visible from the origin, and 0 otherwise.

5. Suppose in a complete binary tree, the ith node from left (inorder numbering) reads in $x[i]$. Show how prefix can be calculated. Develop this into a scheme for computing prefix on any tree with one value read at each node. Assume the tree is rooted anyhow and then read the values as per the inorder numbering. Using this show how a $\sqrt{p} \times \sqrt{p}$ array can be used to find prefix of p numbers in $O(\sqrt{p})$ time. How large a problem do you need to solve on the above array to get linear speedup? Say which processor will read which inputs.
Chapter 4
Simulation

A large body of research in interconnection networks is devoted to understanding the relationships
between different networks. The central question is as follows: once an algorithm has been designed
for one network, can it be automatically ported to another network? This can be done by simulating
the execution of the former on the another. In this lecture we will illustrate this idea by simulating
a large tree of processors using a small tree of processors. More sophisticated examples will follow
subsequently.

4.0.1 Simulating large trees on small trees

The motivation for this is the prefix problem. Suppose that we wish to compute a prefix of the
vector $x[1..n]$ using a complete binary tree which has just p leaves. One possibility is to design the
algorithm from scratch, a better alternative is to simulate the previous algorithm on the p leaf tree.
We now describe how this simulation is done; obviously, the simulation is valid for executing other
algorithms and not just prefix.

The idea of the simulation is as follows. We label tree levels starting at the root, which is
numbered 0. For $i = 0..\log p$, we assign each processor in level i of the p leaf tree (host) to do the
work of the corresponding level i processor of the n leaf tree (guest). This leaves unassigned guest
processors in levels $1 + \log p..\log n$. Each such processor is assigned to the same host processor as
its ancestor in level $\log p$. With this mapping each host processor in levels $0..\log p - 1$ is assigned
a unique processor, while host processors in level $\log p$ are assigned a subtree from the host having
n/p leaves each.

Oblivious Simulation

It is now easy to see that any arbitrary computation that runs on the guest in time T can be run
on the host in time Tn/p. To see this first note that every host processor does the work of at
most $2(n/p) - 1$ processors (comprising the n/p leaf subtree). Thus every computation step of the
guest can be done in $O(n/p)$ steps of the host. Second, note that every pair of neighboring guest
processors are mapped to either the same host processor, or neighboring host processors. Thus, a
single communication of a guest processor can be simulated either using a single communication,
or a single memory to memory transfer (if the communicating processors were mapped to a single
host processor). In any case, the complete communication step of the guest can also be simulated
in time $O(n/p)$.
Notice that the simulation described above preserves efficiency. In particular, suppose that some algorithm ran on the host in time T and with efficiency ϵ. From this we know that the best sequential time would be $T(2n - 1)\epsilon$. The speedup of the simulated algorithm on the host is thus $(\text{best sequential time})/Tn/p = \epsilon p$. The efficiency of the simulated algorithm is thus also ϵ. In other words, if we initially started off with an efficient $O(n)$ processor algorithm, we will automatically end up with an efficient algorithm on $O(p)$ processors.

4.0.2 Prefix Computation

By the result of the previous algorithm, a p leaf tree would execute the prefix algorithm in time $O(n/p)(\log n) = O((n \log n)/p)$. The speedup now is $O(n/\log n)$, identical to what we had in section 1.3.2. But this is to be expected from the discussion in the preceding subsection.

As it turns out, our simulation actually does better. To see this, our analysis must exploit the fact that during prefix computation, all the guest processors work only for $O(1)$ steps although the entire algorithm takes time $O(\log n)$ on the guest. Consider the up pass. Consider every leaf of the host processor. This does the work of $O(n/p)$ processors in the guest. But since every processor does only $O(1)$ steps of computation during the uppass, the entire uppass for the subtree can be performed on the host in time $O(n/p)$. The portion of the uppass for the higher levels will require time $O(\log p)$ as before of course. The total time is thus $O(n/p + \log p)$. The same is the case for the down pass. Notice that if we dont exploit the fact that all guest processors are active only for a short time, the time taken, using the analysis of the previous paragraph would be $O((n/p) \log n)$.

Suppose we choose $p = n/\log n$. The time required, using the refined estimate is $O(n/p + \log n) = O(\log n)$. Thus we have been able to achieve the same time as in section 1.3.2 but using only $n/\log n$ processors! The speedup now is $O(n/\log n) = O(p)$, i.e. linear!

4.0.3 Simulation among different topologies

In the previous examples, we simulated trees on smaller trees. But it is possible to define simulation among networks with different topologies as well. We present a simple example; more complex examples will follow later in the course.

Suppose we have an algorithm that runs in T steps on an n node ring. Can we adapt it somehow to run on an n node linear array of processors?

Suppose the array processors are numbered $0..p - 1$, with processor i being connected to processors $i - 1$ and $i + 1$, for $1 \leq i \leq p - 2$. A ring of processors is similar, but in addition has a connection between processor $p - 1$ and 0 as well.

Note first that having processor i of the array do the work of processor i of the ring is inefficient. Suppose that in each step ring processor $p - 1$ communicates with processor 0. In the array this communication cannot be achieved in fewer than $p - 1$ steps, because the corresponding processors are $p - 1$ links apart. Thus the T step ring algorithm will run in time $O(T(p - 1))$ on the array.

Consider, now, the following mapping assuming p is even. For $i < p/2$, ring processor i of the array do the work of processor i of the ring is inefficient. Suppose that in each step ring processor $p - 1$ communicates with processor 0. In the array this communication cannot be achieved in fewer than $p - 1$ steps, because the corresponding processors are $p - 1$ links apart. Thus the T step ring algorithm will run in time $O(T(p - 1))$ on the array.

Consider, now, the following mapping assuming p is even. For $i < p/2$, ring processor i is simulated by array processor $2i$. For $i \geq p/2$, ring processor i is simulated by array processor $2p - 2i - 1$. Notice that with this embedding, every pair of neighboring ring processors are mapped either to neighboring array processors, or to processors that are at most a distance 2 in the array. Thus, a communication step in the ring can be simulated by 2 steps of the array. Every computation step of the ring can be simulated in a single array step, of course. In summary, any T step ring
program will take at most $2T$ steps on the array. Further note that if the ring program had efficiency ϵ, the array program will have efficiency at least $\epsilon/2$.
Chapter 5

Sorting on Arrays

We consider a simple algorithm, called Odd-Even Transposition Sort for sorting on one dimensional arrays. For proving the correctness of this we present the Zero-One Lemma, as well as the delay sequence argument, which are both used later as well.

We then present sorting algorithms for two dimensional arrays.

5.1 Odd-even Transposition Sort

Suppose you have a linear array of \(N\) processors, each holding a single key. The processors are numbered 1 to \(N\) left to right, and it is required to arrange the keys so that the key held in processor \(i\) is no larger than the key in processor \(i + 1\).

Algorithm[6] The basic step is called a comparison-exchange in which a pair of adjacent processors \(i\) and \(i + 1\) send their keys to each other. Each processor compares the received key with the key it held originally, and then processor \(i\) retains the smaller and processor \(i + 1\) the larger. On every odd step of the algorithm in parallel for all \(i\), processors \(2i - 1\) and \(2i\) perform a comparison exchange step. On every even step, in parallel for all \(i\), processors \(2i\) and \(2i + 1\) perform a comparison exchange step. Clearly, the smallest key will reach processor 1 in \(N\) steps, following which the second smallest will take at most \(N - 1\) and so on. The question is, will sorting finish faster than the \(O(N^2)\) time suggested by this naive analysis. It turns out that \(N\) steps suffice, but the proof requires two tools.

5.2 Zero-One Lemma

This lemma applies to the class of Oblivious Comparison Exchange algorithms defined as follows. The algorithm takes as input an array \(A[1..N]\), and sorts it in a non-decreasing order. It consists of a sequence of operations \(OCE(u_1, v_1), OCE(u_2, v_2), \ldots\), where all \(u_i\) and \(v_i\) are fixed before the start of the execution, and the effect of \(OCE(u_i, v_i)\) is to exchange \(A[u_i]\) and \(A[v_i]\) if \(A[u_i] > A[v_i]\).

Lemma 1 (Zero-One Sorting Lemma) If an oblivious comparison exchange sorting algorithm correctly sorts all input arrays consisting solely of 0s and 1s, then it correctly sorts all input arrays with arbitrary values.

Proof: Suppose the given OCE algorithm is given as input the sequence \(x_1, \ldots, x_N\) and it produces as output the sequence \(y_1, \ldots, y_N\) in which there is an error, i.e. \(y_k > y_{k+1}\) for some \(k\). We will
show that the algorithm will also make an error when presented with the sequence \(f(x_1), \ldots, f(x_N) \), where

\[
f(x) = \begin{cases}
0 & \text{if } x < y_k \\
1 & \text{otherwise}
\end{cases}
\]

To see this let \(x_{it}, X_{it} \) respectively denote the value in \(A[i] \) after step \(t \) for the two executions considered, i.e first with input \(x_1, \ldots, x_n \) and second with input \(f(x_1), \ldots, f(x_n) \). We will show by induction on \(t \) that \(X_{it} = f(x_{it}) \); this is clearly true for the base case \(t = 0 \). Suppose this holds at \(t \). Let the instruction in step \(t + 1 \) be \(OCE(i, j) \). If \(x_{it} \leq x_{jt} \) then there will be no exchange in the first execution. The key point is that \(f \) is monotonic. We thus have that \(f(x_{it}) \leq f(x_{jt}) \), and hence by the induction hypothesis we also must have \(X_{it} \leq X_{jt} \). Thus there will be no exchange in the second execution also. If on the other hand, \(x_{it} > x_{jt} \), then there is an exchange in the first execution. In the second iteration, we must have either (a) \(X_{it} > X_{jt} \), in which case there is an exchange in the second iteration as well, or (b) \(X_{it} = X_{jt} \) in which case there really is no exchange, but we might as well pretend that there is an exchange in the second execution.

From the above analysis we can conclude that sequence output in the second execution will be \(f(y_1), \ldots, f(y_n) \). But we know that \(f(y_k) = 1 \) and \(f(y_{k+1}) = 0 \). Thus we have shown that the algorithm does not correctly sort the 0-1 sequence \(f(x_1), \ldots, f(x_N) \). But since the algorithm was supposed to sort all 0-1 sequences correctly it follows that it could not be making a mistake for any sequence \(x_1, \ldots, x_n \).

Remark: Sorting a general sequence is equivalent to ensuring for all \(i \) that the smallest \(i \) elements appear before the others. But in order to get the top \(i \) to appear first, we don’t need to distinguish between them, i.e. we only need to distinguish between the top \(i \) and the rest. An algorithm that correctly sorts all arbitrary sequence of \(i \) 0s and rest 1s will in fact ensure that the smallest \(i \) elements in a general sequence will go to the front.

5.3 The Delay Sequence Argument

While investigating a phenomenon, a natural strategy is to look for its immediate cause. For example, the immediate cause for a student failing an examination might be discovered to be that he did not study. While this by itself is not enlightening, we could persevere and ask why did he not study, to which the answer might be that he had to work at a job. Thus an enquiry into successive immediate causes could lead to a good explanation of the phenomenon. Of course, this strategy may not always work. In the proverbial case of the last straw breaking the camel’s back, detailed enquiry into why the last straw was put on the camel (it might have flown in with the wind) may not lead to the right explanation of why the camel’s back broke. Nevertheless, this strategy is often useful in real life, and as it turns out, also in the analysis of parallel/distributed algorithms. In this context it has been called the **Delay Sequence Argument**.

The delay sequence argument may be thought of as a general technique for analyzing a process defined by *events* which depend upon one another. The process may be stochastic; either because it employs randomized algorithms or because its definition includes random input. The technique works by examining execution traces of the process\(^1\). An execution trace is simply a record of the

\(^1\)Sort of a *post mortem*.
computational events that happened during execution, including associated random aspects. The idea is to characterize traces in which execution times are high, and find a critical path of events which are responsible for the time being high. If the process is stochastic, the next step is to show that long critical paths are unlikely – we will take this up later in the course.

The process we are concerned with is a computational problem defined by a directed acyclic graph. The nodes represent atomic operations and edges represent precedence constraints between the atomic operations. For example, in the sorting problem, an event might be the movement of a key across a certain edge in the network. Typically, the computational events are related, e.g. in order for a key to move out of a processor, it first has to get there (unless it was present there at the beginning of the execution). The parallel algorithm may be thought of as scheduling these events consistent with the precedence constraints.

An important notion is that of an Enabling Set of a (computational) event. Let \(T_0 \) denote a fixed integer which we will call the startup time for the computation. We will say \(Y \) is an enabling set for event \(x \) iff the occurrence of \(x \) at time \(t > T_0 \) in any execution trace guarantees the occurrence of some \(y \in Y \) at time \(t - 1 \) in that execution trace. We could of course declare all events to be in the enabling set of every event – this trivially satisfies our definition. However it is more interesting if we can find small enabling sets. This is done typically by asking “If \(x \) happened at \(t \), why didn’t it happen earlier? Which event \(y \) happening at time \(t - 1 \) finally enabled \(x \) to happen at \(t \)?” The enabling set of \(x \) consists of all such events \(y \).

A delay sequence is simply a sequence of events such that the \(i \)th event in the sequence belongs to the enabling set of the \(i + 1 \)th event of the sequence. A delay sequence is said to occur in an execution trace if all the events in the delay sequence occur in that trace. Delay sequences are interesting because of the following Lemma.

Lemma 2 Let \(T \) denote the execution time for a certain trace. Then a delay sequence

\[E = E_{T_0}, E_{T_0+1}, \ldots, E_T \]

occurs in that trace, with event \(E_t \) occurring at time \(t \).

Proof: Let \(E_T \) be any of the events happening at time \(T \). Let \(E_{T-1} \) be any of the events in the enabling set of \(E_T \) that is known to have happened at time \(T - 1 \). But we can continue in this manner until we reach \(E_{T_0} \).

The length of the delay sequence will typically be the same as the execution time of the trace, since typically \(T_0 = 1 \) as will be seen. Often, the process will have the property that long delay sequences cannot arise (as seen next) which will establish that the time taken must be small.

5.4 Analysis of Odd-even Transposition Sort

Theorem 2 Odd-even transposition sort on an \(N \) processor array completes in \(N \) steps.

The algorithm is clearly oblivious comparison exchange, and hence the Zero-one Lemma applies. We focus on the movement of the zeros during execution. For the purpose of the analysis, we will number the zeros in the input from left to right. Notice that during execution, zeros do not overtake each other, i.e. the \(i \)th zero from the left at the start of the execution continues to have exactly
i − 1 zeros to its left throughout execution: if the ith and i + 1th zero get compared during a comparison-exchange step, we assume that the ith is retained in the smaller numbered processor, and the i + 1th in the larger numbered processor.

Let (p, z) denote the event that the zth zero (from the left) arrives into processor p.

Lemma 3 The enabling set for (p, z) is \{(p + 1, z), (p − 1, z − 1)\}. The startup time \(T_0 = 2\).

Proof: Suppose (p, z) happened at time t. We ask why it did not happen earlier. Of course, if \(t \leq 2\) then this might be the first time step in which the zth zero was compared with a key to its left. Otherwise, the reason must be one of the following: (i) the zth zero reached processor \(p + 1\) only in step \(t − 1\), or (ii) the zth zero reached processor \(p + 1\) earlier, but could not move into processor \(p\) because \(z − 1\)th zero left processor \(p\) only in step \(t − 1\). In other words, one of the events \((p + 1, z)\) and \((p − 1, z − 1)\) must have happened at time \(t − 1\).

\((p + 1, z)\) and \((p − 1, z − 1)\) will respectively be said to cause transit delay and comparison delay for \((p, z)\).

Proof of Theorem 2: Suppose sorting finishes at some step T. A delay sequence \(E_{T_0}, \ldots, E_T\) with \(T_0 = 2\) must have occurred. We further know that \(E_t = (p_t, z_t)\) occurred at time t.

Just before the movement happened at step 2, we know that the \(z_2\)th zero, the \(z_2 + 1\)th zero and so on until the \(z_T\)th zero must all have been present in processors \(p_2 + 1\) through N. But this range of processors must be able to accommodate these \(1 + z_T − z_2\) zeros. Thus \(N − p_2 \geq 1 + z_T − z_2\). Let the number of comparison delays in the delay sequence be c. For every comparison delay, we have a new zero in the delay sequence, i.e. \(c = z_T − z_2\). Further, a transit delay of an event happens to its right, while a comparison delay to its left. Thus from \(p_T\) to \(p_2\) we have \(T − 2 − c\) steps to the right, and \(c\) steps to the left, i.e. \(p_2 − p_T = T − 2 − 2c\). Thus

\[T = p_2 − p_T + 2 + 2c = p_2 − p_T + 2 + 2z_T − 2z_2 \leq N − p_T + 1 + z_T − z_2\]

Noting that \(p_T = z_T\) and \(z_2 \geq 1\) the result follows.

5.5 Exercises

1. Suppose we are sorting on a linear array with one key per processor. Suppose we are given an input in which each key is at a distance at most d from its final position. Show that \(O(d)\) steps of the odd-even transposition sort will suffice.

 Note that the 0-1 Lemma does not mention any conditions about how much a key needs to travel. So you may wish to modify the statement of the Lemma a bit and prove the modified statement.

2. Prove that sorting on a linear array of n processors takes n steps without using the 0-1 Lemma, i.e. construct a delay sequence argument for general keys.
Chapter 6

Sorting in coarse grained models

Many high level models have been proposed for very large parallel computers which hide many
details from the user. Most such computers are "coarse grained", i.e. it is not advisable to perform
communication after every single computational operation, but instead, perform many computations
and then a round of communication in which a lot of data may be moved.

We consider a generic model (the literature has several such models, logp, BSP, are some).
A program consists of synchronous supersteps, which can be either computation supersteps, or
communication supersteps. In a computation superstep, each processor can execute many com-
putations, using its local memory. The time required to execute a computation superstep is the
maximum time needed by any processor. A communication step is more complicated. The time
taken by it is $L + gw$, where L and g are parameters, and w is the maximum number of words sent
or received by any single processor.

Note that this model is synchronous, i.e. all the computation and communication steps start at
the same time. Thus we do not need to worry about "did I receive all messages sent to me?". You
may wonder whether this synchronization would not have a time penalty. The parameter L is meant
to account for this partly. The parameter g is meant to account for the speed of communication.
We will explore later how the synchronization happens.

It is possible to simulated fine-grained sorting algorithms on coarse grained models; but it is
easier to design coarse grained algorithms from first principles. Of course, we will require a lot of
parallel slack.

6.1 Parallel sorting by regular sampling

In a way, sorting is really data movement: the smallest keys should move to the smallest numbered
processors, the next smallest to the next smallest numbered, and so on. So some data movement
is inevitable. Can we sort using just this one data movement for all keys? This is the motivation
behind the algorithm presented next.

This requires $n = \Omega(p^3)$ keys on p processors. The basic idea is to sample and then do something
like bucket sort. We have one bucket per processor, and thereby placing data into buckets is acheived
by a single communication. The algorithm is fairly natural.

1. Each processor sorts its keys locally. Let $k = n/p$. Keys ranked $k/p, 2k/p, \ldots, (p - 1)k/p$ are
selected as primary splitters.

2. All primary splitters from all processors are sent to processor 1.
3. Processor 1 sorts the $p(p - 1)$ primary splitters it received. After sorting let these be $x_1, \ldots, x_{p(p-1)}$. From these we select y_1, \ldots, y_{p-1}, where $y_i = x_{(2i-1)p/2}$ as secondary splitters.

4. The secondary splitters are sent to all processors.

5. Each processor partitions its keys into p parts, where the ith part contains keys larger than y_{i-1} (if $i > 0$) and no larger than y_i (if $i < p$). All the keys in the ith part are sent to processor i.

6. Each processor sorts the received keys.

In the end the keys are guaranteed to be in non-descending order on processors 0 through $p - 1$, however, each processor may not hold the same number of keys. So the algorithm is not output oblivious. But simple additional steps can be used to accomplish this if necessary.

The final key distribution is not too skewed, however. Each processor gets at most its fair share.

Lemma 4 At the end each processor will hold at most $2n/p$ keys.

Proof: We will bound the number of keys that are in processor i at the end. For this, we will lower bound the number of keys that are not in i. There are 3 cases.

1. $i = 1$: Processor 1 receives all keys smaller than $y_1 = x_{p/2}$. There are thus $p(p - 1) - p/2$ primary splitters larger than y_1. With each of these primary splitters we can associate k/p distinct keys which are larger than y_1. Thus there must be at least $(p^2 - 3p/2)k/p$ keys larger than y_1. Thus there are at most $n - (p^2 - 3p/2)k/p = 3pk/2 < 2n/p$ keys smaller than y_1, and hence in processor 1.

2. $i = p$: The argument is analogous.

3. $1 < i < p$: Processor i must receive keys greater than y_{i-1} and smaller than or equal to y_i. As before we count the complement. Since $y_{i-1} = x_{(2i-3)p/2}$, we find that there must be at least $((2i-3)p/2)k/p = ik - 3k/2$ keys smaller than y_{i-1}. Likewise, $y_i = x_{(2i-1)p/2}$, and hence there are $p(p - 1) - (2i - 1)p/2 = p^2 - pi - p/2$ primary splitters larger than y_i. With each one of these we can associate distinct k/p larger keys. In addition, we must count the $k/p - 1$ distinct keys we can associate with y_i. Thus there are at least $(p^2 - pi - p/2)k/p + k/p - 1 = pk - ik - k/2 + k/p - 1$ elements larger than those in processor i. Thus the number of elements in processor i must be at most

$$n - (ik - 3k/2) - (pk - ik - k/2 + k/p - 1) = 2k - k/p + 1 < 2k$$

We next estimate the time taken. Step 1 takes time $O(n/p \log n/p)$. Steps 2, 4 each take time $L + pg$. Step 3 takes time $O(p^2 \log p^2)$. In step 5 each processor sends n/p keys, and received at most $2n/p$. Thus the time for this is $L + 2gn/p$. The total time is thus

$$O\left(\frac{n}{p} \log \frac{n}{p} + p^2 \log p + L + g\left(\frac{n}{p} + p\right)\right)$$

This is $O\left(\frac{n \log n}{p}\right)$ if $n = \Omega(p^3)$, $g = O(\log n)$ and $L = O\left(\frac{n \log n}{p}\right)$.
6.2 Exercises

1. Suppose it is required that finally each processor hold exactly \(k = \frac{n}{p} \) keys. Show that this can be done using a single prefix operation, followed by a single step in which each processor \(i \) receives keys from processors \(i \pm 1 \) and keeps some of those.

2. Suppose the primary splitters are chosen by picking each key with probability \(q \) as a splitter. The rest of the algorithm remains the same. Show that \(q = \Theta(\log n) \) is sufficient to get linear speedup, and for this it is necessary to have \(n = \Omega(p \log^2 p) \), i.e. much smaller slack.
Chapter 7

Systolic Conversion

An important feature of designing parallel algorithms on arrays is arranging the precise times at which operations happen, and also the precise manner in which the input/output have to be staggered. We saw this for matrix multiplication.

The main reason for staggering the input was the lack of a broadcast facility. If we had a suitable broadcast facility, the matrix multiplication algorithm could be made to look much more obvious. As shown, we could simply broadcast row k of B and column k of A, and each processor (i,j) would simply accumulate the product $a_{ik}b_{kj}$ at step k, and the whole algorithm would finish in n steps. This algorithm is not only fast, but is substantially easier to understand.

Unfortunately, broadcasts are not allowed in our basic model. The reason is that sending data is much faster over point to point links than over broadcast channels, where the time is typically some (slowly growing) function of the number of receivers.

All is not lost, however. As it turns out, we can take the more obvious algorithm for matrix multiplication that uses broadcasts, and automatically transform it into the algorithm first presented. Thus, the automatic transformation, called systolic conversion allows us to specify algorithms using the broadcast operation and yet have our algorithm get linear speedup when run on a network that does not allow broadcast operations!

In fact using systolic conversion, we can do more than just broadcasting. To put very simply, during the process of designing the algorithm, we are allowed to include in our network special edges which have zero delay. Strange as this may seem, a signal sent on such edges arrives at the destination at the beginning of the same step in which it was sent, and the data received can in fact be used in the same cycle by the receiving processor!

Using the systolic conversion theorem we can take algorithms that need the special edges and from them generate algorithms that do not need zero delay. Of course, the special edges cannot be used too liberally– we discuss the precise restrictions in the next lecture. But for many problems, the ability to use zero delay edges during the process of algorithm design substantially simplifies the process of discovering the algorithm as well as specifying it.

Before describing systolic conversion, we present one motivating example.

7.1 Palindrome Recognition

Suppose we are given as input a string of characters x_1, x_2, \ldots, x_{2n}, where x_i is presented at step i. We are required to design a realtime palindrome recognizer, i.e. our parallel computer should
indicate by step $2j + 1$ for every j whether or not the string x_1, \ldots, x_{2j} is a palindrome (i.e. whether $x_1 = x_{2j}$ and $x_2 = x_{2j-1}$ and so on).

Shown is a linear array of n processors for solving this problem. It uses ordinary (delay 1) edges, as well as the special zero delay edges. The algorithm is extremely simple to state. In general, for after any step $2j$, the array holds the string x_1, \ldots, x_{2j} in a folded manner in the first j processors. Processor i holds x_i and x_{2j+1-i}; these are precisely two of the elements that need to be equal to check if x_{2j} is a palindrome. Using the 0 delay edges, processor j sends the result of its comparison to processor $j - 1$. Processor $j - 1$ receives it in the same step, “ands” it with the result of its own comparison and sends it to processor $j - 2$ and so on. As a result of this, processor 1 generates a value “true” if the string is a palindrome, and “false” otherwise, all in the very same step!!

The rest of the algorithm is easily guessed. In steps $2j + 1$, the inputs x_{2j}, \ldots, x_{j+1} are shifted one spot to the right. Input x_{2j+1} arrives into processor 1. The zero delay edges are not used in this step at all. In step $2j + 2$, elements $x_{2j+1}, \ldots, x_{j+2}$ moves one spot to the right and element x_{2j+2} arrives into processor 1. As described above, each processor compares the elements it has, and the zero delay edges are used to compute the conjunction of the comparison results. Thus at the end of step $2j + 2$, the array determines whether or not x_1, \ldots, x_{2j+2} is a palindrome.

Two points need to be made about this example. First, the zero delay edges seem to provide us with more power here than in the matrix multiplication example: they are actually allowing us to perform several “and” computations in a single step. The second point is that the algorithm above is very easy (trivial!) to understand. It is possible to design a palindrome recognition algorithm without using zero delays, but it is extremely complicated, the reader is encouraged to try this as an exercise.

7.2 Some terminology

A network is represented by a directed graph $G(V,E)$. Each vertex represents a processor with edges representing communication channels. Each edge is associated with a non-negative integer called its delay. Some vertex in the graph is designated the host. Only the host is assumed to communicate with the external world. During each step each processor does the following (1) wait until the values arriving on its input edges stabilize, (2) executes a single instruction using its internal state or the values on the input edges, and (3) possibly modify its internal state or write values onto the outgoing edges. The value written on an edge e at step t arrives into the processor into which e is directed at step $t + \text{delay}(e)$. Notice that if $\text{delay}(e) > 1$ then an edge effectively behaves like a shift register.

A network is semisystolic if there are no directed cycles with total delay of zero:

$$\forall C \in G, \sum_{e \in C} \text{delay}(e) > 0.$$

The requirement for a systolic network is that

$$\forall e \in E, \text{delay}(e) > 0.$$

The palindrome recognition network and the second matrix multiplication network presented in the last lecture were semisystolic; all other networks seen in this module were systolic.

We will say that a network S is equivalent to a network S' if the following hold: (1) they have the same graph; (2) corresponding nodes execute the same computations, though a node in one
network may lag the corresponding node in the other in time by a constant number of steps; (3) the
behavior seen at the host is identical.

7.3 The main theorem

Theorem 3 Given semisystolic network S we can transform it to an equivalent systolic network S'
iff for every directed cycle C in S' we have:

$$|C| \leq \sum_{e \in C} \text{delay}(e)$$

where $|C|$ denotes the length of the cycle C.

We shall transform S to S' by applying a sequence of basic retiming steps. If we have a network
that is semisystolic, but for which some cycle has a smaller total delay than its length, then we can
still apply the above theorem after slowing down the network (section 7.8).

7.4 Basic Retiming Step

A positive basic retiming step is applied to a vertex as follows. Consider a vertex with delays
i_1, i_2, \ldots on its incoming edges and o_1, o_2, \ldots on its outgoing edges. Suppose all the delays on the
outgoing edges are larger than one. Suppose we remove one delay from every output and add one
delay to the input. Suppose further that that the program for the vertex is made to execute one
step later than before i.e. it executes the same instructions, but each instruction is executed one
step later than before. Negative retiming steps are defined similarly.

It is clear that the behavior of the network does not change because of retiming. First the
values computed by the retimed vertex do not change—it does receive its inputs one step late but
its program is also delayed by one step. But although the vertex produces values late, the rest of
the graph cannot discover this since one delay has been removed from the outputs of the vertex, so
they arrive to other vertices at precisely the right times.

7.5 The Lag Function

We shall construct a function lag(u) for each node u that will denote the total number of delays that
are moved from outgoing edges of node u to the incoming edges during some sequence of retiming
operations. Note that lag(u) also denotes the number of timesteps the program of u is delayed.

Because of the retiming, the delay for an edge uv will increase by an amount lag(v), since that
many delays are moved in, and decrease by lag(u), since that many delays are moved out. Thus we
will have newdelay(uv) = delay(uv) + lag(v) − lag(u).

To prove the theorem we must show that

- newdelay(uv) > 0, $\forall (u, v) \in E$.
- lag(host) = 0, since the external behavior would change if we moved delays across the host.
- There exists a sequence of retiming steps such that the required number of delays can be
 moved across each vertex. Remember that we cannot let the delay for any edge go down
 below zero during the retiming process.
7.6 Construction of lags

Consider any path P from a vertex u to the host. After retiming, the total number of delays along the path must be greater than the length of the path. The total number of delays that are moved out of the path during retiming is $\text{lag}(u)$, since nothing is moved in through the host. Thus we must have

$$\left(\sum_{e \in P} \text{delay}(e) \right) - \text{lag}(u) \geq |P|$$

Or alternatively,

$$\text{lag}(u) \leq \sum_{e \in P} (\text{delay}(e) - 1)$$

We will define a new graph which we will call $G - 1$, which is same as G, except that each edge delay is reduced by 1. Think of this as the “surplus graph”; the delays in $G - 1$ indicate how many surplus registers the edge has for moving out. We will call the delay of an edge in $G - 1$ its surplus. Further, for any path P define surplus(P) to be the sum of the surpluses of its edges. The expression above simply says that $\text{lag}(u) \leq \text{surplus}(P)$. Our choice of the lags must satisfy this for all possible paths P from u to the host. In fact it turns out that this choice is adequate. In particular we choose

$$\text{lag}(u) \equiv \min_{P} \{\text{surplus}(P) \mid P \text{ is a path from } u \text{ to host.}\}$$

In other words, we compute the lag for each node as the shortest distance from it to the host. In G we knew for any cycle C that $\sum_{e \in C} \text{delay}(e) \geq |C|$. Thus $G - 1$ does not have negative cycles, thus our lag function is well defined.

7.7 Proof of theorem

We show that the lag function defined above satisfies the three properties mentioned earlier.

1. First we show that newdelay($u \bar{v}$) = delay($u \bar{v}$) + lag(v) − lag(u) > 0 for every edge $u \bar{v}$. Let P denote a path from v to the host such that $\text{lag}(v) = \text{surplus}(P)$; we know that some such path must exist by the definition of lag. Let P' denote the path from u to the host obtained by adding $u \bar{v}$ to P. By the definition of lag, we have:

$$\text{lag}(u) \leq \text{surplus}(P')$$
$$= \text{surplus}(u \bar{v}) + \text{surplus}(P)$$
$$= \text{delay}(u \bar{v}) - 1 + \text{lag}(v)$$

From this we get newdelay($u \bar{v}$) > 0 as needed.

2. The lag of the host is 0 by construction.

3. Now we show that the lags as computed as above can actually be applied using valid basic retiming steps.
We start with lag(u) computed as above for every vertex u. We shall examine every vertex in turn and apply a basic retiming steps if possible. Specifically we apply a positive (negative) retiming step to a node u if (1) lag(u) is greater (less) than 0, and (2) all the delays on the outgoing (incoming) edges are greater than 0. If it is possible to apply a retiming step, we do so, and decrement (increment) lag(u). This is repeated as long as possible.

The process terminates if

(a) All the lags are down to zero, in which case we are done.

(b) There exists some u with lag$(u) > 0$, but for every such vertex we have some outgoing edge $u\bar{v}$ with delay$(u\bar{v}) = 0$, so that the basic retiming step cannot be applied. But we knew in S that lag$(v) \geq$ lag$(u) + 1 -$ delay$(u\bar{v})$. This inequality is maintained by the application of the basic retiming steps. Thus we get lag$(v) \geq$ lag$(u) + 1$, since we currently have delay$(u\bar{v}) = 0$.

Thus starting at u and following outgoing edges with zero delay, we must be able to find an unending sequence of nodes whose lag is greater than 0. Since the graph is finite, this sequence must revisit a node. But we have then found a directed cycle with total delay equal to 0. Since the basic retiming steps do not change the delay along a cycle, this cycle must have also existed in S, giving a contradiction.

(c) There exists some u with lag$(u) < 0$, but for every such vertex we have some incoming edge $\bar{u}v$ with delay$(\bar{u}v) = 0$, so that the basic retiming step cannot be applied. We obtain a contradiction as in the previous case.

Thus the process terminates only after we have applied all the required retiming steps, proving the existence of such a sequence.

7.8 Slowdown

If we have a network that is semisystolic, but for which some cycle has a smaller total delay than its length, then we slow down the execution of the network, i.e. slow down the execution of every component. This effectively increases the delay in each cycle. By choosing a suitable slowdown factor, we can always obtain enough delay so that the systolic conversion theorem can be applied.

7.9 Algorithm design strategy summary

The algorithm design has the following steps.

1. Design an algorithm for a semisystolic network, G.

2. For each cycle C of G, let $s_C = \lceil |C| / \text{delay}(C) \rceil$. Let $s = \max_C s_C$. Slowdown G by a factor s. Call the new network sG.

3. Find lag$(u) =$ weight of shortest path from u to the host in $sG - 1$. Here, weight = delay in $sG - 1$.

4. Set newdelay$(u, v) = \text{delay}(u, v) + \text{lag}(v) - \text{lag}(u)$. Note that delay$(u, v)$ is the delay in sG.

5. The resulting network is the systolic network equivalent to G.
7.10 Remark

Besides the ease of discovering algorithms, you will note that the semisystolic model is also easier for describing algorithms. This is also an important reason for designing algorithms using the semisystolic model and then converting it to the systolic model.

Exercises

1. Is it necessary that there be a unique systolic network that is equivalent to a given semisystolic one? Justify or give a counter example.

2. We defined lag(u) to be the length of the shortest path from u to the host. What if there is no such path?

3. We said that the nodes that are lagged need to start executing their program earlier by as many steps as the lag. Does this mean that each processor needs to know its lag? For which kinds of programs will it be crucial whether or not the processors start executing at exactly the right step? For which programs will it not matter?
Chapter 8

Applications of Systolic Conversion

We will see two applications of systolic conversion. The first is to palindrome recognition. We will derive a systolic network for the problem by transforming the semistolic network developed earlier. We will then design a semisystolic algorithm for computing the transitive closure of a graph. We will show how this design can be transformed to give a systolic algorithm. We will mention how other problems like shortest paths and minimum spanning trees can also be solved using similar ideas.

8.1 Palindrome Recognition

To apply the systolic conversion theorem, we need that every cycle in the network have delay at least as large as its length. Unfortunately the semisystolic network we designed does not satisfy this requirement. So we slowdown the original network by a factor of 2. This means that each processor (as well as the host) only operates on alternate steps; each message encounters a 2 step delay to traverse each edge that originally had a delay of 1. Zero delay edges still function instantaneously, as before. With this change, each cycle in the network has delay exactly equal to its length. So we can now apply the systolic conversion theorem.

The first step is to compute the surplus for each edge, then the lags are computed by doing the shortest path computation. As will be seen, the processor u at distance i from the host will have shortest path length $= -i = \text{lag}(u)$. Now using the formula $\text{newdelay}(uv) = \text{delay}(uv) + \text{lag}(v) - \text{lag}(u)$, we will see that each edge will end up with a unit delay.

Note that we could also have retimed the network "by hand", by moving delays around heuristically. To get started, we move the delay around the farthest processor. As you can see, delays can be moved around so that we will reach the same solution as obtained by applying the systolic conversion theorem.

8.2 Transitive Closure

Let $G = (V, E)$ be a directed graph. Its transitive closure is the graph $G^* = (V, E^*)$, where

$$E^* = \{(i, j) | \exists \text{ directed path from } i \text{ to } j \text{ in } G\}$$

Sequentially, transitive closure is computed typically using the Floyd-Warshall algorithm which runs in time $O(N^3)$, for an N vertex graph. Faster algorithms exist, based on ideas similar to
Strassen’s algorithm for matrix multiplication, but these are considered to be impractical unless N is enormous. We will present a parallel version of the Floyd-Warshall algorithm. It will run on an N^2 processor mesh in time $O(N)$, thus giving linear speedup compared to the sequential version.

Floyd-Warshall’s algorithm effectively constructs a sequence of Graphs G^0, G^1, \ldots, G^N, where $G^0 = G$ and $G^N = G^*$. Given a numbering of the vertices with the numbers $1, \ldots, N$, we have $G^k = (V, E^k)$, where

$$E^k = \{(i, j)|\exists \text{ path in } G \text{ from } i \text{ to } j \text{ with no intermediate vertex larger than } k\}$$

Note that E^0 and E^N are consistent with our definition. The algorithm represents each graph G^k using its adjacency matrix A^k. The matrix A^k is computed from A^{k-1} using the following lemma.

Lemma 5 $a^k_{ij} = a^{k-1}_{ij} \lor (a^{k-1}_{ik} \land a^{k-1}_{kj})$

Proof: If there is a path from i to j passing through vertices no larger than k then either it passes strictly through vertices smaller than k, or k lies on the path. But in that case there are paths from i to k and from k to j both of which pass through vertices strictly smaller than k. \hfill \Box

Note a small point which will be needed later $a^k_{ik} = a^{k-1}_{ik} \lor (a^{k-1}_{ik} \land a^{k-1}_{kk}) = a^{k-1}_{ik}$. Thus the ith column of A^k is the same as the ith column of A^{k-1}. Similarly, the ith row of A^k is also the same as the ith row of A^{k-1}.

8.2.1 Parallel Implementation

The parallel implementation needs a square $N \times N$ mesh. We start with a semisystolic network to facilitate the design process. The network receives the matrix $A^0 = A$ from the top, fed in one row at each step. The matrix A^* is generated at the bottom eventually, also one row at each step. The kth row of processors generates the matrix A^k given A^{k-1}. Notice the manner in which input is fed; the rows of A^{k-1} are fed in the order $k, k+1, k+2, \ldots, N, 1, 2, \ldots, k−1$. The rows of A^k are generated in the order $k+1, k+2, \ldots, N, 1, 2, \ldots, k$, which is precisely the order in which the $k+1$th row of processors needs its input.

Row k of processors performs its work as follows. The row it first receives, row k of A^{k-1} is simply stored; processor kj stores a^{k-1}_{kj}. Subsequently, some row i is received. Processor kk receives a^{k-1}_{ik} broadcasts it to the all processors kj, and also sends it to processors $k+1, k$. Simultaneously processor kj receives a^{k-1}_{ij} from the top and a^{k-1}_{ik} on the broadcast. Thus it can compute $a^k_{ij} = a^{k-1}_{ij} \lor (a^{k-1}_{ik} \land a^{k-1}_{kj})$, which it can pass on to processor $k+1, j$. After all rows have been received from the top, it sends out what it has, i.e. row k of A^{k-1}, which as we remarked is also the row k of A^k.

We next estimate the time taken in this semisystolic model. Row 1 of $A^0 = A$ is sent by the host at step 1 and arrives at the first processor row at step 2. Rows are fed 1 per step after that so that row N of A^0 arrives at the first processor row in step $N+1$. Row N moves down one processor row per step, so that it arrives at processor row N at time $2N$. Following that, row 1 arrives into processor row N at step $2N+1$, and row $N-1$ at step $3N-1$. Row $N-1$ arrives into the lower host at step $3N$, following which row N arrives. So the entire computation takes a total of $3N+1$ steps.
8.2.2 Retiming

We first consider the case in which the upper and lower hosts are really a single processor. In this case, it is easily seen that most cycles do not have enough net delay in them. Further, that a slowdown of a factor of 3 suffices. We leave it as an exercise to compute the new delay of each edge; we only note that because of this slowdown, the entire computation will be completed in time $3(3N+1)=9N+3$.

Another strategy is to consider the lower host as the “real” host, and keep the upper host as a distinct node. This means that the upper host may have a nonzero lag. This will have to be accounted for in estimating the total computation time.

As will be seen, if we keep the hosts separate, the graph does not have any cycles. So a slowdown is not necessary. The computation of the lags and delays is left as an exercise again, we only note that the upper host gets assigned a lag of $-2N+2$. In other words, the upper host needs to start its execution at step $-(2N-2)$ in order that the lower host finishes at step $3N+1$. Thus the computation really takes time $3N+1+2N-2=5N-1$. Notice that this is faster than the previous design which took $9N+3$ steps.

8.2.3 Other Graph Problems

As it turns out, we can use the algorithm developed above with minimal changes to compute shortest paths and minimum spanning trees.

For the shortest path problem, we consider A to be edge length matrix, i.e. a_{ij} denotes the length of edge (i,j). We use the same array as before, and perform essentially the same computation, but use a different semiring$[1, 6]$. In particular, we replace the operator \lor with the operator \min (this takes two arguments and returns their minimum), and the operator \land with $+$, the binary addition operator.

Minimum spanning trees can also be computed in a similar manner. As before, the input matrix A gives edge lengths. We modify the transitive closure algorithm by replacing \lor with \min and \land with \max.

Exercises

1. Complete the retiming for the transitive closure networks (with and and without separate hosts). Attempt to rearrange delays so that they are uniformly distributed.

2. Show how to implement a priority queue using a linear array of N processors. The array should accept as input two operations DELETE-MIN and INSERT(x) at one end and in case of DELETE-MIN, the answer (the minimum element in the queue) should be returned at the same end (the minimum element should also be deleted from the array) in time independent of N. The array should function properly so long as the number of elements in the queue at any instant is less than N.

3. Show how to compute the strongly connected components of an N node graph (input presented as an adjacency matrix) on an $N \times N$ mesh. The output should be a labelling of vertices, i.e. vertices in each strong component should be assigned a unique label.
4. Suppose you are given a systolic network in which one node is designated the host. The network has been programmed to run some algorithm (that it runs correctly) except that a modification is needed to the algorithm which requires instantaneous broadcast from the host to all processors. This could certainly be achieved by adding additional wires from the host to every other node; but it can be done without changing the network at all, although a slowdown of a factor of 2 is necessary. In other words, show that in addition to the communication required for the old program, it is possible to perform broadcast from the host at every step if a slowdown of a factor of 2 is allowed.

5. Consider a slightly modified palindrome recognition problem as follows. In this, the host generates the characters x_1, x_2, \ldots, x_n in order, but there might be a gap of one or more time steps between consecutive x_i, rather than the exact one step gap in the original problem. The goal is still the same: devise a circuit which determines whether the characters received till then form a palindrome. Show how to do this.
Chapter 9

Hypercubes

The main topic of this lecture is the hypercube interconnection structure. Hypercubes were a very common interconnection structure in parallel processing. Even today they are interesting because of a number of reasons. First, they can effectively simulate the execution of smaller dimensional arrays and trees. Second, they allow the development of a very rich class of algorithms called *Normal Algorithms*. Third, some other networks can be derived from hypercubes.

In this lecture we will define hypercubes and explore its properties. In addition we will also define the notion of graph embedding, which will be useful to develop the relationship between hypercubes and other networks. Normal algorithms will be considered in the following lecture.

9.1 Definitions

An n dimensional hypercube, denoted H_n has 2^n vertices labelled $0, 2^n - 1$. Vertex u and v are connected by an edge iff the binary representations of u and v differ in a single bit. We use \oplus to denote the exclusive or of bitstrings. Thus u and v have an edge iff $v = v \oplus 2^k$ for some integer k. We will say that the edge $(u, u \oplus 2^k)$ is along dimension k.

Another definition of hypercubes expresses it as a *graph product*.

9.1.1 The hypercube as a graph product

The product $G \Box H$ of graphs G, H is defined to have the vertex set $V(G \Box H) = \text{the cartesian product } V(G) \times V(H)$, and there is an edge from (g, h) to (g', h') in $G \Box H$ iff (a) $g = g'$ and h, h' are neighbours in H, or (b) $h = h'$ and g, g' are neighbours in G.

Clearly, $|V(G \Box H)| = |V(G)| \cdot |V(H)|$.

Here is a way to visualize a $G \Box H$. Consider $|V(G)|$ rows, each containing $|V(H)|$ vertices. Label the rows by labels of vertices $V(G)$, and the columns by Vertices $V(H)$. On the vertices in each row, put down a copy of H, with h in row labelled h. Similarly, in each column, put down a copy of G. This then is the product $G \Box H$. It is customary to say that g is the first coordinate of vertex (g, h) of $G \Box H$, and h the second.

The hypercube is perhaps the simplest example of a product graph. Consider P_2, the path graph on two vertices, i.e. the graph that consists of a single edge. Then $H_1 = P_2$, $H_2 = H_1 \Box P_2$, $H_3 = H_2 \Box P_2$, and so on.

If we have a 3 way product, say $(F \Box G) \Box H$, then each vertex in the result can be assigned a label $((f, g), h)$. However, as we will see next, graph products are associative, so that we may write...
the product as just $F \Box G \Box H$, and the label as (f, g, h).

Lemma 6 \Box is commutative and associative.

Proof: Need to show that $G \Box H$ is isomorphic to $H \Box G$. Recall that X is isomorphic to Y if there exists a bijection f from $V(X)$ to $V(Y)$ s.t. (x, x') is an edge in X iff $(f(x), f(x'))$ is an edge in Y. The vertices in $G \Box H$ are (g, h) and those in $H \Box G$ are (h, g) where $g \in V(G), h \in V(H)$. We use $f((g, h)) = (h, g)$.

There is an edge from (g, h) to (g', h') in $G \Box H$ if and only if either (a) $g = g'$ and h, h' are neighbours in H, or (b) $h = h'$ and g, g' are neighbours in G.

Thus f is the required isomorphism. Associativity is similar.

At this point it should be clear that our new definition of H_n is really the same as the old. Let the vertices in P_2 be labelled 0, 1. Then the coordinates in an n-way products will be $x_0, x_1, \ldots, x_{n-1}$, where each x_i is 0 or 1. In the old definition, we merely concatenated these to get a single n-bit string.

9.2 Symmetries of the hypercube

It may be obvious that all vertices of a hypercube are symmetrical, or more formally, that the hypercube is vertex transitive. This is proved using the notion of an automorphism. An automorphism is simply an isomorphism from a graph to itself.

It will be convenient to think of vertices as k bit strings. It will also be useful to have the notation $u \oplus v$ which denotes the bit-wise exclusive or of u and v. Note that \oplus is associative and commutative, and that the all 0s string is the identity and each element is its own inverse. Further, suppose u, v are neighbours. Thus they must differ in just one bit. Say it is the ith least significant bit. Then we may write $u = v \oplus 2^i$.

We will show that there is an automorphism f on Q_k that maps any vertex u to any vertex v. Consider $f(x) = x \oplus w$ where $w = (u \oplus v)$.

1. $f(x) = f(y) \Rightarrow x \oplus w = y \oplus w \Rightarrow x \oplus w \oplus w = y \oplus w \oplus w \Rightarrow x = y$. Thus f is a bijection.

2. $f(u) = u \oplus w = u \oplus u \oplus v = v$. Thus f maps u to v as required.

3. Consider a vertex x and its neighbour $x \oplus 2^i$. Then we have $f(x \oplus 2^i) = x \oplus 2^i \oplus w = x \oplus w \oplus 2^i = f(x) \oplus 2^i$. Thus $f(x \oplus 2^i)$ and $f(x)$ are also neighbours across dimension i.

Thus f is the required automorphism.

9.3 Diameter and Bisection Width

The diameter of an n dimensional hypercube is n. This follows because the shortest distance between u and v is the number of bits in which they differ; and this can be at most n, as is for example when $u = 0$ and $v = 2^n - 1$.
The bisection width of the hypercube is \(n/2 \). Clearly, we can disconnect the hypercube into two parts by removing the edges along any one dimension; it is also possible to show that at least \(n/2 \) edges must be removed to disconnect the hypercube into subgraphs of \(n/2 \) vertices each.

9.4 Graph Embedding

The formalism of graph embedding is useful to describe the simulation of one network (guest) by another (host).

Consider a (guest) graph \(G = (V_G, E_G) \) and a (host) graph \(H = (V_H, E_H) \). An embedding of \(G \) into \(H \) : \((f_V, f_E)\) is specified by two functions:

\[
 f_V : V_G \to V_H \\
 f_E : E_G \to \text{Paths in } H
\]

with the condition that if \((u, v) \in G\) then \(f_E(u, v) \) is required to be a path from \(f_V(u) \) to \(f_V(v) \).

Given an embedding we define the following:

\[
 \forall w \in V_H : \text{LOAD}(w) = |\text{Vertices of } G \text{ placed on } w| \\
 \forall e \in E_G : \text{DILATION}(e) = \text{Length of } f_E(e) \\
 \forall e \in E_H : \text{CONGESTION}(e) = |\{e' | e \in f_E(e')\}|
\]

Finally, we define the \text{LOAD}, \text{DILATION} and \text{CONGESTION} of the embedding to be the maximum values of the respective parameters. Finally, it is customary to implicitly consider embeddings with \text{LOAD}=1, unless the \text{LOAD} is explicitly stated.

Lemma 7 Let \(l, d, c \) denote the load, congestion and dilation for embedding network \(G \) into network \(H \). Then \(G \) can be simulated on \(H \) with a slowdown of \(O(l + d + c) \).

The proof of this lemma in its most general form is beyond the scope of this course, but can be found in [8]. Here we will sketch the proof of a weaker result: we will show that the time is \(O(l + cd) \).

First, consider the simulation of the computation steps of \(G \). Each processor of \(H \) does the work of at most \(l \) processors of \(G \), and hence a step containing only computation can be simulated on \(H \) in time \(O(l) \). A communication step of \(G \) is simulated by sending messages in \(H \) along the paths of \(f_E \). Consider any such message. The message moves at most \(d \) edges of \(H \), and can be delayed during the movement at each step only because of other messages contending for the edge it needs to traverse (we assume unbounded queues for messages). Since there are at most \(c \) messages that may delay it at any edge, the total time it waits is at most \(cd \). Thus it gets delivered in time \(d + cd = O(cd) \) steps. Thus a general step of \(G \) can be simulated in time \(O(l + cd) \) on \(H \).

We note that for the rest of the lecture, we will use embeddings in which \(l, c \) and \(d \) will all be constants. This will give us constant time simulations.
9.4.1 Embedding Rings in Arrays

As a very simple example, let us consider the problem of embedding the ring or the cycle network C_n on n nodes into the linear array or path P_n on n nodes. Note that P_n has connections between nodes $i, i + 1$ for $i = 0$ to $i = n - 2$, C_n has all these connections, and in addition has a connection from $n - 1$ to 0.

The naive embedding would be to place node i of C_n on node i of P_n. This has dilation $n - 1$, for the edge in C_n from $n - 1$ to 0.

Consider instead, the embedding in which we place node i of C_n on node 2, of P_n, for $i \leq (n-1)/2$, and for other i we place node i of C_n on node $2n-2i+1$. It is easy to see that every pair of adjacent nodes in C_n are placed at most a distance 2 in P_n. Thus this has dilation 2 (as also congestion 2, load 1), and is better than the naive embedding.

9.5 Containment of arrays

One of the reasons for the popularity of hypercubes is that H_n contains as subgraphs every $2^{d_1} \times 2^{d_2} \times \ldots \times 2^{d_k}$ array if $n \geq \sum_i d_i$.

We first consider the case $k = 1$, i.e. we will show that the H_n contains a Hamiltonian cycle for $n \geq 2$. The proof is by induction; the base case $n = 2$ is obvious. Suppose H_{n-1} does contain a Hamiltonian cycle. We may form H_n by taking copies H^0 and H^1 of H_{n-1} and pairing corresponding vertices. We know that the two copies in turn contain Hamiltonian cycles by the induction hypothesis. We can merge the two cycles into a single cycle as follows. Let (u_0, v_0) be any edge on the cycle in H^0, and let (u_1, v_1) be the corresponding edge in copy H^1. We disconnect the cycles in these edges, but instead add in the edges (u_0, u_1) and (v_0, v_1) which we know must be present in H_n. This gives the larger Hamiltonian cycle as required.

For $k > 2$ we need the notion of Graycodes. A Graycode G_n is a function that maps integer in the range $0 \ldots 2^n - 1$ to n bit strings such that $G_n(i)$ and $G_n(i + 1 \mod 2^n)$ differ in exactly 1 bit. Gray codes certainly exist: $G_n(i)$ can be defined as the processor address of the ith node of the Hamiltonian cycle that H_n is known to contain.

We now present a dilation 1 embedding of a $2^{d_1} \times \ldots \times 2^{d_k}$ mesh in H_n where $n = \sum_i d_i$. Let the mesh vertices be assigned numbers (x_1, \ldots, x_k) where $0 \leq x_i < 2^{d_i}$. Let || denote concatenation of bit strings. We place mesh vertex (x_1, \ldots, x_k) on hypercube processor $G_{d_1}(x_1)||\ldots||G_{d_k}(x_k)$. First note that this constitutes a valid hypercube address with n bits. Second, consider any neighbor in the mesh, say vertex $(x_1, \ldots, x_{i-1}, x_i+1, x_{i+1}, \ldots, x_k)$. This will be placed on some processor in H_n whose address will be $G_{d_1}(x_1)||\ldots||G_{d_{i-1}}(x_{i-1})||G_{d_i}(x_i+1)||G_{d_{i+1}}(x_{i+1})||\ldots||G_{d_k}(x_k))$. These two hypercube addresses are clearly identical in the first $i-1$ fields and the last $k-i$ fields. In the ith field the first has $G_{d_i}(x_i)$ whereas the second has $G_{d_i}(x_i+1)$. But by the definition of Gray codes, these two differ in precisely in 1 bit. Thus the entire hypercube addresses also differ in exactly 1 bit, establishing that mesh neighbors get placed on hypercube neighbors. To complete the proof we need to argue that each mesh processor is placed on a unique hypercube processor, which is obviously true.

What if the sides of the array are not powers of two? It can be shown that a two dimensional $a \times b$ array can be embedded in the smallest hypercube with at least ab processors with dilation $2[6]$. Thus, the hypercube will be able to simulate its execution with a slowdown of 2.
9.6 Containment of trees

Let T_n denote the complete binary tree with $2^n - 1$ nodes.

Theorem 4 T_n is not a subgraph of H_n, for $n \geq 3$.

Proof: Suppose it is a subgraph. Without loss of generality, suppose the root is placed on vertex 0. Then the neighbours of the root will be on neighbours of 0 and so on.

Define the parity of a tree node to be even if its distance from the root modulo 2. Define the parity of a hypercube node numbered x to be x modulo 2. In both graphs, even parity nodes have odd parity neighbours and vice versa. Thus, the above places even parity tree nodes on even parity hypercube nodes, and likewise odd.

In the hypercube the number of even parity nodes and odd parity nodes is both 2^{n-1}, because we can match them across any dimension. In the tree, the number of nodes with the same parity as the leaves is $2^{n-1} + 2^{n-3} + \ldots > 2^{n-1}$ provided $n \geq 3$. Thus the nodes with the same parity as leaves will not fit in either the odd or even parity hypercube nodes.

Define the double rooted complete binary tree D_n to consist of two vertices which are themselves connected together by an edge and which in addition connect to the roots of T_{n-1}.

Theorem 5 D_n is a subgraph of H_n.

Proof: The proof is by induction. The base case is $n = 2$. Clearly D_2 is a subgraph of H_2.

Assume that D_n is a subgraph of H_n. Since the hypercube has an automorphism in which any edge can be mapped to any edge, we may assume that the two roots are at vertices 0 and 1 of H_n. Further, each root has a single child, and the child is mapped to a neighbour. Thus we can renumber the dimensions, and assume that the child of the root at 0 is at hypercube node 2. In a similar manner, we can also have an embedding in which the roots are at 0,2, and the child of the root at 0 is at 1.

Consider now the hypercube H_{n+1}. It is made up of two hypercubes H_n. In the first of these, L, suppose we embed the tree as per the first construction, and in the second, R, as per the second. Let us assume that in the big hypercube, node u of L has number u, whereas node u of R has number $2^n + u$. Notice that this is equivalent to asserting that the new dimension that we are adding to construct H_{n+1} is the most significant dimension. Our construction above gives us D_n with roots at 0,1, with 0 connected to 2 under which is a copy t_1 of T_{n-1}. Likewise 1 has a child which is a root for another copy t_2 of T_{n-1}. Similarly, we have two roots at $2^n, 2^n + 2$. The root at 2^n has a child at $2^n + 1$, which is a root of a copy t_3 of T_{n-1}. Similarly, $2^n + 2$ has a child at a neighbouring node which is the root of another copy t_4 of T_{n-1}. This gives an embedding of D_n in H_n as follows. The two roots are at 0, 2^n. Their children are respectively at 1, $2^n + 2$. The node at 1 has a subtree underneath it consisting of t_2, t_3, and the node at $2^n + 2$ has a subtree consisting on t_1, t_4.

Since T_n has a dilation 2 embedding in D_n, we have established that T_n has a dilation 2 embedding in H_n.

9.7 Prefix Computation

Once we can embed trees into the hypercube, we can certainly perform prefix computation using the embedded tree. However, the tree embedding described in the previous section is rather complex. It is not obvious where a given node of the tree will get placed in the hypercube – to determine this we need to simulate the complex recursive algorithm defined above.

Prefix computation can be done on the hypercube using a much simpler embedding called the \textit{binomial tree embedding} is also useful. In this we embed a 2^n leaf tree onto H_n. For this the ith leaf from the left is placed on processor i of H_n. Assuming the levels of the tree are labelled 0 through $n - 1$ leaf to root, the ith node in level j is placed on hypercube processor $2^j i$. We leave it as an exercise to show that this embedding has dilation 1. Its main problem is high load – indeed it is easily seen that processor 0 has load n. The embedding is useful nevertheless to execute those tree algorithms that operate in a level-by-level manner. Thus prefix computation can be done using the binomial tree embedding in time $O(n)$.

9.7.1 Prefix computation in subcubes

We may view H_n as a product $H_p \Join H_q$, for $p = n$. This view is useful in several algorithms. In fact, in many such algorithms it is necessary to perform prefixes in subcubes contained in the product. Such prefix computations can happen in parallel, of course.

Also note that a prefix computation generalizes \textit{accumulation}, e.g. computing the sum of all numbers, or broadcast, where $a + b$ is defined to be just a.

Exercises

1. Suppose I remove all the edges along some k dimensions of an n dimensional hypercube. Characterize the resulting graph. Show this pictorially for $n = 3$ and $k = 2$.

2. Show that an N node hypercube contains as a subgraph a cycle of length $l \leq N$ if and only if l is even.

3. Show that an N node hypercube can be embedded in a P node hypercube ($N > P$) with load N/P, dilation=1.

4. Consider an inorder numbering of a 2^{n-1} leaf complete binary tree where the leftmost leaf is numbered 1, and the rightmost leaf is numbered $2^n - 1$. Show that this defines a dilation 2 embedding into H_n.

5. Show that a n-node linear array can be embedded in an n-node complete binary tree with load 1, dilation 3, and no restriction on the congestion. This is tougher than it looks, and you should have a very clearly written induction statement.

6. Suppose you are given an (8×8) chessboard with two diagonally opposite corner squares removed. You are also given 31 tiles, each of dimension 2x1. You are supposed to cover the the given board with the tiles, which may be rotated as required.

Express this as a graph embedding problem. Show that this is impossible.
7. Suppose a $2^m \times 2^m$ matrix A is stored on a 2^{2m} hypercube, with element a_{ij} at processor $i|j$, i.e. at the number obtained by concatenating the m bit numbers i and j, $0 \leq i, j \leq 2^m - 1$. Devise an $O(m)$ time algorithm to compute Ax where x is a vector to be read from the external world. At which processors will you read in x (remember that each x_i must be read just once) and where will the result be produced? Can you reduce the number of processors while keeping the time $O(m)$?

8. Show how to multiply $2^m \times 2^m$ matrices in time $O(m)$ on a 2^{3m} node hypercube. State where the inputs are read, where the outputs generated, and where each arithmetic operation is performed.

(Hint: Suppose you want to compute $C = AB$, for matrices A, B, C. Then $c_{ij} = \sum_k a_{ik} b_{kj}$. Then perform the multiplication $a_{ik} b_{kj}$ on processor $i|j|k$, i.e. the processor whose number is obtained by concatenating the m bit numbers i, j, k. Based on this decide on a convenient location in which to read in a_{ij}.)

Can you achieve the same time using a smaller hypercube?
Chapter 10

Normal Algorithms

One reason hypercubes are a popular interconnection network is that they admit a very rich class of algorithms called normal algorithms. This class contains algorithms for computing Fourier transforms, merging/sorting, data permutation and others. In this lecture we will study this class.

A Normal Algorithm running on an \(n \) dimensional hypercube has \(n \) iterations; each iteration consisting of a computation step and a communication step. Further, in the \(i \)th step, processors communicate only along dimension \(i \). All algorithms in the class have this high level structure, the precise computation performed in each iteration will differ for different algorithms of course. It is also customary to allow a different order for traversing the dimensions. Finally some algorithms (such as sorting) consist of a sequence of subalgorithms (merging steps steps in case of sorting) each of which is actually a normal algorithm. Some authors refer to the overall algorithm also as a normal algorithm informally.

10.1 Fourier Transforms

The Fourier transform of a sequence of complex numbers\(^1\) \(a = (a_0, a_1, \ldots, a_{N-1}) \) is the sequence \(A = (A_0, A_1, \ldots, A_{N-1}) \) defined as follows. Let \(P_a(x) \) denote the polynomial \(\sum_i a_i x^i \). Then \(A_j = P_a(\omega_N^j) \), where \(\omega_N \) is a principal \(N \)th root of 1.

Clearly, all \(A_i \) can be computed sequentially in \(O(N^2) \) time using Horner’s rule. But the time can in fact be reduced to \(O(N \log N) \) using a divide and conquer strategy as follows.

1. If \(a \) has length 1, then we directly return the result. Else, we first partition \(a \) into its even and odd subsequences \(b \) and \(c \) (with \(b_i = a_{2i} \) and \(c_i = a_{2i+1} \) respectively, and define the corresponding \(N/2 \) degree polynomials \(P_b(z) = \sum_{i=0}^{N/2-1} a_{2i} z^i \) and \(P_c(z) = \sum_{i=0}^{N/2-1} a_{2i+1} z^i \).

2. We then recursively compute the Fourier transforms \(B = (B_0, B_1, \ldots, B_{N/2-1}) \) and \(C = (C_0, C_1, \ldots, C_{N/2-1}) \).

3. For \(0 \leq j < N/2 \) we set \(A_j = B_j + \omega_N^j C_j \) and \(A_{j+N/2} = B_j - \omega_N^j C_j \).

The correctness is proved by induction. We will assume that the recursive calls work correctly. Thus for \(0 \leq j < N/2 \) we have:

\[
A_j = B_j + \omega_N^j C_j = P_b(\omega_N^j/2) + \omega_N^j P_c(\omega_N^j/2)
\]

\(^1\)Elements of some commutative ring in general.
\[
= \sum_{i=0}^{N/2-1} a_{2i}(\omega_{N/2}^i) + w_N^j \sum_{i=0}^{N/2-1} a_{2i+1}(\omega_{N/2}^i)^i
\]

But note that \(\omega_{N/2} = \omega_N^2\). Thus we get:

\[
A_j = \sum_{i=0}^{N/2-1} a_{2i}\omega_N^{2ij} + w_N^j \sum_{i=0}^{N/2-1} a_{2i+1}\omega_N^{2ij}
\]

\[
= \sum_{i=0}^{N-1} a_i\omega_N^{ji} = P_a(\omega_N^j)
\]

which is what we wanted. Correctness of \(A_{j+N/2}\) also follows similarly, noting that \(\omega_N^{N/2} = -1\).

We will first estimate the time to execute the above algorithm on a uniprocessor. If \(U(N)\) denotes the time to compute the transform of \(N\) elements, then we have the recurrence \(U(N) = 2U(N/2) + O(N)\), with \(U(1) = O(1)\). This has the solution \(U(N) = O(N \log N)\).

We now show how the transform can be computed on an \(N\) node hypercube which we will call \(H_a\). We assume that initially each \(a_i\) is present on processor \(\text{Rev}_n(i)\), where \(\text{Rev}_n(i)\) denotes the number obtained by considering the \(n\) bit string representing \(i\) in binary and reversing it. At the end \(A_i\) will be present on processor \(i\) of \(H_a\). We show how to execute each step of the previous algorithm on the hypercube as follows:

1. If \(N\) is larger than \(1\), we need to split the sequence \(a\) into its even and odd parts \(b\) and \(c\), and then recursively compute their transforms. Each transform is recursively computed using an \(N/2\) node hypercube; to do this we must ensure that the \(i\)th element of the input sequence must be placed on processor \(\text{Rev}_n(i)\) of the \(N/2 = 2^{n-1}\) node hypercube. For computing the transform of \(b\) we use the subhypercube \(H_b\) consisting of processors \(0, \ldots, N/2 - 1\) of \(H_a\). For computing the transform of \(c\) we use the subhypercube \(H_c\) consisting of processors \(N/2, \ldots, N - 1\). Define the local number of processor \(i\) of \(H_a\) to be \(i\) mod \(N\). Clearly every processor in \(H_b\) and \(H_c\) gets a local number in the range \(0, \ldots, N/2 - 1\), and the local numbers constitute a standard numbering within each hypercube. Notice that element \(b_i = a_{2i}\) is initially held on processor \(\text{Rev}_n(2i)\) of \(H_a\). Whereas we require it to be on processor \(\text{Rev}_{n-1}(i)\) of \(H_b\). But these are in fact the same processor! To see this, note that \(\text{Rev}_n(2i) = \text{Rev}_{n-1}(i)\), and that a processor with local number \(x\) in \(H_b\) is in fact processor \(x\) of \(H_a\). Similarly, element \(c_i = a_{2i+1}\) is initially on processor \(\text{Rev}_n(2i + 1) = N/2 + \text{Rev}_{n-1}(i)\) of \(H_a\), whereas we need it on processor \(\text{Rev}_{n-1}(i)\) of \(H_c\). But these are the same processor, since processor with local number \(x\) in \(H_c\) is processor \(x + N/2\) of \(H_a\). Thus, we can split the original problem into two smaller and similar problems at no cost.

2. The transforms of the subsequences \(b\) and \(c\) are computed recursively. At the end of this step we are guaranteed that \(B_i\) and \(C_i\) are held in processor \(i\) of \(H_b\) and \(H_c\) respectively, which are in fact processors \(i\) and \(i + N/2\) of \(H_a\).

3. In this step we compute \(A_i\). This is done on processor \(i\) of \(H_a\). For this we need the value of \(B_i\) which is available locally in processor \(i\), and the value of \(C_i\) held by processor \(i + N/2\). But processors \(i\) and \(i + N/2\) are neighbors! Thus the value can be fetched in 1 step. The computation also happens in \(O(1)\) time.
For runtime analysis, let $T(N)$ denote the time to compute N input transform using an N node hypercube. Then $T(N) = T(N/2) + O(1)$, with $T(1) = 1$. Thus we get $T(N) = O(\log N)$. This can also be obtained by observing that each (parallel) recursive call of the operates on a distinct dimension of the hypercube, and $O(1)$ time is spent on each dimension. Finally, note that the algorithm does in fact communicate along hypercube edges one dimension at a time. The outermost level of the recursion uses communication along dimension 0; the next dimension 1, and so on. Since step 1 of the algorithm does not need communication nor computation, the dimensions get used in the order $n - 1, n - 2, \ldots, 1, 0$.

10.2 Sorting

We will present another classic normal algorithm — the Odd-Even sorting algorithm due to Batcher. The algorithm uses successive merging: initially the N keys to be sorted are considered to be (degenerate) sorted lists of length 1. These are merged pairwise to produce lists of length 2, then of 4 and so on until there is a single sorted list of length N.

We describe the generic procedure for merging 2 sorted sequences. Let $a = (a_0, a_1, \ldots, a_{N/2-1})$ and $b = (b_0, b_1, \ldots, b_{N/2-1})$ be two nondecreasing sequences. The algorithm for merging them into a single nondecreasing sequence is as follows. We present it at a high level, as a uniprocessor algorithm; the parallel implementation is described later. The algorithm is recursive. The base case, $N = 2$ is easy, the merged sequence is simply $(\min(a_0, b_0), \max(a_0, b_0))$. For larger N the algorithm is as follows.

1. Compose sequences $c = (a_0, a_2, \ldots, a_{N/2-2})$ and $d = (a_1, a_3, \ldots, a_{N/2-1})$ consisting respectively of the even and odd elements of a. Likewise compose $f = (b_0, b_2, \ldots, b_{N/2-2})$ and $g = (b_1, b_3, \ldots, b_{N/2-1})$.
2. Recursively merge the sequences c and g, and let the result be the sequence $h = (h_0, h_1, \ldots, h_{N/2-1})$. Also merge d and f, with the result being $l = (l_0, l_1, \ldots, l_{N/2-1})$.
3. Construct the sequence $x = (x_0, x_1, \ldots, x_{N-1})$ where $x_{2i} = \min(h_i, l_i)$, and $x_{2i+1} = \max(h_i, l_i)$. Output x as the result.

To establish correctness, we need the 0-1 sorting lemma, which we prove earlier. Clearly, the above odd-even merge algorithm only uses oblivious comparison exchange operations, and although it performs comparisons in parallel, for verifying correctness, we can certainly serialize them in some order. Thus the 0-1 lemma is applicable. So from now on we assume that the sequences a and b consist of 0s and 1s only.

Let A, B, C, D, F, G, H, L respectively denote the number of 0s in a, b, c, d, f, g, h, l. Clearly we have $C = \lfloor A/2 \rfloor$, $D = \lfloor A/2 \rfloor$, $F = \lfloor B/2 \rfloor$ and $G = \lfloor B/2 \rfloor$. Further since h is obtained from c and g, we have $H = \lfloor A/2 \rfloor + \lfloor B/2 \rfloor$, and $L = \lfloor A/2 \rfloor + \lfloor B/2 \rfloor$. Clearly, $|H - L| \leq 1$. To complete the proof, we need consider the three possibilities:

- $H = L + 1$: In this case, the first L elements in h as well as l are 0s, the $L + 1$th element of h is a 0 and that of l is 1, and the remaining $N/2 - L - 1$ are 1s in h as well as l. After step 3 clearly, x_0, \ldots, x_{2L-1} will all be 0s, and x_{2L+1}, \ldots, x_N will all be 1s. The algorithm will set $x_{2L} = \min(h_L, l_L) = 0$ and $x_{2L+1} = \max(h_L, l_L) = 1$. The sequence x will thus be sorted.

- $H = L - 1$: This case is analogous to the above.
• \(H = L\): In this case \(h_L\) and \(l_L\) will both be 1s. Thus, the algorithm will set all values exactly as in case 1 above, except for \(x_{2L}\) which will be set to \(\min(h_L, l_L) = 1\).

Thus in each case, the sequence \(x\) is sorted. Thus the algorithm is correct.

10.2.1 Hypercube implementation

We will describe where each of the data items in the algorithm described above are stored on the hypercube and which processors perform the required operations, and then estimate time. We use an \(N\) processor hypercube which we will call \(H\).

Initially processor \(i\) holds \(a_i\), and \(i + N/2\) holds \(b_i\) for \(0 \leq i < N/2\). The goal is to produce the sequence \(x\), with \(x_i\) produced in processor \(i\).

The recursive call to merge sequences \(c\) and \(g\) are executed in the subhypercube \(H_{cg}\) consisting of the even numbered processors from \(H\); and the recursive call to merge \(d\) and \(f\) in the subhypercube \(P_{df}\) consisting of the odd numbered processors.

To prepare for the recursive calls, we need to position the elements of \(c, d, f, g\) properly. For this we also need to consider a local numbering for \(H_{cg}\) and \(H_{df}\). Define the local number of processor \(i\) in \(H\) to be \([i/2]\); clearly if \(i\) is even, this defines a standard numbering for \(H_{cg}\) and if \(i\) is odd this defines a standard numbering for \(H_{df}\).

We need \(c_i = a_{2i}\) to be at processor with local number \(i\) in \(P_{cg}\). But processor \(i\) of \(P_{cg}\) is processor \(2i\) of \(H\), which already holds \(a_{2i}\). We also need processor with local number \(i + N/4\) of \(H_{cg}\) to hold \(g_i = b_{2i+1}\). But processor \(i + N/4\) of \(H_{cg}\) is processor \(2i + N/2\) of \(H\). Further, \(g_i = b_{2i+1}\) is held by processor \(2i + 1 + N/2\). But processors \(2i + 1 + N/2\) and \(2i + N\) are neighbors along dimension 0! Thus \(g_i = a_{2i+1}\) can be moved into processor \(i + N/4\) of \(H_{cg}\) in a single step, for all \(i\) in parallel.

Similarly, it can be seen that processor with local number \(i\) in \(H_{df}\) already holds \(d_i = a_{2i+1}\). Further processor \(i + N/4\) of \(H_{df}\) can fetch \(f_i = b_{2i}\) that it needs in one step from processor \(2i + N/2\) where it is held.

Step 2 produces \(h_i\) in processor \(i\) of \(H_{cg}\) and \(l_i\) in processor \(i\) of \(H_{df}\); alternatively \(h_i\) is available in processor \(2i\) of \(H\) and \(l_i\) in processor \(2i + 1\) of \(H\).

The computation of \(x_j\) in step 3 is done on processor \(j\) of \(H\). Let \(j = 2i\). The computation of \(x_{2i}\) and \(x_{2i+1}\) both need \(h_i\) and \(l_i\), which are available on processors \(2i\) and \(2i + 1\) of \(H\). But \(2i\) and \(2i + 1\) are neighbors along dimension 0. Thus the computation of \(x\) can be done using a single parallel communication along dimension 0, followed by a single comparison in each processor.

To summarize, the first step of the algorithm needs a single communication along dimension 0, the second step is a recursive call, the third step requires a single communication along dimension 0 followed by a comparison operation. If \(T(N)\) denotes the time to merge 2 sequences of length \(N/2\), we have \(T(N) = T(N/2) + O(1)\), with \(T(2) = 0\). This has the solution \(T(N) = O(\log N)\).

10.3 Sorting

As mentioned earlier, we can sort by using successive merging. We use a log \(N\) phase algorithm for sorting \(N\) element sequences. In phase \(i\) we pairwise merge \(N/2^{i-1}\) sequences each of length \(2^{i-1}\) to form \(N/2^i\) sequences each of length \(2^i\). We do this on an \(N\) processor hypercube as follows. The \(j\)th pair of sequences are merged in processors \(j2^i, \ldots, (j + 1)2^i - 1\), which themselves constitute a \(2^i\) node hypercube. By the discussion of the previous section, this merging step takes \(O(i)\) time.
It is also easily seen that the ith step generates output in exactly the form required by the $i+1$th step. The total time taken is $\sum_{i=1}^{\log N} O(i) = O(\log^2 N)$.

Note that a uniprocessor can perform sorting in time $O(N \log N)$, thus the speedup is $O(N/ \log N)$. Whether there exists a hypercube sorting algorithm that runs in time $O(\log N)$ was a long standing open problem, on which there has been some advancement recently[6]. If the number of keys being sorted is substantially larger than the number of processors, then it is possible to sort with linear speedup, as will be seen in an exercise below.

10.4 Packing

Our last example of a normal algorithm is for the so called packing problem. Using this you should be able to build a radix sort; this is left to the exercises.

In the packing problem, each processor i in some subset S of processors in the hypercube holds two values, x_i and r_i. The values r_i are unique and lie in the range $0, \ldots, |S| - 1$, and further if processors $i, j \in S$ and $i < j$ then $r_i < r_j$. The goal is to move x_i to processor r_i. In other words, the values x_i are to be packed into the smallest numbered processors, without disturbing their relative order.

It turns out that this movement can be accomplished using a normal algorithm. The algorithm is as follows:

For $d = 0$ to $(\log N) - 1$, for each processor j:

If processor j holds x_i, r_i, and if j and r_i differ in bit d, then send x_i, r_i to neighbour of j along dimension d.

The key point, which we will prove, is that after each step, every processor will hold exactly one x_i, r_i pair. Given this, it is easily seen that eventually every x_i, r_i must arrive into a processor j whose address cannot differ in any bit, i.e. $j = r_i$.

Lemma 8 At the end of the dth iteration, every processor holds just one x_i, r_i pair.

Proof: Suppose that some processor j in fact holds two pairs, x_i, r_i and x_k, r_k. Since these pairs have reached j after correcting bits $0, \ldots, d$ from processors i and k, it must be that i and k differ from j in only bits $0, \ldots, d$. Thus, i and k must differ from each other also in only these bits. Thus words, $|i - k| < 2^{d+1}$. Assume $i < k$ without loss of generality. Now, if all the processors $i, i+1, \ldots, k$ are in S, then clearly, $r_k - r_i = k - i$; however since some might not be in S we know that in general $r_k - r_i < 2^{d+1}$.

Further, j agrees with bits $0, \ldots, d$ of r_i. Thus $j = r_i \mod 2^{d+1}$. Similarly $j = r_k \mod 2^{d+1}$. Thus $r_i = r_k \mod 2^{d+1}$, and hence $r_k - r_i \geq 2^{d+1}$. Thus we have a contradiction.

Exercises

1. Show that the FFT (in general any normal algorithm) can be computed on an N node linear array in time $O(N)$.

2. Show that the FFT (in general any normal algorithm) can be computed on a $\sqrt{N} \times \sqrt{N}$ mesh in time $O(\sqrt{N})$.

3. Show that odd-even sorting can be performed on a $\sqrt{N} \times \sqrt{N}$ mesh in time $O(\sqrt{N})$. To show this, you need to map the operations in the algorithm to processors in the mesh, and then estimate the computation and communication time.

4. Consider the problem of sorting $N = P^3$ keys on a P processor network. Initially, each processor holds P^2 keys. Finally we would like processor 0 to have the P^2 smallest keys, 1 the next smallest, and so on. (a) Show that the following algorithm is correct.

 (a) LOCAL SORT: Each processor locally sorts its keys.
 (b) DISTRIBUTE: Let $K[i, j]$ denote the jth smallest key held by processor i, after step 1. Processor i sends $K[i, j]$ to processor $j \mod P$.
 (c) LOCAL SORT: Each processor receives a total of P^2 keys, P from each processor including itself. These are sorted locally.
 (d) DISTRIBUTE: Let $L[i, j]$ denote the jth smallest key held by processor i, after step 3. Processor i sends $L[i, j]$ to processor $\lfloor \frac{j}{P} \rfloor$.
 (e) LOCAL SORT: Each processor sorts the P^2 keys it receives.
 (f) MERGE-SPLIT: Processors $2i$ and $2i + 1$ send their keys to each other. From these processor $2i$ retains the smaller P^2, and processor $2i + 1$ the larger P^2.
 (g) MERGE-SPLIT: Processors $2i + 1$ and $2i + 2$ send their keys to each other. From these processor $2i + 1$ retains the smaller P^2, and processor $2i + 2$ the larger P^2.

 (Hint: Assume that at the beginning processor i has Z_i zeroes, and rest 1s. Estimate the number of zeroes in each processor after every step.)

 (b) Estimate the time taken by the algorithm if the network connecting the processors is a binary hypercube. Estimate the speedup of the algorithm. This needs material from lecture 9, and should only be attempted then.

5. Suppose each processor in an n dimensional binary hypercube holds a w bit key. Show that using a radix sort, radix = 2, it is possible to sort in time $O(wn)$. Hint: use prefix to rank keys in each iteration of the radix sort. Then move the keys using the packing ideas described earlier.

6. Suppose each processor i in a hypercube holds a key x_i, which is to be moved to processor $ai + b$, where a is odd, and a, b are known to all processors. Show that this movement can be done as a single normal algorithm.
Chapter 11

Hypercubic Networks

While hypercubes are extremely powerful and versatile for algorithm design, they have one important drawback: high node degree. An interesting question is, can we get the advantages of hypercubes using a low degree network? In this lecture we will see some networks that partly achieve this.

We will study the Butterfly network, the omega network, the deBruijn network, and the shuffle exchange network. The Cube connected cycles network is a minor variant of the Butterfly and will be presented in an exercise.

11.1 Butterfly Network

A butterfly network of n dimensions has \(N = 2^n(n+1) \) nodes arranged in \(2^n \) rows and \(n+1 \) columns or levels. A node in row \(i \) and column \(j \) is assigned a label \((i,j)\). Node \((i,j)\) is connected to nodes \((i,j+1)\) and \((i \oplus 2^j, j+1)\) for \(0 \leq j < n \). The former is called a straight edge, and the latter a cross edge. Edges going between vertex levels \(j \) and \(j+1 \) are called dimension \(j \) edges. It is customary to refer to level 0 vertices as inputs, and level \(n \) vertices as outputs.

Notice that if all the nodes in any single row are coalesced into a single node, we get an \(n \) dimensional hypercube. Further note that we have a unique forward path from any node \((i,0)\) to any node \((j,n)\); we simply move forward using the straight edges corresponding to dimensions in which \(i \) and \(j \) do not differ, and take the cross edge wherever they do. It is a simple exercise to show that the diameter of the Butterfly is \(2^n \). The bisection width is at most \(2^n \); clearly removing the cross edges in the last dimension bisects the nodes. Interestingly enough, the exact bisection width is smaller[3]!

The butterfly has some very useful recursive structure. Suppose we slice the butterfly along nodes in column \(j \), so that each node is cut into two, and the left node gets the edges on the left and the right the edges on the right. Then it turns out that on the left side of the cut we are left with \(2^n/2^j \) distinct butterfly networks each with \(2^j \) inputs. This is easily verified pictorially. What is less obvious, is that on the right we are left with \(2^j \) Butterfly networks, each having \(2^n/2^j \) inputs.

In fact, the butterflies on the left side may be arranged vertically and those on the right vertically, so that the nodes in level \(j \) are placed at the respective contact points. Figure11.1 shows a 16 input butterfly sliced in level 2 and drawn in this manner. All the small butterflies are not drawn for clarity. Some of the input and output nodes are renumbered so that the arrangement is understood better.
11.1.1 Normal Algorithms

It should be clear that an $N = 2^n(n + 1)$ node butterfly can easily execute 2^n input normal algorithms. We simply simulate the hypercube execution described earlier: Butterfly node (x, i) simulates the iteration i execution of hypercube processor x. The input is read in Butterfly level 0. In the hypercube, the computation in the ith iteration in a processor x depends upon the state of x and processor $x \oplus 2^{i-1}$ in iteration $i - 1$ (since in the hypercube processors communicated across dimension $i - 1$ in iteration $i - 1$). But these states are respectively computed in Butterfly processors $(x, i - 1)$ and $(x \oplus 2^{i-1}, i - 1)$. But these processors are directly connected to processor (x, i), and so the required data can be easily obtained. Notice that whereas every processor of the hypercube is active in every step, 2^n input normal algorithms execute in a level by level manner, with only one level active at any step. The total time, like the hypercube, is of course $O(n)$.

Because the Butterfly has N nodes, it is more natural to execute N input normal algorithms on it, rather than $2^n = N/(n + 1)$ input algorithms. We will assume that N is also a power of 2. As it turns out, this can also be done in $O(n) = O(\log N)$ time. This is a significant advantage over the hypercube: N node hypercubes as well as N node Butterflies can execute N input normal algorithms in time $O(\log N)$, though the Butterfly has far fewer edges.

We first observe that N input normal algorithms can be executed in a level by level manner on an N input (guest) Butterfly in time $O(\log N)$. We now show how to simulate this level by level execution on an N node (host) Butterfly in essentially the same time. For this we need the recursive structure described earlier. In particular, suppose we slice the guest (N input) Butterfly in level

\footnote{We will assume here that the normal algorithm scans hypercube dimensions in ascending order, though a similar argument will apply to scans in the reverse direction.}
On the left side we get $N/2^n = n + 1$ Butterflies (left Butterflies) each with 2^n inputs. On the rightside we get 2^n Butterflies (right Butterflies), each with $N/2^n = n + 1$ inputs.

We first consider the simulation of the left Butterflies on our host Butterfly. The $n + 1$ left Butterflies are exactly the same size as the host, so it would seem that simulating their execution would entail a slowdown of $n + 1$. But notice that these $n + 1$ Butterflies execute in a level by level manner when executing a normal algorithm. Thus we can simulate their execution in a pipelined manner on the host. Let the left Butterflies be numbered 0 through n in some convenient manner. The host can simulate the execution of the 0th Butterfly in a level by level manner in time n; but notice that it need not wait until step $n + 1$ to start simulating the execution of Butterfly 1. In step 1, column 0 of the host can right away start working on Butterfly 1. Proceeding in this manner, the simulation of Butterfly n starts in step n, and finishes in step $2n$. So in $2n$ steps, the host has finished simulation of the entire left side.

There are 2^n right Butterflies, each with $n + 1$ inputs. Each of these Butterflies will be simulated by a row of the host. Notice that after the simulation of the left side each processor in column n of the host holds all the data that needs to be input to a single right Butterfly. This data ($n + 1$ values) are first distributed within the row of the host, so that each node receives 1 value. Each of the host holds all the data that needs to be input to a single right Butterfly. This data ($n + 1$ values) are first distributed within the row of the host, so that each node receives 1 value. Each row then simulates the level by level execution of an $n + 1$ input Butterfly. Using the result of a previous exercise, this takes time $O(n)$.

The total time for the entire simulation is thus also $O(n) = O(\log N)$. The N node Butterfly can thus execute N input normal algorithms in time $O(\log N)$, but not in a level by level manner, as is to be expected.

11.2 Omega Network

The so called Omega network is just a redrawing of the Butterfly network. But the redrawing has a very nice property which we will see in a minute.

Define the *unshuffle* $u_n(i)$ to be number resulting when the least significant n bits of i are right rotated by 1 bit. We will use $u_n^r(i)$ to denote right rotation by r bits. We will need the following fact: $u_n^r(i \oplus 2^r) = u_n^r(i) \oplus u_n^r(2^r) = u_n^r(i) \oplus 1$.

Our redrawing of the Butterfly to give the Omega is as follows: move vertex (i, j) of the Butterfly to position $(u_n(i), j)$. Notice that Butterfly vertex (i, j) is connected in the forward direction to vertices $(i, j + 1)$ and $(i \oplus 2^j, j + 1)$ which are themselves moved to positions $(u_n^{j+1}(i), j + 1)$ and $(u_n^{j+1}(i \oplus 2^j), j + 1)$. But note that $u_n^{j+1}(i) = u_n(u_n^{j}(i))$. Also note that $u_n^{j+1}(i \oplus 2^j) = u_n(u_n^{j}(i \oplus 2^j)) = u_n(u_n^{j}(i) \oplus 1)$. Let $x = u_n^{j}(i)$. Then we get node (i, j) in the butterfly is the same as node (x, j) in the Omega, and this connects to node $(i, j + 1)$ and node $(i \oplus 2^j, j + 1)$ which are same as nodes $(u_n(x), j + 1)$ and $(u_n(x \oplus 1), j + 1)$ respectively in the Omega. In summary, Omega node (x, j) connects in the forward direction to Omega nodes $(u_n(x), j + 1)$ and $(u_n(x \oplus 1), j + 1)$. This has the remarkable property that we promised earlier: the pattern of connections between any two consecutive levels is exactly identical!

It is interesting to write down the backward connections too. A node $(y, j - 1)$ connects to $(u_n(y), j), (u_n(y \oplus 1), j)$. Thus, writing $x = u_n(y)$ we get $y = u_n^{-1}(x)$. Writing $x = u_n^{-1}(y \oplus 1)$ we get $y = u_n^{-1}(x) \oplus 1$. It is customary to write $s_n = u_n^{-1}$ to denote the left shift by single bit. Thus (x, j) connects also to $(s_n(x), j - 1)$ and $(s_n(x) \oplus 1, j - 1)$.

The use of the letters u, s for the two operators is short for “unshuffle” and “shuffle”. In the so called perfect shuffle of a deck of cards, we separate the top half of the deck and the bottom half,
and then form a new deck by interleaving the cards from the two halves. Unshuffle is the reverse of this. Note that moving node i to position $u_n(i)$ is akin to unshuffling a stack of nodes labelled 0 to $2^n - 1$ top to bottom.

11.3 deBruijn Network

The n dimensional deBruijn network has 2^n nodes numbered 0, \ldots, $2^n - 1$. To construct it, we start with the Omega network on 2^n rows and coalesce all the nodes in row i into a single node which becomes node i of the deBruijn. Since the pattern of connections between consecutive levels is identical, we now have a multigraph, from which we eliminate all the duplicate edges to get the deBruijn network.

The pattern of connections is obtained simply by dropping the second coordinate from the Omega. Thus node x in the deBruijn connects to nodes $s_n(x)$, $u_n(x \oplus 1)$, $s_n(x)$ and $s_n(x) \oplus 1$. We note that some of the connections might loop back if the bit pattern of x is special, e.g. $s_n(0) = u_n(0) = 0$, and thus node 0 effectively has degree 3, while most nodes have degree 4.

It is easy to see that the deBruijn graph has diameter n. Let u and v be two with $u_{n-1}u_{n-2} \ldots u_0$ and $v_{n-1}v_{n-2} \ldots v_0$ denoting the bits comprising the numbers u and v respectively. Consider the following sequence of nodes, denoted by their bit patterns:

$$(u_{n-1}u_{n-2} \ldots u_0), (u_{n-2}u_{n-3} \ldots u_0v_{n-1}), \ldots (u_{n-j}u_{n-j-1} \ldots u_0v_{n-1} \ldots v_{n-j+1}), \ldots, (v_{n-1} \ldots v_0)$$

Clearly, each node in the sequence can be reached from the preceding node by following an edge of the deBruijn graph. Thus we have identified a path from u to v in the graph. Note however, that path may not be simple, since some of the edges might be selfloops. But in any case the path has length at most n. This establishes that the diameter is at most n. It is easy to see that the diameter has to be at least n by considering paths connecting 0 and $2^n - 1$.

The bisection width is $\theta(2^n/n)$. This is established in a text such as [6].

11.3.1 Normal Algorithms

The Omega network was a redrawing of the Butterfly, with nodes getting rearranged only within each level. Thus level-by-level algorithms on the Butterfly will also execute on the Omega in a level by level manner. In other words, 2^n input normal algorithms would execute on the Omega in time $O(n)$.

But the deBruijn can simulate any level by level algorithm on the Omega without slowdown—a single column of processors does the work of all levels. Thus deBruijn networks on 2^n nodes can execute 2^n input normal algorithms in time $O(n)$.

11.4 Shuffle Exchange Network

The shuffle exchange graph is closely related to the deBruijn. It also has 2^n nodes numbered 0, \ldots, $2^n - 1$. Node x in the graph is connected to nodes $s_n(x)$, $u_n(x)$ and $x \oplus 1$ using the so called shuffle, unshuffle and exchange edges.

Lemma 9 2^n node shuffle exchange can simulate 2^n node deBruijn with a slowdown of at most 2.
Proof: We will let node x in shuffle exchange simulate node x in deBruijn. Since each node is simulated by a unique node, computation is implemented without any slowdown. Communication is implemented as follows. Notice that the shuffle and unshuffle edges are present in both graphs, so communication along these edges is implemented without slowdown. The deBruijn communication between x and $s_n(x) \oplus 1$ can be simulated in two steps: the message is first sent to $s_n(x)$, and then using the exchange edge out of $s_n(x)$ to $s_n(x) \oplus 1$ as needed. Likewise the communication between x and $u_n(x \oplus 1)$ is achieved in the shuffle exchange by first following the exchange edge and then the unshuffle edge.

It is also possible to show the converse (exercise), establishing the fact that the computational capabilities of the two networks are identical. Thus the 2^n node shuffle exchange can also execute 2^n inputs in time $O(n)$.

11.5 Summary

We have seen 4 derivatives of the hypercube: Butterfly, Omega, deBruijn, and Shuffle-Exchange. These have bounded degree unlike the hypercube, but like the hypercube they too can execute normal algorithms (with as many inputs as the number of processors) in time logarithmic in the number of processors.

Exercises

1. Show that the Butterfly network with 2^n inputs has diameter $2n$.
2. What is the diameter of the 2^n node shuffle exchange network?
3. Show that the deBruijn network can simulate any algorithm running on a shuffle exchange network of the same size with a slowdown of 2.
4. Consider a deBruijn network on $N = 2^n$ nodes. Show that the 2^n leaf complete binary tree has an embedding in the deBruijn graph with load n and dilation 1.
5. The cube connected cycles network CCC(n) on $n2^n$ nodes is defined as follows. Each vertex is numbered (x,y), where $0 \leq x < n$, and $0 \leq y < 2^n$. Vertex (x,y) connects to vertex $(x+1 \mod n, y)$ and $(x-1 \mod n, y)$ using edges called ”cycle edges”, and to vertex $(x, y \oplus 2^x)$ using edges called ”cube edges”. Show that the 2^n row Butterfly can be simulated on a CCC(n) using a slowdown of 2.
6. For the case $n = 2^k$ show that CCC(n) is a subgraph of the hypercube with 2^{n+k} nodes.
7. Show that there exists a permutation π over 2^k inputs such that of all the connections from input i to output $\pi(i)$, only at most $2^{k/2}$ can be established in a vertex disjoint manner in a 2^k input butterfly. Hint: the answer is similar to the one in Section 12.7. Another way to see this is to consider a split of the Butterfly along level $k/2$, and select π so that at most one path leaves each butterfly on the left.
8. For the above problem, show that for all π, it is possible to make at least $2^{k/2}$ connections in a node disjoint manner. Hint: Show, using Hall’s Theorem for perfect matchings that you can always ensure that at least one path from each butterfly on the left as per the split above will get established.
Chapter 12
Message Routing

In this lecture, we will consider the so called message routing problem. Suppose each processor in a parallel computer has 0 or more objects which we will call messages. Each message may have several fields, but it has at least two: destination, which is the number of some processor in the network, and data. The goal is to move the message (in particular, the data field) to the processor named as its destination. The destination of a message may be several links away from the processor (source) at which the message is at the beginning. This movement is required to occur in a distributed manner, using only local information available with each processor. The idea is that each processor examines the destinations of the messages it holds and sends out its messages to its neighbors so that each eventually reaches its destination.1

In the parallel algorithms we have seen so far, such a general message movement capability was not needed. This was because the problems we considered had very regular dataflow which we could analyze before hand, and then organize computation and store data such that each processor needed to communicate with nearby processors. In the general case, this need not be true. Consider an application involving pointers, e.g. algorithms on sparse, irregular, graphs, or algorithms on lists or trees. Suppose such a data structure, say a tree, is stored in a distributed manner among the memories of several processors of the parallel computer. It is highly unlikely, that the interconnection network of the parallel computer will match the particular tree we wish to store. Thus if a processor holding the data corresponding to a vertex in the tree wishes to get information regarding the parent of that vertex, this information would have to be obtained using message routing as formulated above.

Message routing has been intensely studied. There are a number of different models that have been used to analyze the problem, and theoretical analysis as well as extensive simulations have been performed of several routing algorithms. Our focus, in these lectures, will be on the “packet routing” model, which also happens to be the most studied. We present some preliminary analysis of the general packet routing model (some of the ideas are applicable to other models also). Then we consider two message routing problems: (1) the problem of permutation routing in which each processor sends a single message to a unique processor (2) the all-to-all routing problem, in which

1This problem also has a dynamic version, in which each processor continues to inject messages into the network, and the important issues are how the network behaves in the steady state (if there is a steady state etc.). We will only consider the static version described above, in which all the messages are given at the start. Note that the dynamic problem can be converted into a series of static problems by “batching”. That is, the messages grouped into batches where the ith batch of messages consists of the messages generated by the processors while the (i−1)th batch is delivered. Each batch then can be considered to be a single static problem.
each processor sends a (distinct) message to every other processor in the network. We conclude
with a survey of message routing models.

12.1 Model

The most common model for analyzing message routing is the \textit{store-and-forward} or the \textit{packet-
switched} model. In this model, each message is considered to be an atomic object, or a \textit{packet}. An
entire packet or a message can be transmitted in one step across any link in the network. Each
link can be used for transmitting only one message in each direction in each step. Further, each
processor in the network is assumed to have only a limited amount of memory which can be used
to hold messages in transit. Thus, the decision of whether to transmit a message along some link
in the network depends firstly upon the availability of the link, and secondly on the availability
of a buffer to hold the message at the receiving processor. Finally, once a message arrives at its
destination, it is removed from the system, i.e. it does not need to occupy buffer space.

Our model also allows auxiliary messages to be exchanged among neighbouring processors. Auxiliary
messages are very similar to ordinary messages except that they are used by the processors
in the network to aid in moving other messages. For example, auxiliary messages may be used to
convey information such as buffer availability. We will require auxiliary messages to have a fixed
length. Further, our model allows only one message (ordinary or auxiliary) to be transmitted along
any link in any step. Finally, if auxiliary messages need to be forwarded for any reason, they need
to be buffered like other messages.

Other models have also been used to study message routing. We will survey these briefly at the
end.

12.2 Routing Algorithms

A routing algorithm consist of the following generic steps repeated in parallel by all processors:

1. Of all the messages waiting in the processor, select at most one message for transmitting along
each link.

2. Exchange auxiliary messages with neighbours and obtain information regarding buffer avail-
ability.

3. Transmit the selected messages subject to buffer availability.

4. Receive messages transmitted by neighboring processors.

The algorithm designer must decide upon the precise implementation of step 1 and step 2. For this,
the designer must select strategies for \textit{path selection}, \textit{scheduling} and \textit{buffer management}.

The path selection strategy is used to decide a path for each message. This will be useful in step
1 in the generic algorithm described above. Given a path for each message, the scheduling strategy
decides when the message moves along it. In step 1 of the code above, if several messages wait to
be transmitted along the same edge, which one to send out will be determined by the scheduling
strategy. The buffer management strategy will determine the manner in which buffers are allocated
to receive incoming messages. We will see examples of all these next.
12.3 Path Selection

We consider path selection strategies for several networks, e.g. 2 dimensional meshes, hypercubes and butterfly networks.

Suppose a node \((x, y)\) in a 2 dimensional mesh has a message with destination \((x', y')\). Then a natural path for the message would be to first move the message within its row to the correct column and then on to the correct row, viz. \((x, y) \rightarrow (x, y') \rightarrow (x', y')\). Another possibility is to first go to the correct row and then to the correct column. Finally, a rather interesting path selection strategy would be adaptive: at each point attempt to move the message closer to its destination, by making either column movement or row movement. Which movement to make could be determined dynamically, for example if some other packet also wanted to use the column edge, then we could choose the row edge, and vice versa. The first two strategies, in contrast, fix the packet path independent of the presence of other packets – and such strategies are called oblivious path selection strategies.

On the hypercube, a natural path selection strategy is the so called greedy strategy, so called because it uses the most natural shortest path. Suppose \(u\) is any node in an \(N = 2^n\) node hypercube. Suppose we need to find a path from \(u\) to some other node \(v\). To do this we examine the bit patterns of \(u\) and \(v\). Wherever the bit patterns differ, we move across the edge in the corresponding dimension. In particular, let \(u_0u_1...u_{n-1}\) denote the bit pattern of \(u\), and similarly for \(v\). Then it is easily seen that the following sequence of nodes identifies a path in the hypercube from \(u\) to \(v\): \(u_0...u_{n-1}, v_0u_1...u_{n-1}, v_0v_1u_2...u_{n-1}..., v_0...v_{n-2}u_{n-1}, v_0...v_{n-1}\). Successive nodes in the sequence are either the same node, or differ in a single bit (and are hence adjacent on the hypercube). Clearly, the sequence identifies a path with as many edges as the number of bit positions in which \(u\) and \(v\) differ, i.e. a shortest path between \(u\) and \(v\).

Adaptive strategies are also possible; suppose the source and the destination differ in some \(k\) dimensions, then these dimensions may be crossed in any of the \(k!\) different orders, with the precise path selected dynamically. At each node during transit, the path selection strategy should only attempt to move the packet towards the destination; if it is possible to get closer to the destination crossing any of several edges, the one which is needed by the fewest number of other messages (among those present at the node) might be chosen.

Finally, suppose we have a packet that has to travel from node \((r, c)\) of a \(2^n\) input butterfly to node \((r', c')\). In this case one possible path consists of 3 segments as follows. The message is first moved to node \((r, 0)\) in the same row. Then it uses the unique forward path in the butterfly to go to node \((r', n)\). Then it moves within the row to get to \((r', c')\). As you can see, this is not the shortest path; however it is intuitively simple.

12.4 Scheduling

The basic question of scheduling is “when should each packet be moved?”. We implicitly assume that the packet paths have been fixed by the path selection algorithm, so that the input to the scheduling problem is a set of packet paths.

The simplest scheduling strategy is FIFO. Suppose a processor holds several packets requiring to go out on a single link. It then checks if the processor on the other end has space to receive a packet, and if so, sends out the packet that waited longest. Another scheduling strategy is to transmit packets that have the longest total waiting time in the entire system (as opposed to FIFO
which only considers the waiting time at the current node).

Another strategy is “farthest to go first”. In this strategy, of all the waiting packets, the one whose destination is the farthest is transmitted first. This strategy is successful for message routing on 2 dimensional meshes[6].

Finally, each message may be assigned a priority. If several messages are waiting, the one with the highest priority might be chosen earliest. Priorities could be assigned by the sender processor based on some programming consideration (e.g. a message storing data might be assigned a lower priority than a message that is meant to release a lock).

12.5 Buffer Management

Each node in a routing network will have buffers to hold messages in transit. How should these buffers be managed, i.e. allocated to incoming messages? The primary consideration is avoiding deadlocks.

Perhaps the simplest strategy is to partition the set of available buffers among the incoming edges. Each incoming edge is thus assigned a queue of buffers; requests to transmit messages on an edge are accepted only if the associated queue has a buffer available. In addition, each node has a special queue called an initial queue; this queue will contain at the start all the messages that originate at that processor. This strategy works well on networks like multidimensional arrays and hypercubes. It can be proved (exercise) that there are no deadlocks possible. We will call this the natural buffer management strategy.

Unfortunately, the strategy does not work on networks like a torus, or even a simple ring. Consider an \(N \) processor ring in which each edge is associated with a queue consisting of a single buffer (capable of holding one message). Now consider the state in which each processor \(i \) sends a message to processor \(i + 2 \mod N \). Initially, the messages are in the initial queue of each processor. After one step all the messages will move one step to the right (i.e. in the direction of processor \(i + 1 \mod N \) from processor \(i \)). At this point no movement will be possible. This is because processor \(i \) will request to transmit to processor \(i + 1 \); but processor \(i + 1 \) will not accept this request since the queue associated with its left edge is full. This will be the case for all processors. Notice that if the ring was an array, this case would not pose a problem.

The deadlock described above can be explained by using a buffer dependency graph. This is a directed graph in which each queue is a vertex and there is an edge from queue \(i \) to queue \(j \) iff it is conceivable that some message in queue \(i \) might have to be moved to queue \(j \) (in one step). A routing network is susceptible to deadlocks if its buffer dependency graph contains a cycle. On the other hand, if the buffer dependency graph is acyclic, no deadlocks are possible.

As will be seen, the buffer dependency graph of the ring consists of two cycles, one going left and the other right. In the example described above, we used the rightgoing cycle to produce the deadlock. Can we design deadlockfree routing algorithms for the ring? One possibility is to ignore the wraparound connection and treat it as a linear array. This solution is very likely wasteful; in the routing problem described above processor \(N - 1 \) would need \(N - 2 \) steps to send its message to processor 1, even though \(N - 1 \) and 1 are only 2 links apart.

A better solution is as follows. We let the ring simulate a (virtual) linear array of \(2N \) processors. Processor \(i \) of the array is simulated by processor \(i \mod N \). Thus all processors simulate 2 array processors. Each array processor has at most 2 queues (one left and one right); the ring processor thus needs to allocate upto 4 queues to simulate the queues of the array processors allotted to it.
The ring processors use the simulated system for sending and receiving messages as follows. Suppose ring processor \(i \) wishes to send a message to ring processor \(j \) using a rightgoing path. Let \(d \) denote the length of this path. This message transmission is accomplished using the simulated array as follows. Processor \(i \) constructs a message with destination \(i + d \) and places it in the initial queue of array processor \(i \) which it is itself simulating. The message moves to array processor \(i + d \), which as it turns out is simulated by processor \(j \)!

If \(j = i + d \); the other possibility is that \(j = i + d \mod N \); but in this case array processor \(i + d \) will also be simulated by processor \(j \). Leftgoing messages are treated analogously. If \(j \) were to be reached by a left going path of length \(d \), then processor \(i \) would create a message with destination \(j \) but place it in the initial queue of array processor \(i + N \).

To prove that this system is deadlock free, we need to draw its buffer dependency graph. It is easily seen that this graph is nothing but a left going array with \(2N \) processors, and a right going array with \(2N \) processors. This is clearly acyclic.

This idea can be extended for designing deadlock free buffer management strategies for other networks also. In the literature, this idea is often referred to as the \textit{virtual channels} idea.

\subsection{12.6 Basic Results}

We present some elementary upper and lower bounds.

The path selection algorithm puts some natural lower bounds on the time to solve a routing problem. Let \(d \) denote the length of the longest path as selected by the path selection algorithm. Let \(c \) denote the congestion of the problem, i.e. the maximum number of messages passing through any link in the network. Then the time must be at least \(\max(c, d) \), since time \(c \) is needed to send out all the messages passing through the most congested link, and the message needing to travel a distance \(d \) must take at least \(d \) time steps.

This raises the question: given a set of messages and their paths can we route them in time \(\max(c, d) \)? Notice that \((c + d)/2 \leq \max(c, d) \leq c + d \). The basic question then is, can we schedule message movement so that all packets can be moved in time \(O(c + d) \), which is the best possible to within constant factors?

We can derive a simple upper bound if we assume that we have unbounded buffer space at each processor. In this case it is easy to see that the only reason a message will not move is if the link it needs is allotted to some other message. With this observation it follows that each message will wait at most \(c \) time steps at each link on its path. Since no message travels more than \(d \) links, the total waiting time for any message is at most \(O(cd) \).

Better upper bounds are known, but these use involved arguments which we will not cover. Good references are [6, 7, 8]. We will examine some special cases below.

\subsection{12.7 Case Study: Hypercube Routing}

Hypercubes are a popular interconnection network for parallel computer design, and hence message routing on hypercubes has been intensely studied.

A variety of strategies have been used for path selection, scheduling and buffer management. Here we will examine in some detail the simplest possible strategies. In particular, we will consider a routing algorithm in which path selection is done using the greedy path (correct bits from least significant to most), first in first out scheduling is used, and the natural buffer management strategy
is used. We will further assume that the queue associated with each incoming edge in each node is unbounded.

We consider the so called permutation routing problem. Suppose that each node in the hypercube holds a single message to be sent to a unique node. How long does it take to finish delivery?

The answer turns out to depend very strongly upon the precise permutation being routed. For example, suppose each node i sends its message to node $i+c \mod N$, for some constant c. It turns out that for this case, the greedy paths assigned to the messages are edge disjoint! Thus each message will be able to move 1 step towards its destination in each step, so that in $\log N$ steps, all messages will get delivered.

The proof that messages have edge disjoint paths is by contradiction. Suppose that messages originating in nodes u and v pass through the same edge e. Let $w = u + c$ and $x = v + c$ be the destinations. Further let $w_0 w_1 \ldots w_{n-1}$ denote the bits in u, from the least significant to the most, and similarly for other nodes in the hypercube. Now suppose the edge e lies along dimension k. Since it lies on the path from u to w, we know that one of the endpoints of e must be $w_0 w_1 \ldots w_{k-1} u_k \ldots u_{n-1}$, and the other $w_0 w_1 \ldots w_k u_{k+1} \ldots u_{n-1}$. But since e is also on the path from v to x, we have $w_0 w_1 \ldots w_{k-1} u_k \ldots u_{n-1} = x_0 x_1 \ldots x_{k-1} v_k \ldots v_{n-1}$, and $w_0 w_1 \ldots w_k u_{k+1} \ldots u_{n-1} = x_0 x_1 \ldots x_k v_{k+1} \ldots v_{n-1}$. In other words, $w_0 \ldots w_k = x_0 \ldots x_k$. But $u = w - c$, and $v = x - c$, and hence the k least significant bits of u and v must also be identical. But we also know that $v_k \ldots v_{n-1} = u_k \ldots u_{n-1}$. Thus u and v are the same node, giving a contradiction.

Greedy routing is however much worse for some permutations. Consider the bit reverse permutation: node $x_0 x_1 \ldots x_{n-1}$ sends to node $x_{n-1} \ldots x_0$. We will show that in this case high congestion is produced in the network. Let $m = n/2$. Consider nodes having the bit pattern $y_0 \ldots y_{m-1} 0^m$, i.e. bit patterns in which the most significant m bits are 0. These nodes will send a message to $0^m y_{m-1} \ldots y_0$. Notice that all such messages will pass through node 0 (after the least significant m bits are corrected). But the number of such messages is simply the number of choices for $y_0 \ldots y_{m}$, i.e. $2^m = 2^{n/2} = \sqrt{N}$. Thus as many as \sqrt{N} messages will pass through node 0, leading to congestion $\sqrt{N}/\log N$ on one of its edges. Thus the total time would be at least $\sqrt{N}/\log N$, which is much larger than $\log N$ as in the above example.

An interesting question then is which of the two times is more common, $\sqrt{N}/\log N$, or $\log N$. It turns out, that if the permutation to be routed is selected at random from the space of all possible permutations, then the time would be $O(\log N)$ with very high probability[6]. This suggests that the routing scheme as defined might work fairly well in practice.

12.8 Case Study: All to All Routing

In the all to all routing problem each node i in an N processor parallel computer has N messages x_{ij}, where x_{ij} is to be sent to processor j. This problem arises extremely frequently in practice. The interesting issue in designing a routing algorithm for this problem is the scheduling strategy. Since each node holds several messages at the very outset, in what order should they be sent?

One possibility is to use the order in which the messages are stored in the initial queue in each node. A natural order in which messages are stored in processor i is $x_{i0}, x_{i1}, \ldots, x_{iN-1}$. This order would be disastrous, since all the messages to processor 0 would be injected first into the network. Since processor 0 can only accept at each step as many messages as the network degree, the time just to deliver these messages would be N/degree. Further, all these messages to processor 0 would wait in the network and obstruct the injection of subsequent messages. The precise delays
caused by the scheme depend upon the structure of the network, and the path selection/buffer management strategies. But it is easy to see that the scheduling strategy will work badly on almost every network, and this has also been experimentally observed.

A better scheduling strategy is to have processor \(i \) send out its messages in the order \(x_{ii}, x_{ii+1}, \ldots, x_{iN-1}, x_{i0}, \ldots, x_{i(i-1)} \). The first message sent out by each processor goes to itself, so it is immediately removed from the network. The next set of messages is formed by processor \(i \) sending to processor \(i+1 \); thus each message in this set has a unique destination! This situation is very different from the one considered earlier, in which each set consisted of messages with an identical destination. As it happens this scheduling strategy will very likely work extremely well on almost all networks. On hypercubes for example, each batch will be routed in time \(\log N \) by the argument of the preceding section. Subsequent batches will get injected in a pipelined manner, so that the total time will be \(N - 1 + \log N \).

The scheduling scheme suggested above works only for the case in which each processor sends a message to every other processor. What if each processor sends a message to almost every processor, but not all? We could still construct a schedule which would guarantee that each batch of messages would have messages going to distinct processors. But this would require us to know the precise message pattern in advance. One way to avoid the need for this global knowledge is to have each processor send its messages in random order. Experimentally, this strategy has been found to work well. It can also be justified theoretically using ideas from [6]. But this is beyond the scope of our course.

12.9 Other Models

In most other models of message routing, each message is not considered to be atomic, but instead consists of a sequence of flow-control units, or flits. A single flit can be sent across a link in unit time. Typically, only the few initial flits hold information regarding the message destination, while the rest hold the data. This makes it necessary to transmit flits of a message contiguously. There are several variations on precisely how this is done.

One common model is the circuit-switched model. In this model, before the message actually moves, a path between the source of the message and its destination must be selected and reserved for the message. Once the path is reserved, several message may be sent along it, until the path is deallocated. Identification, reservation and deallocation of paths is done using auxiliary messages. Auxiliary messages (also called control messages) are typically only a few flits long. The advantages of circuit switching are (1) low buffering: since the path is allocated in advance, all the links are known to be available for transmission, thus little buffering (a few flits) is needed at intermediate nodes. This is in contrast to packet switching, where entire messages must be buffered at intermediate nodes. Note that the control messages are only a few flits long, so very little buffering suffices for them. (2) Low delay once the path is reserved. The major disadvantages are (1) the entire path must be reserved before message transmission can begin on any link, leading to idle links (2) Reserving the entire path might take long, because of other messages simultaneously contending for links.

Two models attempt to get the best of packet switched and circuit switched routing. The first is called virtual cut-through. In this, the process of selecting and reserving the path is overlapped with the movement of the message. In particular, the source sends out a control flit which moves towards the destination, and as it does so reserves the links that it traverses. This is unlike circuit switching in which the message waits initially until the entire path is reserved. It is conceivable that
the control flit which is attempting to reserve links gets blocked at some intermediate node, because all the links in the direction of the source might be in use. In that case the message will travel to that node and wait there. The final optimization is that as the last flit of the message is transmitted across any link, it marks that link as dereserved. Thus, virtual cutthrough doesn’t reserve links and leave them idle. It however needs to be able to buffer entire messages at intermediate nodes on the path of any message.

The wormhole routing model is similar to virtual cutthrough. The only difference is that every node has buffer space adequate to buffer only a few flits. As in virtual cutthrough a message starts moving as soon as the initial control flit advances and selects a path. If the control flit is forced to wait at any node, then the entire message must wait behind it. In virtual cutthrough, the node in which the control flit is waiting has enough space to allow the entire message to travel into it; in wormhole routing, the buffer space is only a few flits. So in wormhole routing, the message buffers in occupies several nodes as it waits. Further, since we require the flits of any message to be transmitted contiguously on any link, no other messages can be transmitted along the links that have been reserved. Thus, wormhole routing is closer to circuit switched routing than virtual cutthrough.

Notice, that if the length of the message is exactly 1 flit, then wormhole routing and virtual cutthrough are essentially the same as packet routing.

Leighton’s text[6] is a good starting point for study of routing algorithms. Also useful are the papers [14, 8, 7] and the references therein.

Exercises

1. Suppose that on the two dimensional $\sqrt{N} \times \sqrt{N}$ mesh paths are selected as described in the text, i.e. correct the y coordinate, and then the x coordinate. What is the maximum possible congestion for permutation routing? Suppose we use FIFO scheduling and the natural buffer management scheme, with each queue having length \sqrt{N}. How long will permutation routing take in the worst case?

2. Consider the permutation routing problem on a 3 dimensional mesh of $N^{1/3} \times N^{1/3} \times N^{1/3}$ processors. Suppose that messages are moved by correcting the coordinates in some fixed order. What is the worst possible congestion?

3. Draw the buffer dependency graph for a $\sqrt{N} \times \sqrt{N}$ mesh.

4. Suppose each queue in the example of Section 12.5 can hold 2 messages. Can you construct an example in which deadlocks will still be produced?

5. Show that deadlocks are possible for the natural buffer management strategy on the Butterfly for the path selection strategy described. Devise a strategy that avoids deadlocks.
Chapter 13

Permutation routing on hypercubes

Suppose each processor x in an $N = 2^n$ node hypercube as to send a packet to a unique processor $\pi(x)$, i.e. π is a permutation. How can we do this, so that the time taken is as small as possible in the worst case, i.e. over all π?

As discussed earlier, an algorithm will have to have a path selection strategy, a scheduling strategy, and also a buffering strategy. It is natural to consider canonical paths. However, we have seen before that with canonical paths we will get congestion $\Omega(\sqrt{N})$ in some edge, thus the time will have to be $\Omega(\sqrt{N})$. If we want to do better, we must use a different path selection strategy. It turns out that any deterministic path selection strategy suffers from a similar problem: it will produce high congestion in some edge for some π.

By using randomization, as proposed by Valiant, we can do better. Here is Valiant’s algorithm. It has 2 phases. The algorithm is as follows.

1. Phase 1: Each processor x picks independently and uniformly randomly a processor $\rho(x)$.
 Obviously ρ is unlikely to be a permutation. The packet at processor x is sent to processor $\rho(x)$. $\rho(x)$ is called the random intermediate destination.

2. Phase 2: Each packet is forwarded to the correct destination.

In both phases, we use canonical paths, obtained by correcting bits from lsb to msb. Packet scheduling can be done anyhow, the only requirement is that some packet must be sent on a link if one is available to traverse on that link.

Theorem 6 (Valiant [13]) Valiant’s algorithm finishes in time $O(\log N)$ with high probability, for any π.

Proof: In Lemma 10 we will show that if d packets pass through the path of any packet p then the packet p will be delivered in time at most $\log N + d$.

In Lemma 11 we will show that for any packet p in any phase, the number of distinct packets passing through its path will be $O(\log N)$ with high probability.

Since there are only N packets, it will follow that all packets will be delivered in time $O(\log N)$. ■

Lemma 10 Consider the path of any packet p. If at most k packets pass through any edge of the path and enter the path at most once., then p will wait along the path for at most k steps.
Proof: Draw a space time graph. y axis is the path of p, and x axis is time. Assume unit time = unit distance = length of edge. So each packet will have a trajectory that is made of lines oriented at 45 degrees to the x axis, and parallel to the x axis. Suppose p is in its origin node at $t = 0$. Suppose p reaches its destination at some time T. Let the path have length d.

Consider lines inclined at 45 degrees starting at $x = 0, 1..T - d$, going up to $y = d$. Each such line must be occupied by the trajectory of p at least for a point; because the trajectory of p must cross these lines. Consider the topmost packet occupying these lines. Let p' be one such packet. Suppose it is the topmost packet in several lines, the leftmost amongst which starts at t. Suppose the packet wants to go to the end of the path. In this case it can do so unhindered along the line. Then clearly it must appear at most once as the topmost packet. Suppose it does not go all the way to the end of the path. In this case it must go unhindered to the point at which it leaves the path. So even in this case it appears exactly once as the top most packet. Thus we have identified $T - d - 1$ distinct packets passing through the path, which is the delay faced by p.

Lemma 11 The number of distinct packets passing through the path of any packet p is $O(\log N)$ with high probability.

Proof: Suppose the path is from $x = x_{n-1}...x_0$ to $y = y_{n-1}...y_0$.

Because of the correspondence between paths on the hypercube (correcting bits lsb to msb) and paths on a 2^n input butterfly, we will visualize the problem on the Butterfly.

On the Butterfly this path starts from input node x and goes to output node y. Suppose we start moving backward from output node y. Then as we move back, in each level we have two choices. So potentially we can reach 2^n input nodes as we come back all the way to the inputs. But in fact we know that each input node has a path that reaches y. So all the nodes reached going backward from y must be distinct, i.e. if you follow the edges backward from y, they form a tree. So then it follows that if you diverge from the path at level i, you will reach 2^i nodes, which will be distinct from the 2^j nodes that you will reach diverging form level $j \neq i$.

In other words, each packet can enter the path from input x to output y at most once. So if we want to know how many different packets touch the path, we can ask how many packets enter it.

Let p' be some packet which can potentially enter the path of p at level i. There are 2^i such packets. We will find the probability that p' actually enters the path. Instead of picking p in one shot, suppose we pick it bit by bit, as the packet moves. Then to enter the path of p, at level i, a packet must pick i bits just right. So $Pr[p' \text{ enters the path }] = 1/2^i$.

Let $C = \sum q C_q$ be number of packets which enter the path of p. Let $C_q = \text{random variable taking value 1}$ if packet q enters the path of p. This is defined for every q that can possibly enter the path.

C_q is a Bernoulli random variable. All C_q are independent because whether they intersect path of p is determined by their own random bits.

So $C = \sum q C_q$

$E[C] = \sum q E[C_q] = \sum_i 2^i E[C_q, q \text{ entering in level } i] = \sum_i 1 = n$.

Now all that remains is to apply Chernoff bounds.¹

$Pr[C > k \log N] < \left(\frac{e}{k}\right)^{k \log N} < 2^{k \log N} = N^{-k}$ assuming we pick $k > 2e$.

¹Suppose $X = \sum_i X_i$ is a sum of independent 0-1 random variables X_i, each having probability p_i of being 1. Then $\mu = \sum_i p_i$ is the expected value of X. Then $Pr[X > k\mu] < \left(\frac{e}{k}\right)^{k\mu}$.

\[h(k) = \max(k, 2e). \] Thus our definition is satisfied.

The idea of first sending each packet to a random intermediate destination and then forwarding it to the correct destination in two phases works for other networks besides the hypercube.

Exercises

1. Show that the number of packets passing through any edge of the hypercube is \(O(\log N / \log \log N) \) w.h.p. What is the expected number of packets? Do you understand why the high probability bound is different from the expectation?

2. Consider the problem of routing permutations in an \(n \times n \times n \) array of processors. Here is the path selection algorithm. Suppose the processor \((x, y, z)\) is to send a packet to processor \((x', y', z')\). This packet is sent using the following path:

\[
(x, y, z) \xrightarrow{} (x'', y, z) \xrightarrow{} (x'', y', z) \xrightarrow{} (x'', y', z') \xrightarrow{} (x', y', z')
\]

where \(x''\) is a random number between 1 and \(n\) picked independently by each processor. Give high probability bounds on the max congestion of the edges.

Note that the destination of each packet is unique, and chosen deterministically. Your bounds must be for the worst way of choosing the destination, if needed.

3. Suppose each vertex in a \(N = 2^n \) node deBruijn graph sends a packet to an independently uniformly randomly chosen vertex. Show that each link will have congestion \(O(\log N) \) w.h.p. You should be able to derive this result directly, i.e. by considering the algebraic definition and arguing which processors can potentially contribute packets and with what probability. You should also be able to make the derivation by considering the relationship between the Butterfly, Omega and deBruijn networks.
Chapter 14

Queuesize in Random Destination Routing on a Mesh

We study the following problem. Each processor in a $\sqrt{N} \times \sqrt{N}$ mesh holds a single packet which has a destination which is chosen uniformly randomly from all processors. The packet moves to the correct column first, and then to the correct row. The questions are: how much time will be needed, and how much can the queues build up, using appropriate scheduling strategies (e.g. FIFO, farthest to go first, or whatever). During the analysis we will assume that the queues are unbounded; however, if we can show that with high probability no queue builds up too much, then we can allocate short queues and expect that packets will never be rejected because of full queues, and thus the time taken will also be same as before.

14.1 $O(\sqrt{N})$ Queuesize

Since each processor starts with just one packet, they can all start moving horizontally right at the beginning. Since no new packets will come in in any of the later steps, once a packet starts moving horizontally it can go as far as it wants horizontally without waiting. At the point at which the packet turns, it might have to wait because there may be vertically moving packets with which it must compete for transmission. Suppose we use the following strategy: give preference to packets already moving vertically over packets which are turning. With this, once the packet starts moving vertically, it will not be delayed subsequently.

So the only question is, how long is a packet delayed at the point at which it turns? Clearly, this will be no more than the number of packets passing through any processor. This is clearly bounded by $O(\sqrt{N})$. Thus we have the following result.

Lemma 12 By giving priority to packets moving vertically, routing will finish in time $O(\sqrt{N})$ with high probability. During this period no queue will grow beyond $O(\sqrt{N})$.

\(^1\)It is exactly \sqrt{N} in horizontal edges, and in vertical edges this is true with high probability using a usual Chernoff bound argument.
14.2 $O(\log N)$ Queuesize

The bound above can be tightened by getting a good estimate of the number of packets turning at any node – clearly the delay is only this, and not the total number of packets through the node.

It is an easy exercise to show that the number of packets turning has expected value 1, and is a sum of independent 0-1 random variables. Thus with high probability this will be $O(\log N)$.

14.3 $O(1)$ Queuesize

The observation in the preceding section is also very conservative. Suppose that queues are at the inputs to the links. Suppose some queue on the downward going link in some vertex v builds up to p packets. What can we conclude? A queue builds up only when the number of packets arriving are more than the ones leaving. Thus there must have been at least p instances during which packets arrived from above as well as from the row of v. Thus p packets must turn in v, and furthermore, during the period in which these packets arrive, there must be a continuous stream (burst) of packets leaving out of v, otherwise we know that the queue has emptied.

14.3.1 Probability of Bursts

Lemma 13 The probability that some edge has a packet transmission for $9\log N$ consecutive steps is $O(1/N)$.

It is easier to prove this lemma if we allow each link to carry an unbounded number of messages at each step, rather than just one (per direction), as at present. We will call the old model the Standard model, and the new, the Wide channel model. Note that in the wide model packets will never wait. So all routing will finish in time equal to the length of the longest path, certainly $O(\sqrt{N})$.

We first prove a Lemma relating the two models.

Lemma 14 If one packet leaves processor (u,v) along the downward edge at every time step during the (maximal) interval $[t+1, t+k]$, with farthest to go first strategy in the standard model, then k packet will leave (u,v) during $[t+1, t+k]$ in the wide model too.

Proof: Consider packet p_i passing (u,v) at $t_i \in [t+1, t+k]$ in the standard model. Suppose p_i turned in some node (w,v) at time T_i. Then since there is no waiting on the horizontal portion even in the standard model, p_i must turn at T_i in the wide model as well. Suppose it leaves (u,v) at time w_i in the wide model. Then we show that in the standard model, some packet must be leaving (u,v) at every step during the interval $[w_i, t_i]$.

The packet arrives $t_i - w_i$ steps earlier in the wide model – this is thus the amount of time p_i spends waiting during its vertical movement. Consider the first time p_i waits. As p_i waits, it can only be because some p' having destination further than p_i is transmitted instead of it. But then p' would have to leave (u,v) at time w_i in the standard model, unless it was itself delayed by some p''. But in turn that would have to arrive at w_i and so on. Thus we have shown that some packet must leave (u,v) at w_i even in the standard model. Similarly we can identify packets which must leave at all the intermediate steps.
But $[t + 1, t + k]$ is maximal, and hence $[w_i, t_i] \subseteq [t + 1, t + k]$ in other words, $w_i \in [t + 1, t + k]$. Thus every p_i will arrive at (u, v) during $[t + 1, t + k]$ in the wide model as well.

Proof of Lemma 13: Because of Lemma 14 it is enough if we prove this for the wide model.

Consider any outgoing edge from processor (u, v), say downward. Suppose that k packets appear on the edge during $[t + 1, t + k]$, for $k = 9 \log N$. Call this a $D(u, v, t)$ event.

We first estimate the probability of a $D(u, v, t)$ event. Given a packet leaving at $t + i$, we know that it must have originated at distance exactly $t + i$, somewhere above. There are 2 choices for this in each row r for $1 \leq r \leq u$. Now we need to estimate the probability that each such packet will in fact pass through (u, v). For that the packet must have as destination some vertex (w, v) for $u \leq w \leq \sqrt{N}$. Thus this probability is $\frac{\sqrt{N} - u}{N}$. Thus the expected number of packets through downward edge of (u, v) during the interval $[t + 1, t + k]$ is $k \cdot 2u \cdot \frac{\sqrt{N} - u}{N} \leq k/2$.

Noting that the packets through (u, v) during $[t + 1, t + k]$ is a sum of zero-one random variables, one for each packet, we get this number, R to be at most

$$\Pr[R = k] \leq e^{(1 - \frac{1}{2} - \ln 2)k} \leq N^{-5/2}$$

But there are $O(N)$ choices for (u, v) $O(\sqrt{N})$ choices for t, and hence the probability of some $D(u, v, t)$ event is at most $O(N^{3/2} \cdot N^{-5/2}) = O(1/N)$. Considering the upward transmissions only doubles this probability.

14.3.2 Main Result

Theorem 7 If the farthest to go first rule is used to decide which packet to transmit first, then routing finishes in time $O(\sqrt{N})$ and no queue size exceeds 4, with probability at least $1 - O(\log^3 N/\sqrt{N})$.

Proof: Say a vertical edge gets a burst if more than $9\log N$ packets pass consecutively through it. Lemma 13 assures us that no edge has a burst with probability 1 $- O(1/N)$.

We will say that a (q, t) event happens if queue q builds up to 4 at time t. Clearly, a packet must turn at time t into q. We will bound the probability that some (q, t) event happens given that no edge has a burst.

The number of (q, t) events is $O(N^{3/2})$ since there are $O(N)$ ways to choose q, and $O(\sqrt{N})$ ways to choose t since the routing must finish it that much time.

Next we calculate the probability that (q, t) happens. The last of the packets turns at time $t_1 = t$, there must be 3 others turning into q in a time window of size $9 \log N$ before t. Thus there are at most $(9 \log N)^3$ choices for the times t_2, t_3, t_4 when these packets turn into q. Note however, that if a packet turns into q at some t_i, then it must have originated at a node in the same row as q, but at distance t_i, since during the horizontal movement, the packet does not wait. So there are 2 choices for where each packet originated, or $2^4 = 16$ ways to decide the origin of all 4. Note however, that the probability that the packet turns in q is $1/\sqrt{N}$. So the total probability of a (q, t) event is

$$(9 \log N)^3 \cdot 16 \cdot (1/\sqrt{N})^4 = O(\log^3 N/N^2)$$

So the probability that some bad event happens is $O(N^{3/2}) \cdot O(\log^3 N/N^2) = O(\log^3 N/\sqrt{N})$.

But now the probability that some (q, t) event happens whether or not there is a burst is at most $O(1/N) + O(\log^3 N/\sqrt{N}) = O(\log^3 N/\sqrt{N})$.

$$\square$$
Chapter 15

Existence of schedules, Lovasz Local Lemma

Suppose you have a graph + set of paths whose congestion is c and longest length d. Then there is a schedule that finishes in time $O(c + d)$ using $O(1)$ size queues on each edge. This is a beautiful result due to Leighton, Maggs, and Rao[9].

We will prove a simpler result.

Lemma 15 (Scheideler[11]) $O(c)$ time suffices if $c > 9d \log c$, with queues of size c/d.

Note that this is still better than the "Obvious result" : cd time, queuesize c. However, the obvious result is backed by a distributed algorithm (keep moving packets so long as possible and necessary), whereas what we give is only an existence proof. However the time bound as well as queue size are worse than the schedules promised in the lemma above.

Proof of the Lemma has many of the ingredients of [9].

Here is an outline of the proof. We present a randomized "algorithm" for constructing the schedule: Not an algorithm in the standard sense, where we require that the construction succeed with substantial probability. However we show that the construction will succeed with non-zero probability. Thus by trying out all possible random choices you will be able to find the schedule. However, since these are too many, we will be content to consider this to be a proof of existence.

Algorithm:

1. Start with a "wide" model, width c. In this model, no packet gets delayed and everything finishes in time d.

2. Insert a random delay s_i at the start of each packet i where s_i is picked independently and uniformly from the range $1..\Delta$. Packets will still not get delayed in between, and every packet will finish in time $d + \Delta$.

3. If the congestion of any edge at any time is more than f then declare failure and halt.

4. Simulate each step of the wide model using f steps of the standard model. Queues of size f will be needed at each vertex.

Final Result, $f(d + \Delta)$ time, using queues of size f.

Lemma 16 The above procedures succeeds with non-zero probability.
For each edge \(e \) and time \(t \) define \((e, t) \) to be the (bad) event that more than \(f \) edges traverse \(e \) at time \(t \) in the wide model.

Clearly we want the probability that no bad event occurs.

15.0.3 Some Naive Approaches

Let \(p \) denote an upper bound on the probability of any single bad event. The total number of such events is at most \(nd(d + \Delta) \) where \(nd \) is the maximum number of edges possible in the network. By choosing \(f \) to be large, it is possible to ensure that \(nd(d + \Delta) \cdot p < 1 \). This would establish that a schedule exists for the chosen \(f \). Exercises ask you to find out what \(f \) is needed for this. You will see that \(f \) is too large – the length of the schedule \(f(d + \Delta) \) will not be \(O(c + d) \).

So we need a finer argument.

Notice that if the bad events are independent, then clearly none happens with probability at least \((1 - p)^{nd(d+\Delta)} \). However, the events are not independent.

15.0.4 The approach that works

The important observation is that each event is related to only a small number of other events, and independent of most events. Specifically, \((e, t)\) and \((e', t')\) are related only if \(e, e' \) are on the path of the same packet. Thus there are \(c \) ways to choose this packet, and of the \(d \) edges on its path we may choose any. \(t' \) can be chosen in any of the \(d + \Delta \) ways. Thus for any \((e, t)\) there are at most \(cd(d + \Delta) \) other events that are related.

Lemma 17 (Lovasz Local Lemma) Suppose we have some events \(x_1, x_2, \ldots, x_m \). Each event has probability at most \(p \) of happening. Each is mutually independent of all but \(R \) other events. Further \(4pR \leq 1 \). Then the probability that none of the events \(x_1, \ldots, x_m \) occurs is strictly positive.

Proof: We know
\[
Pr(\bar{x}_1\bar{x}_2\ldots\bar{x}_m) = Pr(\bar{x}_1|\bar{x}_2\ldots\bar{x}_m)Pr(\bar{x}_2\ldots\bar{x}_m) = (1 - Pr(x_1|\bar{x}_2\ldots\bar{x}_m))Pr(\bar{x}_2\ldots\bar{x}_m)
\]

Applying this idea several times we get:
\[
Pr(\bar{x}_1\bar{x}_2\ldots\bar{x}_m) = (1 - Pr(x_1|\bar{x}_2\ldots\bar{x}_m)) \cdots (1 - Pr(x_m)) \geq (1 - 2p)^m
\]

where the last step comes from Lemma 18. But \(1 - 2p > 0 \) since \(4p \leq 1 \).

Lemma 18 For any \(y, y_1, \ldots, y_k \in \{x_1, \ldots, x_m\} \) and \(y \neq y_i \) we have \(Pr(y|\bar{y}_1\ldots\bar{y}_k) \leq 2p \).

Proof: The proof is by induction on \(k \). For the base case note that \(Pr(y) \leq p \leq 2p \).

Renumber events so that the \(r \leq R \) dependent events for \(y \) come first. So our probability is
\[
Pr(y|\bar{y}_1\ldots\bar{y}_r\bar{y}_{r+1}\ldots\bar{y}_k) = \frac{Pr(y\bar{y}_1\ldots\bar{y}_r|\bar{y}_{r+1}\ldots\bar{y}_k)}{Pr(\bar{y}_1\ldots\bar{y}_r|\bar{y}_{r+1}\ldots\bar{y}_k)}
\]

Noting that \(Pr(A|BC) = Pr(ABC)/Pr(BC) = Pr(AB|C)Pr(C)/Pr(BC) = Pr(AB|C)/Pr(B/C) \). Consider the numerator first.
\[
Pr(y\bar{y}_1\ldots\bar{y}_r|\bar{y}_{r+1}\ldots\bar{y}_k) \leq Pr(y|\bar{y}_{r+1}\ldots\bar{y}_k) \leq p
\]
with the last inequality arising because y is mutually independent of y_i. Consider the denominator.

$$\Pr(\bar{y}_1 \ldots \bar{y}_r | \bar{y}_{r+1} \ldots \bar{y}_k) = \Pr(y_1 + \ldots + y_r | \bar{y}_{r+1} \ldots \bar{y}_k) = 1 - \Pr(y_1 + \ldots + y_r | \bar{y}_{r+1} \ldots \bar{y}_k) \geq 1 - \sum_{i=1}^{r} \Pr(y_i | \bar{y}_{r+1} \ldots \bar{y}_k).$$

But using the induction hypothesis we know $\Pr(y_i | \bar{y}_{r+1} \ldots \bar{y}_k) \leq 2p$. Thus

$$\Pr(\bar{y}_1 \ldots \bar{y}_r | \bar{y}_{r+1} \ldots \bar{y}_k) \geq 1 - r \cdot 2p \geq 1 - 4Rp \geq 1/2$$

The last inequality follows since $4Rp \leq 1$. But then putting together what we know about the numerator and the denominator, we get

$$\Pr(y | \bar{y}_1 \ldots \bar{y}_r \bar{y}_{r+1} \ldots \bar{y}_k) \leq \frac{p}{1/2} = 2p$$

Now Lemma 15 can be proved, as the exercise shows.

Exercises

1. Express p as a function of f. What bound will you get on the time and queue size if you choose f so that $nd(d + \Delta) \cdot p < 1$?

2. Use $\Delta = d\delta$ and $\delta = \sqrt[3]{c/6d \log c}$, and $f = \left(1 + \frac{1}{\delta}\right) \frac{C}{d\delta}$ and prove Lemma 15.
Chapter 16
Routing on levelled directed networks

Packet routing is a fundamental problem in parallel and distributed computing. Here we consider a formulation of it on levelled directed networks. This formulation is interesting because routing problems arising from many applications on many networks can be formulated as routing problems on appropriate levelled directed networks, e.g., permutation routing (worst case) on several networks. The problem of implementing coarse grained models on networks can also be formulated in this manner.

A levelled directed network with levels 0...L is a directed acyclic graph in which each node v is assigned a number Level(v) ∈ [0, L], such that Level(v) = 1 + Level(u) for any edge (u, v). There are N packets distributed amongst its nodes. Each packet has an assigned path in the network along which the packet must be moved, subject to the following restrictions: (i) it takes one time step to cross any edge, (ii) only one packet can cross any edge in one time step, (iii) the decision of which packet to send out along an edge (u, v) must be taken by node u based only on locally available information, i.e., information about paths of packets that are currently residing in u or have already passed through it. The packet routing algorithm may associate small amount of additional information with each packet which can be used while taking routing decisions and which moves with the packets. It is customary to characterize a routing problem in terms of two parameters: d, which denotes the length of the longest packet path, and c, which denotes the maximum number of packet paths assigned through any network edge. Clearly max(c, d) = Ω(c + d) is a lower bound on the time needed. The question is how close to this can an algorithm get.

Assuming that each processor has unbounded buffer space for holding messages in transit, we will show that with high probability packet routing can be finished in time $O(c + L + \log N)$, where c denotes the maximum number of packets required to pass through any single edge. If $d = \Omega(L + \log N)$, as is the case in the problems arising in the use of this framework as in [7], our result is clearly optimal to within constant factors. Our time bound actually holds even if the buffer space is bounded, but the proof as well as the algorithm are slightly more complex.

Deterministic algorithms are not known to work very well for this problem. In fact, Leighton, Maggs, and Rao[9] show that in general $\Omega(c \frac{d}{\log c})$ time is necessary for a large natural class of deterministic algorithms that includes FIFO (send first the message which arrived first into the node), farthest to go first (send first the message which has the longest distance yet to go) and several others. The best known upper bound for deterministic algorithms is $O(cd)$. This is applicable for almost any algorithm which sends some packet on every link if possible: no packet need wait for

1 Algorithm which may hold back packets even though a link is free are interesting when the buffer space in the receiving nodes is bounded. In fact, in this case it sometimes makes sense to withhold transmission even on occasions...
more than \(c - 1 \) steps to let other packets pass at each of the at most \(d \) edges along it’s path. This bound is substantially worse than \(O(c + L + \log N) \) for the typical setting.

16.1 The Algorithm

If we could somehow partition our packets into \(c \) batches, such that each batch gives rise to congestion 1, then we could have a very simple algorithm. We let the \(i \)th batch start moving at step \(i \). The packets in batch \(i \) would cross edges in level \(l \) in step \(i + l \), and there would be no contention anywhere! The batches would be perfectly pipelined. The algorithm which we describe next, could be thought of as forming batches randomly. By ensuring that the \(i \)th batch always moves before the \(i + 1 \)th batch, and using a few more ideas to expedite the movement, we can show that with high probability the time is \(O(c + L + \log N) \). Essentially our result shows that perfect batching is not needed; approximate batching is good enough.

We assume that each node has a queue at each input. In each node there is an additional queue called the *initial queue*, which contains the packets that originate at that node.

In the initial queue, there also is an EOS (end of stream) packet, whose purpose will become clear later. The algorithm also uses so called *ghost* packets, whose creation and processing will be described shortly. The EOS packets are considered to have rank \(\infty \).

Our routing algorithm, following \([7, 10]\), is simple but randomized. For each packet we choose a rank independently and uniformly randomly from the range \([1, \rho]\) where \(\rho \) is a number which will be fixed later. The rank of a packet can be considered to be its batch number as discussed informally above.

The basic idea is to send out packets in non-decreasing order of their ranks on every link. The nodes in level 0 can certainly do this; they just need to sort the packets they have by their rank and then send them out. At other nodes, this can be done inductively. We assume that each node receives packets in rank order over its incoming links. Each node could wait for all packets to arrive, and then merge the streams of packets and then send them out. This is of course very inefficient; each node should send out packets as soon as it possibly can.

The key idea in this is as follows. Each node waits until there is at least one packet in each incoming queue. Note that nodes in level 0 have no incoming queues, and so do not wait. If a packet is present in each node, a smallest rank waiting packet over all queues is chosen, and it is sent on the link its needs to traverse. At the same time, a special *ghost* packet of the same rank is sent on all other outgoing links. A ghost packet of rank \(r \) arriving at a node \(v \) on link \(l \) is used to inform \(v \) that subsequent packets on link \(l \) will have rank at least \(r \). Suppose now that all other incoming queues in \(v \) have packets waiting, and the smallest ranked among them has rank less than \(r \), then this smallest ranked packet can be sent out.

One more idea is need. A node must know when the stream of incoming packets ends. For this we place an EOS (end of stream) packet at the end of each initial queue. After sending other packets, the EOS packet is sent indicating that no other packets will be sent. We can think of the EOS packet as having rank \(\infty \), so that other packets always get to go first.

We now formally state the invariant maintained by our algorithm.

On each link, packet transmission commences at a certain step. Packets are transmitted without interruption till an EOS packet is transmitted. Each packet is either a real
packet or a ghost packet. The ranks of the transmitted packets form a non decreasing sequence.

One clarification is necessary regarding ghost packets. Suppose a ghost packet \(g \) with rank \(r \) arrives into a node \(v \) at certain time instant \(t \) on link \(l \). At step \(t + 1 \) if \(g \) is the smallest ranked packet in \(v \), then it will be replicated and forwarded on each outgoing link. If it is not the smallest ranked packet, then we simply destroy it. We do not need to retain it for the next step, because in the next step, some other packet of rank at least \(r \) will arrive into \(v \) on link \(l \) which could instead be transmitted.

In the above description, we assumed that queues are unbounded. In reality queues will have a certain finite size. If a certain queue is full, then we must notify the upstream node to not transmit. With this amendment, the algorithm can also handle finite size queues, although for the analysis given next, we ignore this aspect.

16.2 Analysis

The analysis is based on a delay sequence argument.

Suppose some packet \(p \) was delivered at step \(T \). We follow \(p \) back in time and identify another packet \(p' \) which is responsible for causing \(p \) to be not delivered earlier. We then follow \(p' \) back in time and identify packet \(p'' \) and so on. We then show that the identified packets must have non increasing ranks, which we then show is unlikely if \(T \) is large.

16.2.1 Events and Delay sequence

By \((u,v,p,r,t)\) we will denote the event that a packet \(p \) gets assigned rank \(r \) and gets transmitted on link \((u,v)\) at step \(t \). Suppose \((u,v,p,r,t)\) happens for \(t > 1 \). Then one of the following is true.

1. At step \(t - 1 \), \(p \) arrived into \(u \), or a packet \(p' \) whose ghost \(p \) is arrived into \(u \) from some \(w \). Thus \((w,u,p',r,t-1)\) happened. We will say that \((u,v,p,r,t)\) is transit delayed by \((w,u,p',r,t-1)\).

2. Suppose \(p \) was not transit delayed, but at step \(t - 1 \), some other real packet \(p' \) of rank \(r' \leq r \) was transmitted out of \(u \). Thus \((u,w,p',r',t-1)\) happened. We say that \((u,v,p,r,t)\) is rank delayed by \((u,w,p',r',t-1)\) is rank delayed by \((u,w,p',r',t-1)\).

3. At step \(t - 1 \), no real packet was transmitted out of \(u \), but some ghost packet \(p' \) of rank \(r' \leq r \) was transmitted. Thus \((u,w,p',r',t-1)\) happened. We say that \((u,v,p,r,t)\) is rank delayed by \((u,w,p',r',t-1)\) is rank delayed by \((u,w,p',r',t-1)\).

Let the last real packet be delivered at step \(T \). Then we will have a sequence \(E = (E_1, \ldots, E_T) \) with \(E_t = (u_t, v_t, p_t, r_t, t) \), where \(E_{t-1} \) is either a rank delayer or transit delayer of \(E_t \). We note its following properties:

1. Either \(u_t = u_{t-1} \), or \((u_{t-1},u_t)\) is an edge in the network.

2. \(u_T, \ldots, u_1 \) are on some backward path \(P \) through the network. This is not necessarily the path of any packet.

3. At least \(\delta \geq T - L \) events \(E_t \) are rank delayed by \(E_{t-1} \). This is because we can only have one transit delay per edge in the path \(P \), and there are at most \(L \) edges in \(P \).
4. \(r_1 \leq r_2 \leq \ldots \leq r_T \).

Abbreviated delay sequence Consider \(E' \subseteq E \) consisting only of rank delayed events. Clearly all the packets in such events must be distinct. Also, all packets must be real, because ghost packets do not wait but get discarded if they are not transmitted immediately. Clearly \(E' \) must have length at least \(T - L \), and must satisfy properties 2 and 4 above.

Let \(P \) be a backward path in the network. Let \(u_1, \ldots, u_\delta \) be vertices on \(P \) such that \(u_i \) is to the right of \(u_{i-1} \) or \(u_i = u_{i-1} \). Let \(p_i \) be a real packet passing through \(u_i \). Let \(r_1, \ldots, r_\delta \) be a non-decreasing sequence of numbers in \([1, \rho]\). Then a \((P, u_1, \ldots, u_\delta, p_1, \ldots, p_\delta, r_1, \ldots, r_\delta) \) delay sequence is said to happen if \(p_i \) is assigned rank \(r_i \) during execution.

Clearly, if some packet is delivered at step \(T \), then a \((P, u_1, \ldots, u_\delta, p_1, \ldots, p_\delta, r_1, \ldots, r_\delta) \) delay sequence must happen, for \(\delta = T - L \).

16.2.2 Main theorem

Theorem 8 With high probability the time \(T \) required to finish routing is \(O(c + L + \log N) \).

Proof: If the delivery time is \(T \), then we know that some \((P, u_1, \ldots, u_\delta, p_1, \ldots, p_\delta, r_1, \ldots, r_\delta)\) delay sequence where \(\delta = T - L \) must happen. The probability of the delivery time being \(T \) is at most the probability that some delay sequence of length \(\delta \) happens. The probability of some delay sequence happening is in turn at most the product of the number of possible delay sequences and the probability of a fixed delay sequence happening.

Number of delay sequence events This is simply the number of ways of choosing \((u_i, v_i, p_i, r_i)\) for \(i = 1 \) to \(\delta \) such that properties 2, 4 above are satisfied. To ensure this, we use an indirect procedure that first chooses a path in the network, then chooses each edge from the path. Each \(p_i \) is then constrained to be one of the packets through the chosen \((u_i, v_i)\). Finally the \(r_i \) are chosen so that they are non-decreasing. The path must begin at the origin of some packet. Thus the origin can be chosen in \(N \) ways. Each consecutive edge on the path can be chosen in \(\Delta \) ways, assuming \(\delta \) is the degree of the network. Thus the total number of ways in which the path can be chosen is at most \(N\Delta^L \leq 2^\delta \Delta^\delta \), assuming \(\delta \geq \log N, L \). Given the path \(P \), we can select \(u_i \) by specifying the level in which \(u_i \) lies. The levels of all \(u_i \)s form a non-decreasing sequence. Thus they all can be chosen in \(\binom{\rho + \delta + 1}{\delta} \leq 2^\delta \) ways, assuming \(\delta \geq L \). Given \(u_i \), we must choose \(p_i \) to be one of the packets through it. Since each edge has congestion at most \(c \), there are at most \(c\Delta \) packets through every vertex. Thus all \(p_i \) can together in \((c\Delta)^\delta \) ways. Finally the ranks of the packets must be chosen in non-decreasing order, i.e., in \(\binom{\rho + \delta + 1}{\delta} \leq \left(\frac{2c\rho}{\delta} \right)^\delta \) ways assuming \(\rho \geq \delta \). The number of abbreviated sequences of length \(\delta \) is thus no more than \(2\Delta \cdot 4 \cdot c \Delta^2 \cdot \frac{2c\rho}{\delta} \).

Probability of fixed sequence The events in each sequence concern distinct packets. Any event \((u_i, v_i, p_i, r_i)\) occurs if \(p_i \) gets assigned rank \(r_i \). Thus all events together happen with probability at most \(\frac{1}{\rho^\delta} \).

The probability of some abbreviated delay sequence occurring is thus at most

\[
\left(2\Delta \cdot 4 \cdot c \Delta^2 \cdot \frac{2c\rho}{\delta} \right)^\delta \leq \left(\frac{16c\Delta^2}{\delta} \right)^\delta
\]
So choose $T = 2L + 32ec\Delta^2 + k \log N$. Noting $\delta = T - L$ we have the probability of time T at most N^{-k}.

Note that we must choose the ranks to be in the range $[1, L + 32ec\Delta^2 + k \log N]$. The rank must be included in each packet; however the number of bits needed is just the log of the range, and is thus small.

16.3 Application

The theorem proved above enables us to devise good packet movement algorithms for many networks. This can be typically done in two parts:

1. Fix a path selection algorithm which likely produces low congestion. This may require random intermediate destinations.

2. Devise a levelled directed network which contains the possible paths. The levelled directed network should be simulatable by the original network with $O(1)$ slowdown. Also, the levelled directed network should not have too many levels.

It is usually possible to use the above to get algorithms that deliver packets in time proportional to the natural lower bounds.

16.3.1 Permutation routing on a 2d array

Our first example is permutation routing on a $\sqrt{N} \times \sqrt{N}$ 2d array. The natural lower bound, based on diameter or congestion, is $\Omega(\sqrt{N})$.

If we send packets directly to their destinations say by going to the correct column and then to the correct row, then the congestion is \sqrt{N} even in the worst case. This is because the congestion in each row edge comes only from the processors in that row, and there are only \sqrt{N} of these. The congestion in every column comes only from packets destined to processors in that column. Since each processor is the destination of a single packet, this congestion is likewise at most $O(\sqrt{N})$. Thus it appears we do not need randomization in path selection.

Now we must view the packet movement as happening on a levelled directed network. For this we consider a levelled directed network which is in 4 parts. Each part is a copy of the original network. In the first copy the edges are directed left and up. In the second, right and up. In the third, right and down. In the fourth left and down. Each copy is a levelled directed subnetwork, with $2\sqrt{N} - 1$ levels. The copies will be simulated by the original network. This will thus give a slowdown of 4. Note however, that every message has its destination in either the northwest, northeast, southeast, southwest quadrants relative to the origin. Thus one of the 4 copies respectively should be able to deliver the message.

The congestion in each copy is at most \sqrt{N} and the number of levels is $2\sqrt{N} - 1$. Thus using random ranks, ghosts etc. we are guaranteed that all packets will get delivered in time $O(c + L + \log N) = O(\sqrt{N})$ time with high probability.
16.3.2 Permutation routing on a Butterfly

The butterfly has \(N = (n + 1)2^n \) nodes.

We could use canonical paths to move packets in a Butterfly. However, we also know that there exist permutations (e.g. bit-reverse of the row number) for which the congestion can be as high as \(\sqrt{N} \). Thus we cannot use the direct paths, since we want our algorithm to work for all possible permutations \(\pi \).

Here is a possible path for a packet originating at input \((r, c)\) and destined for \((r', c')\). It first uses backward butterfly edges to move to \((r, 0)\). It then uses the forward butterfly edges to move to \((r'', n)\) where \(r''\) is randomly chosen independently for each packet. The packet then moves to \((r', 0)\) by using the backward butterfly edges. Finally the forward butterfly edges are used to move to \((r', c')\).

It should be possible to show that the congestion due to this in every edge is \(O(n) \) with high probability.

Now we use a levelled directed network having consisting of 4 copies joined serially: a reverse butterfly network, a butterfly network, a reverse butterfly, and a forward butterfly. This network has \(1 + 4n \) levels, and can be simulated by the original network with a slowdown of 4. Thus the packet delivery must finish in time \(O(c + L + \log N) = O(\log N) \) with high probability, given that congestion is \(O(n) \) w.h.p. But if two events happen with high probability, then their intersection also happens with high probability.

Exercises

1. We used 4 copies of the original network to do permutation routing on a \(\sqrt{N} \times \sqrt{N} \) mesh. This forces a slowdown of 4. Can you do this using a slowdown of only 3? Hint: Use a logical network consisting of a \(2\sqrt{N} \times 2\sqrt{N} \) mesh from which one quadrant of size \(\sqrt{N} \times \sqrt{N} \) has been removed.

2. Suppose each processor in a \(n \times n \times n \) mesh sends a message to a randomly chosen processor. Show that you can find paths on a levelled directed network with congestion \(O(n) \) using only 4 copies. This will require an extension of the idea of problem 1. Note that if you extend the idea in the text, you will need 8 copies.

3. Design an algorithm for permutation routing on a \(d \) dimensional mesh with side length \(n \). Your algorithm should run in time \(O(n^d) \). You can assume that in a single step each processor can send messages on all its \(d \) links. You may also assume that in a single step it can also perform \(O(d) \) operations locally (e.g. such as comparing packet priorities).

This builds up on the previous problems.

4. In this problem you will devise a sorting algorithm based on routing. The number of keys is \(N \), the network is a \(P = 2^p(p + 1) \) processor butterfly, with \(N = kP \). You are to fix the value of \(k \) and other parameters which will emerge later so that the time taken by the algorithm is \(O((N \log N)/P) \), i.e. so that the speedup is linear. It is of course desirable to have \(k \) as small as possible. Here is the outline of the algorithm.

 (a) Select a sample of size about \(S \) out of the \(N \) the keys. You may do this in any way you think convenient for the analysis: the possibilities are (a) Pick \(S \) randomly from \(N \) with
repetition. (b) Same, without repetition. (c) Pick each key with probability S/N. In this case the expected number is S, and the sample will have size essentially S with high probability, but you will have to prove this.

(b) Sort the sample using some convenient method, say odd-even merge sort. Remember that S need not be P (though it possibly is a fine choice – you might start with that for convenience) – and hence the odd-even merge sort will have to be simulated on the P processor network.

(c) From the sample of size S, select every dth element, to form a splitter set R. It is suggested that this be done so that at least one element from any set of $\Omega(N/R)$ consecutive keys appears in the set with high probability. This property is important for the last two steps.

(d) Distribute the splitters so that first column of the reverse butterfly has the median, next has median of top half and median of bottom half and so on.

(e) Perform splitter directed routing. Evaluate the congestion and estimate the time taken using the levelled directed network theorem.

(f) Locally sort the elements. Actually, you should not sort the elements in just the last column of the reverse butterfly, but spread the elements into a row and then sort them separately in each row.

(Hint: Start by choosing $d = k = \log N$ or thereabouts and increase only if really needed.)

5. Suppose you are given a circuit consisting of gates with at most d inputs and one output. Each gate works as follows: it waits until all inputs are available and then generates the output (which is connected to the input of at most one gate). The gates in this problem behave probabilistically (this is to model asynchronous circuit behaviour). The time required to generate the output after all the inputs are available is an independent random variable, taking the value $1+\epsilon$ with probability p and the value ϵ with probability $1-p$. The parameters ϵ and p are common to all gates, but may depend upon, say the number of gates. In other words, in the analysis they should not be treated as constants. The delay of a circuit is defined as the time taken by the output to be generated after all inputs have arrived.

(a) Consider a circuit which is just a long chain of h unary gates. There is a single input and single output. In the best case, the output will have a delay of $h\epsilon$, and in the worst case, the output will have a delay of $h+h\epsilon$. What is the expected delay of the output? (b) What is the probability that the delay in the above circuit will be at least $h/2$? (c) Consider a circuit whose graph is a directed tree, with at most h gates are present on any path from any input to the output. The gates may have degree upto d, but the number of inputs is N. Show that the circuit delay is $O(hp+h\epsilon+\log N)$ with high probability. Give a delay sequence argument.
Chapter 17

Introduction to PRAMs

Many objects, such as sparse graphs, are efficiently represented using pointers or equivalent notions. It is thus useful to consider parallel algorithms for pointer based representations. But for this, we need the notion of a shared address space, accessible to all processors. This is formalized as a Parallel Random Access Machine (PRAM). A PRAM consists of

1. Multiple independent processors. Each processor has its own local control and local memory.

2. Shared global memory. Can be accessed by all the processors in each step. At each step each processor can perform the following steps

 (a) Read from or write to arbitrary location in global memory.

 (b) Perform some computation according to its local control and its local memory.

Several variations of the model have been defined based on whether or not multiple processors are allowed to access the same memory location in the same step.

• **EREW (Exclusive Read Exclusive Write):** All processors must access distinct memory locations at each step.

• **CREW (Concurrent Read Exclusive Write):** At each step several processors may read the same memory location. However, no two processors may write to the same location.

• **CRCW (Concurrent Read Concurrent Write):** Concurrent reading is allowed. Concurrent writing is also allowed; there are different variations of the model which determine how this can be done:

 – **Common:** Several processors may are allowed to write same location if they write same value.

 – **Arbitrary:** Several processors may are allowed to write same location, and one of the values gets written. It is the job of the programmer to ensure that the program is correct no matter which value got written.

 – **Priority:** The highest priority processor succeed in writing a memory location when more than one processors tries to write same memory location.

 – **Combining:** Value written by the processor is combined by using some possibly commutative and associative operator.
If a program designated for a certain type of PRAM violates the stated restrictions, then it is deemed to be an invalid program.

Theorem 9 Any step of N processor PRAM can be simulated in $O(N)$ steps on a uniprocessor.

Proof: The uniprocessor keeps track of the programme counters of all PRAM processors. In $O(1)$ time the execution of a single instruction on any of the PRAM processors can be simulated, and hence in $O(N)$ time we can simulate the execution of all the N processors.

This means that using an N processor PRAM we can get a speedup of at most $O(N)$.

Theorem 10 Any step of a bounded degree network with N processors can be simulated in $O(1)$ steps on an N processor PRAM.

Proof: Designate a location in shared memory for each link. Run the program of network processor i on PRAM processor i. For communication, write and read from the designated location instead of sending and receiving from a link.

This means that all the algorithms that we have developed for networks will get implemented in the same amount of time on PRAMs.

17.1 Simulation of PRAMS on Networks

Let m denote the size of the global memory of the PRAM and N the number of processors.

We can simulate such a PRAM on a network of processors. Each location of the PRAM is mapped to some location in the memory of some processor in the network model. Then reading or writing a memory location in PRAM is accomplished using packet routing. For example write "$x" to y can be processed as send "$x" to processor that is holding location y (upon receipt of this message the processor writes x in the required location in its memory).

Example: PRAM address x is mapped to ($x \mod N$) memory location of processor ($x \div N$). But in this case if i^{th} processor reads/writes memory $m + i$ then all the requests will be send to processor m and it will be a bottleneck.

Better Solution (Randomized): Use random hash function to decide where PRAM address x is to be stored. By this kind of mapping above mentioned problem can be solved. But a processor can be bottleneck if all the processors reads/writes same memory location. To overcome this, we can use idea similar to the random rank/ghost messages scheme for packet routing algorithm in level directed network.

In this case if all the processor chose rank of their packet (containing read/write request) such that, if processor i and j wants to read/write same location then, they chose same rank. Now intermediate processors can easily identify read/write request for same memory location, for read it can only send one request and it can also process multiple write request depending on the CW model.

Summary: Any variety of N processor PRAM can be simulated in $O(\log N)$ steps on an N node Butterfly, or $O(\sqrt{N})$ steps on an N node 2 dimensional mesh, and similarly for other networks.
17.2 Comparison of CREW and EREW

Suppose one processor in a PRAM holds a certain value which is to be broadcasted to all others, say because all others need to use the value. On a CREW PRAM this is easy: the processor holding the value writes it into a certain pre agreed upon location, and other processors read from that location. An EREW PRAM will take $\theta(\log N)$ steps. The upper bound algorithm is as follows: the N processors simulate a balanced binary tree rooted at the node holding the value. Thus in time $O(\log N)$ the value is received by every processor, i.e. stored in a distinct location for each processor.

17.3 Comparison of EW and CW

Consider a problem, Input: array of bits, compute OR of all the bits. The answer is to be computed in some location R in shared memory.

CW model can do this in $O(1)$ time as follows. First processor all write a 0 in location R. Then in parallel for all i, every processor i reads the ith input bit, and writes a 1 into R if the input bit read was a 1.

Clearly, after execution, R contains the desired result. Further, the common variety (weakest) CRCW PRAM is needed for this.

It is possible to prove that $O(1)$ time is not sufficient for solving this problem on the CREW model.

Exercises

1. Show that any step of a N processor CRCW PRAM can be simulated by an N processor EREW PRAM in $O(\log N)$ time. You may assume that an N processor EREW PRAM can sort N keys in $O(\log N)$ time.

2. Show how an N processor CRCW PRAM can compute the AND of N bits in $O(1)$ time.

3. Show how an N^2 processor CRCW PRAM can compute the maximum of N numbers in $O(1)$ time. (Hint: use the ideas from the previous problem.)

4. Show how an N processor CRCW PRAM can compute the maximum of N numbers in $O(\log \log N)$ time. (Hint: use the ideas from the previous problem.)
Chapter 18

List Ranking and Applications

We consider (i) the list-suffix problem which is a generalization of the list ranking problem, (ii) the expression-tree evaluation problem which uses list-ranking.

The list suffix problem is similar to the vector suffix problem, except that the input is presented as a list. In particular, given a list of numerical values, we must compute another list such that the ith element in the new list is the sum of input list elements i through the last element. The list ranking problem is a special case when the values are all 1.

The input list is specified using two arrays of n elements: $\text{Value}[0..n-1]$ and $\text{Next}[0..n-1]$, respectively holding the values of the elements, and pointer to the next element of the list. If the last element of the list is stored in $\text{Value}[j]$ and $\text{Next}[j]$, then we have $\text{Next}[j]=\text{NIL}$. Say the output is to be stored in a list Answer, with $\text{Answer}[i]$ holding the sum of the elements starting from the element stored at index i.

As an example, suppose $n = 5$, and $\text{Next}[]$ contains the values 4, NIL, 3, 0, 1 and $\text{Value}[]$ contains 10, 20, 30, 40, 50 respectively. Then this corresponds to a list starting at index 2, with the values in list order being 30, 40, 10, 50, and 20. The suffix of this list will have the elements 150, 120, 80, 70, 20. But these would need to be in the array $\text{Answer}[i]$ in the order 80, 20, 150, 120, 70.

At first glance, following a set of pointers seems inherently sequential. Wyllie’s makes progress using a technique often referred to as pointer doubling. This technique is useful in other circumstances also.

18.1 Wyllie’s Algorithm: n processors, $O(\log n)$ time

The program for processor i consists of repeating the following basic step $\log n$ times:

- If $\text{Next}[i] \neq \text{NIL}$, then
 - $\text{Value}[i] = \text{Value}[i] + \text{Value}[\text{Next}[i]]$
 - $\text{Next}[i] = \text{Next}[\text{Next}[i]]$

The answer is computed in $\text{Next}[]$ itself, rather than in a new array.

Note that the execution is very strongly synchronous. In particular, reading of data and writing of data is synchronized. Thus for example, all the processors that execute the last statement read the value of $\text{Next}[\text{Next}[i]]$ at the same time, and only after that all write the value of $\text{Next}[i]$ at the same time.

It is easy to see that after t steps either (i) $\text{Next}[i]$ points to the 2^tth element in the list from element with index i and $\text{Value}[i]$ is equal to the sum of the values in the list from i (inclusive)
down to Next\([i]\) (exclusive); or (ii) Next\([i]\) points to NIL and Value\([i]\) is equal to the required suffix. Thus for every element the suffix will be computed in \(\log n\) steps. You should be able to argue that at each step each processor accesses a distinct memory location, i.e. this is a valid EREW program.

This algorithm gives a speed up of \(n/\log n\). Clearly, we cannot reduce the time below \(\Omega(\log n)\). But we can reduce the number of processors to make the algorithm more efficient.

18.2 Efficient Randomized Algorithm

We will use \(p = n/\log n\) processors. We will assume that the input is given as a doubly linked list, i.e. an additional array \(\text{Prev}[]\) is also given, where \(\text{Prev}[i]\) gives the index of the previous list element. This is really not necessary, because it is easy to see that we can construct \(\text{Prev}[]\) in \(O(\log n)\) time using \(n/\log n\) processors.

The algorithm works as follows.

1. Select a set of list elements that are non adjacent.

2. Eliminate the selected elements from the list. Let \(\text{Next}[^p] = q\) and \(\text{Next}[^q] = r\). Then by eliminating \(q\) we mean setting \(\text{Next}[^p] = r\) and \(\text{Value}[^p] = \text{Value}[^p] + \text{Value}[^q]\). Notice that after this, the element \(q\) is no longer in the list; but the answers for the rest of the elements have not changed.

3. Repeat the first two steps until only one element remains, in which case the suffix for the one element list problem is trivially the value in the element.

4. Fill in values for the elements eliminated in the preceding steps, in the reverse order of their elimination. Thus for \(q\) eliminated in a certain step, we would set \(\text{Value}[^q] = \text{Value}[^q] + \text{Value}[\text{Next}[^q]]\). As can be seen, \(\text{Value}[^q]\) now holds the suffix sum from \(q\) as we wish.

Note that in step 4 each processor works on the same elements as it did in step 2, and takes the same amount of time. So for the purpose of analysis we may ignore step 4. Further, eliminating a selected element \(q\) requires back pointers. We can in fact construct back pointers for all elements in \(O(\log n)\) time. Further, when we do the elimination the back pointers also must be updated. This only increases the time by a constant factor.

There are two important questions: how is the work of eliminating elements distributed amongst available processors, and how to select a (large) set of non-adjacent elements?

The work is distributed as follows. Each processor is assigned \(\log n\) elements which it is expected to eliminate during the course of the algorithm. This assignment is done very simply: processor \(i\) is given elements stored in positions \(i \log p\) through \((i + 1) \log p - 1\). We will refer to the elements assigned to each processor as being in its queue.

The step of selecting elements for elimination itself happens in 3 substeps: (i) Each processor marks the element at the head of it’s queue as a candidate. (ii) Each processor flips a coin and stores that along with its candidate. (iii) A candidate is rejected if either its own coin is TAIL, or it so happens that the preceding element in the list is also candidate having a coin HEAD. In other words, a candidate is selected for elimination if its coin is a HEAD, and either the previous element in the list was not a candidate or had a TAIL if it was a candidate.

Theorem 11 After \(O(\log n)\) steps each processor finishes all its elements with high probability.
Proof: Let T_i denote the number of iterations (of steps 1 and 2) needed by processor i to eliminate all its elements. Then we need to show that $T = \max_i T_i = O(\log n)$ with high probability. Thus T is a parallel composition of at most a polynomial number of random variables T_i (in fact $n/\log n$ variables), and so it suffices to prove for every i that $T_i = O(\log n)$ w.h.p.

Consider any fixed i. We will estimate $\Pr[T_i > C \log n]$. This is simply the probability that processor i is unsuccessful at least $(C - 1) \log n$ times in $C \log n$ attempts. This would be easy to estimate if success/failure in consecutive attempts were independent; however this is not so: if a processor fails to eliminate in a given step, it is somewhat more likely to fail in the next step as well. However, the amount of correlation between successive events is not large, as we will see.

For the purpose of analysis, assume that in each iteration a coin is flipped for each element in the entire list, not just for the elements that are candidates for elimination. Say a processor is unlucky in a given attempt if it either gets a TAIL for its element, or the element preceding it in the list gets a HEAD. Else it is said to be lucky. Whenever a processor cannot eliminate its element, it must have been unlucky (though the converse is not true). Since coins are flipped afresh for each iteration, whether or not a processor is lucky in a given attempt is independent of its fortunes in other attempts.

For any iteration the probability of processor i being unlucky is $3/4$. Thus the probability of being unlucky at least $(C - 1) \log n$ times is atmost

$$\left(\frac{C \log n}{(C - 1) \log n}\right)^{(C - 1) \log n} \leq \left(C e \left(\frac{3}{4}\right)^C\right)^{\log n}$$

using $\binom{n}{r} \leq \left(\frac{ne}{r}\right)^r$. But by choosing C large enough $C e \left(\frac{3}{4}\right)^C$ can be made arbitrarily small, and the whole expression can be made smaller than n^{-k} for any k.

18.3 Deterministic Algorithm Using Coloring

We can decide which nodes of the list to eliminate at each step by making use of a coloring of the nodes. We will say a coloring is valid if no two adjacent nodes have the same color. Therefore, we can eliminate all nodes of a given color in one step.

Theorem 12 An n element list can be six colored in $\log^* n$ steps using n processors.

Initially, set $\text{Color}(i) = i$. In each phase, we will recolor each node. Suppose c_1 is the color of node i and c_2 is the color of node $\text{Next}[i]$. Scan the binary representations of c_1 and c_2 from the right. Let k be the index where they first differ. The indices are numbered from the right, with the least significant bit having index 0. Let b be that bit in c_1. Recolor node i so that $\text{Color}(i) = 2k + b$.

Example: $c_1 = 41 = 0101001$ and $c_2 = 105 = 1101001$. In this case, $k = 6$, $b = 0$, and the new value of $\text{Color}(i)$ is 12.

We must show that this procedure gives a valid coloring. That is, that no two adjacent nodes have the same color. Suppose as above that nodes i, $\text{Next}[i]$ and $\text{Next}[\text{Next}[i]]$ have colors c_1, c_2, c_3 initially. Suppose using the procedure above we get new colours $d_1 = 2k + b$ and $d_2 = 2k' + b'$ for i and $\text{Next}[i]$. We thus know that (i) bit k of c_1 is b, while bit k of c_2 is b, (ii) bit k' of c_2 is b' and bit
k' of c_2 is \bar{b}. Now if $k \neq k'$, clearly $d_1 \neq d_2$ and so we are done. If $k = k'$ then we have bit k of c_2 to be \bar{b} by (i) and b' by (ii). Thus $b' \neq b$. Thus even in this case $c'_1 = 2k + b \neq 2k' + b' = c'_2$. Thus consecutive list elements receive different colours if they originally had different colours.

If n is the number of colors initially then $2k + b$ is always $\leq 2\lceil \log n \rceil$. Repeating this step brings us down to constant size in $O(\log^* n)$ steps\(^1\). For $n = 6$, $2\lceil \log n \rceil = 6$ so we can’t get any smaller.

Theorem 13 List suffix can be done in $\frac{n}{p} \log^* n$ steps for $p = O\left(\frac{n}{\log n \log \log n}\right)$ processors.

Proof: Algorithm:

1. Six color the list. Takes $O\left(\frac{n}{p} \log^* n\right)$ time.
2. Determine most frequently used color. Takes $O\left(\frac{n}{p} + \log p\right)$ time.
3. Eliminate nodes of that color. Takes $O\left(\frac{n}{p}\right)$ time.
4. Compaction step. Takes $O\left(\frac{n}{p} + \log p\right)$ time.
5. Recurse if the number of remaining elements exceeds p. Otherwise use Wyllies Algorithm.
6. Fill in the values for the elements we eliminated in step 3. Takes $O\left(\frac{n}{p}\right)$ time.

For many of the steps, it is convenient to consider the elements to be distributed among the processors, i.e. assign elements $1, \ldots, \frac{n}{p}$ to processor 1, elements $\frac{n}{p} + 1, \ldots, 2\frac{n}{p}$ to processor 2, etc.

To determine the most frequent colour, we need to first determine the frequency of each colour. For each colour we have each processing determining the frequency in its n/p elements. We then take the sum, this requires $O(\log p)$ steps. Since there are only 6 colours, we let one processor determine which is the most frequent in $O(1)$ time. This information is to be sent back to all processors. Since this in an EREW PRAM, we cannot just write it into memory and have all processors read it: we need to copy it by simulating a tree. So that also takes $O(\log p)$ time.

Redistribution can be accomplished by compacting the array of elements. Assign 1 to elements not yet eliminated. Assign 0 to the others. Run an array prefix calculation to find where to move a not yet eliminated element.

Overall, the time, $T(n)$ can be calculated from the above timing information. Let $k = \frac{6}{5}$ and note that $T(p) = \log p$.

$$
T(n) \leq \frac{n}{p} \log^* n + \log p + T\left(\frac{n}{k}\right)
$$

$$
\leq \frac{n}{p} \log^* n + \log p + \frac{n}{kp} \log^* \left(\frac{n}{k}\right) + \log p + T\left(\frac{n}{k^2}\right)
$$

$$
\leq \left(1 + \frac{1}{k} + \frac{1}{k^2} + \ldots\right) \left[\frac{n}{p} \log^* n\right] + (\log k \frac{n}{p}) [\log p]
$$

Note that we recurse only till the number of elements drop down to p, i.e. only $\log n/p$ times. Hence the term $\log p$ appears $\log n/p$ times. Note that if $p = n/(\log n \log \log n)$ then $T(n) = O\left(\frac{p}{\log^* n}\right)$.

\(^1\)The function $\log^* n$ is defined as the number of times you need to take the log of n to get a number smaller than 1. For example $\log^* 10^{20,000} \approx \log^* 2^{65,536} = 5$.

The speedup is $\Omega(p/\log^* n)$ which is nearly linear since $\log^* n$ is very small even for large n. Anderson and Miller [2] give a deterministic $O(n/p)$ time algorithm using $p \leq n/\log n$ processors (optimal) using a more sophisticated version of this idea. Even though we have not discussed Anderson and Miller’s algorithm, we will assume it is available to us as a subroutine, for the rest of this chapter.

18.4 Leaf Numbering on a Tree

List suffix has many applications, e.g. generating different numberings of a binary tree. Consider the problem of numbering the leaves of a tree from left to right. We assume that the input consists of a tree with n vertices, numbered 1 through n in some order. The edges are represented using two n element arrays Left and Right, with Left[i] and Right[i] respectively denoting the left and right children of vertex i.

We first build a list (called the *Euler tour*) which runs up and down the tree hitting the leaves in left to right order. Figure 18.1 shows the Euler tour (arrows connecting circles) of a tree (nodes are indicated by solid discs). A prefix calculation on such a list where leaves have value 1 and internal vertices have value 0 then gives us the numbering for the leaves.

To construct such a list, we associate each tree vertex with three nodes, L (left), R (right), and B (bottom). Node L of a vertex v points to node L of the left child of v if any, else it points to node B of v. Node B of v points to node L of the right child of v if any, else it points to node R of v. Node R of the root is null, else it points to node R of the parent of v. Figure 18.1 shows an example.

Using p processors, the nodes together with their connections can be constructed in n/p steps. The prefix takes an additional n/p steps, provided $p \leq n/\log n$.

![Figure 18.1: Euler Tour of a Tree](image)
18.5 Evaluating Expression Trees

Suppose we are given an n-node binary tree in which each internal node is an operator $+$ or \times, and leaves are integers. We can evaluate the expression represented by the tree in $O(\log n)$ time using $n/\log n$ processors\[^5\]. We only describe the main idea, slightly adapted from [5]. The basic operation is called raking, and it eliminates a single leaf of the tree in $O(1)$ time using one processor. As will be seen, given a left-to-right numbering of the leaves, we can rake all the odd numbered leaves in a constant number of steps. Subsequently we can rake all leaves having numbers $4i + 2$ for all i; in the step following all leaves numbered $8i + 4$ for all i and so on to get the required time bound.

For the raking operation we use a generalized representation for each tree node as follows. Each tree node is represented by a quadruple (a, b, c, d). Given values x and y of its children, the value that is computed by applying the general operator is $axy + bx + cy + d$. In this framework, we can represent a \times node by setting $a = 1$ and $b = c = d = 0$. Likewise a $+$ node is obtained for $a = d = 0$ and $b = c = 1$. The operation of raking a leaf whose value is α is shown pictorially in Figure 18.2. The tree is locally restructured as shown, and we set $a_3 = a_1a_2\alpha + a_1b_2$, $b_3 = b_1a_2\alpha + b_1b_2$, $c_3 = c_1a_2\alpha + c_1b_2$, and $d_3 = d_1a_2\alpha + d_1b_2 + c_2\alpha + d_2$. The case when T_1 and T_2 are null is handled with a minor change. The next idea is to do parallel rake operations. For this, we should ensure that the nodes involved in the rake operations are disjoint. It is easily seen that all odd numbered leaves can be raked in two parallel steps as follows: (i) in one step rake all the odd numbered leaves that are the left children (ii) in another rake all the odd numbered leaves that are right children. The same idea works for leaves $4i + 2$, leaves $8i + 4$ and so on.

Problems

1. Given the adjacency matrix of an n vertex graph show how an EREW PRAM can construct the edge incidence list in $O(\log n)$ time. Use as few processors as possible.

2. Suppose you have a 6 coloured list of n elements. Show that it can be 3 coloured in time $O(\frac{n}{p})$
using \(p \) processors.

3. Suppose you have a \(k \) coloured list of \(n \) elements. Show that it can be 3 coloured in time \(O(k + \frac{n}{p}) \) using \(p \) processors.

(Hint: First rearrange the list in memory so that the nodes are stored in memory in sorted order of their colours. Then extend the idea of the previous exercise. The following result will be useful to perform the rearrangement: \(n \) keys each \(w \) bits long can be sorted in time \(O(2^w + \frac{n}{p} + \log p) \) using a \(p \) leaf completely binary tree.)

4. Show that an \(n \) node list can be deterministically ranked using \(p \) processors in time \(O(\frac{n}{p} + \log n \log \log n) \). (Hint: Use deterministic algorithm to colour the list in \(\log n \) colours, and then use the result of the previous problem.)

5. Give an algorithm to color the vertices of a tree such that adjacent vertices have different colours. Give an algorithm that runs in polylog time using a linear number of processors. Assume that the tree is rooted, i.e. is specified as an array PARENT, where PARENT\([i]\) gives the parent of vertex \(i \).

6. Suppose you are given three arrays PARENT, LEFT, and RIGHT that describe a binary tree. Show how to construct an array DIST where DIST\([i]\) gives the distance of vertex \(i \) from the root by using ideas from the expression tree evaluation algorithm.

7. Suppose an array Next\([1..n]\) stores some \(m \) circular lists. Show how you can determine \(m \) in \(\log n \) time. Can you get linear speedup?

8. The input for this problem is a rooted forest. The input is given as a list of pointers to parents of all the node in forest, in shared memory. The roots point to themselves. The goal is to find the size of each tree. Say \(N \) is the number of nodes in the forest. Show that an \(N \) processor EREW PRAM can solve the problem in \(O(\log N) \) time. Hint: convert each tree into binary tree by replacing each degree \(d \) vertex with a binary tree with \(d \) leaves.
Chapter 19

Convex Hull in two dimensions

We describe several algorithms for computing the convex hull of \(N \) points in the plane: (1) \(N \) processor EREW PRAM algorithm requiring time \(O(\log^2 N) \), (2) \(N/\log N \) processor EREW PRAM algorithm requiring time \(O(\log^2 N) \), (3) \(N/\log^2 N \) processor Butterfly algorithm requiring time \(O(\log^3 N) \). Algorithms 2 and 3 give linear speedup in the worst case since the time for computing convex hulls sequentially is \(\theta(N \log N) \).

We also describe Brent’s scheduling principle which is used for automatically generating algorithm (2) above from algorithm (1).

We also consider computing convex hulls on other networks e.g. 2D mesh. For the 2D mesh, we can show that \(N \) the number of points must be extremely large to obtain linear speedup.

19.1 Preliminaries

The input to the algorithm is an array \(\text{Points}[1..N] \), which holds \(N \) points, each consisting of an \(x \)-coordinate and a \(y \)-coordinate. We assume that our processors can perform arithmetic operations on coordinates in constant time.

The convex hull of a set \(S \) of points is the smallest convex polygon such that each point is either on the boundary or in the interior of the polygon. Intuitively, if we have nails sticking out of the plane at each point, the convex hull is the shape a rubber band wrapped around them would take. The convex hull can be divided into two parts, an upper hull and a lower hull. The upper hull is simply the convex hull of \(S \cup (0,-\infty) \). The lower hull of \(S \) likewise is the convex hull of \(S \cup (0,\infty) \). We shall consider the problem of computing the upper hull; the lower hull can be computed similarly from which the convex hull can be computed easily.

19.2 Uniprocessor Algorithm

Figure 19.1 gives the uniprocessor algorithm, which we will later parallelize. The algorithm has a preprocessing step in which the points are sorted by their \(x \)-coordinate. After that the algorithm is recursive. The algorithm computes the upper hull of the left \(N/2 \) points and the upper hull of the right \(N/2 \) points. Then the hulls are merged into a single hull.

The procedure \texttt{Merge} takes as input the two hulls. It then computes a "common tangent" to the hulls, say it starts at \(\text{Points}[q] \) in the first hull and ends at \(\text{Points}[r] \) in the second hull.
main program{
 Read points into Points[1..N]
 Sort Points[1..N] by x coordinate
 p = UpperHull(Points[1..N])
 Points[1..p] now contains the hull, output it.
}

UpperHull(i, j)
// Returns the p points in the upper hull in Points[i..j]
// Input is assumed sorted, hull is returned in left to right order
// Returns p as the value of the call.
{
 k = (i+j)/2
 p1 = UpperHull(i,k)
 p2 = UpperHull(k+1,j)
 p = Merge(i, i+p1-1, k+1, k+p2)
 return p
}

Merge(h1s, h1e, h2s, h2e)
// Merges the hulls stored in h1s..h1e and h2s..h2e
// The resulting p points are copied into h1s..h1s+p-1
// Returns p as the value of the call.
{
 ..Call Uniprocessor Divide and conquer procedure that computes
 ..indices q, r such that Points[q]--Points[r] is "common tangent"
 Points[q+1..q+h2e-r+1] = Points[r..h2e]
 return q-h1s+1 + h2e-r+1
}

Figure 19.1: Uniprocessor Upper Hull algorithm
Thus \(\text{Points}[q+1..r-1] \) must be discarded. Thus points to the right of and including \(\text{Points}[r] \) are moved to right of \(\text{Points}[q] \). The merged hull has size \(q-hs1+1 + h2e-r+1 \) which is returned.

On a uniprocessor, if \(T(N) \) is the time for the recursive portion, then it satisfies \(T(N) = 2T(N/2) + O(\log N) + O(N) \), giving \(T(N) = O(N \log N) \), which does not change even after adding \(O(N \log N) \) for the initial sorting.

19.3 \(N \) processor, \(\log^2 N \) time algorithm

We assign processors \(i..j \) to each \(\text{UpperHull} \) call on \(\text{Points}[i..j] \). We will have the result of the call returned to processor \(i \). When \(\text{Merge} \) is called on \(\text{Points}[i..j] \), the divide and conquer procedure is executed by processor \(i \) (which is also processor \(hs1 \)). The divide and conquer procedure is takes \(O(\log N) \) time. The last step is of copying \(\text{Points}[r..h2s] \), and this is done by processors \(r..h2s \). The processors must shift back each element by \(r-q+1 \), so they need to know the value or \(r-q+1 \). This can be broadcast to all processors by processor \(h2s \). Since this is an EREW PRAM, the broadcast will take \(O(\log N) \) steps.

Exculding the preprocessing step, this gives us the recurrence:

\[
T_p(N) = T_p(N/2) + O(\log N)
\]

which has the solution \(T_p(N) = O(\log^2 N) \). The preprocessing step requires time \(O(\log N) \), so the total time is \(O(\log^2 N) \).

19.4 Brent’s scheduling principle

An algorithm is said to be a **fixed schedule algorithm** if the instruction executed by each processor at each step is known at the start of execution. The notion of **instruction** is somewhat unusual in this definition: we allow conditional instructions of the form “if condition then action”, where the condition and the action should each be a primitive operation.

Brent’s Scheduling Theorem: Let the number of operations performed by a fixed schedule PRAM algorithm be \(N \), and let \(T \) be the total execution time. Then the algorithm can be executed in time \(O(T + \frac{N}{P}) \) using a \(P \) processor PRAM of the same kind as in the original algorithm.

Proof: We prove the theorem for an EREW PRAM. Let \(N_t \) denote the number of processors active at step \(t \), \(\sum_t N_t = N \). We know which processors of the algorithm are active at step \(t \), and hence we can have the \(P \) available processors simulate their execution for step \(t \) in time \(\lceil N_t/P \rceil \). The total time is therefore \(\sum_t O(\lceil \frac{N_t}{P} \rceil) = O(\sum_t \frac{N_t}{P} + 1) = O(\frac{N}{P} + T) \). The proof for other kinds of PRAMs is only slightly more complicated and left as an exercise.

Note that the number of processors involved in the original algorithm do not figure in the final time.

Example: The prefix of \(N \) elements can be computed in \(O(\log N) \) steps using \(N \) processors organised as a binary tree. Remember that at any time step only processors in a single level are active, and the total number of operations performed by the algorithm is only \(O(N) \). The simple minded PRAM algorithm simulates the tree execution using \(N \) processors, and the simulation is clearly fixed schedule, with \(O(N) \) operations. However, we can use \(P = N/\log N \) processors and
apply Brent’s theorem. The time is $O\left(\frac{N}{P} + \log N\right) = O(\log N)$. We have thus managed to reduce the number of processors by a log N factor without increasing the time by more than a constant factor.

19.5 $N/ \log N$ processor, $\log^2 N$ time algorithm

It is slightly tricky to apply Brent’s scheduling principle, because there are conditional checks in the convex hull algorithm, unlike the algorithm for the prefix. Note however, that we can be conservative. If we do not know if a processor will be busy at a certain step, we will assume it will be busy. So now, we can see that the recurrence for $T_p(N)$ contains a log N additive term only because of the broadcasting of the values. Note that in these broadcast steps the total number of operations performed is $O(N)$. The total number of operations in each of the other steps is $O(N)$ too. Thus the total number of operations is $N \log N$ over the $O(\log^2 N)$ steps.

We then get the result by choosing $P = N/\log N$.

Butterfly algorithm attempt 1: We can simulate the PRAM algorithms to run on a P processor Butterfly; but this will require a slowdown of $\Omega(\log P)$, and we would not get linear speedup. You might think that the PRAM simulation stores the data structures of the algorithm in a random manner among the memories in the Butterfly; and typically it takes $\Omega(\log P)$ time for access to any datum, causing the slowdown. However, it seems that even if we carefully decide where to store the data structures of the PRAM algorithm on the Butterfly a slowdown is unavoidable. This is because in the merge step we move a lot of data. To get linear speedup we need a slightly different strategy.

19.6 A Tree algorithm

We show that a complete binary tree with P leaves can compute the convex hull of N points in time $O(N/P)$, provided $N = \Omega(P \log^3 P)!$ The catch is that we require the points to be input at the leaves in sorted order. Suppose that the leaves of the tree are numbered 0 through $P - 1$ left to right. Then we require that each leaf processor inputs N/P points, and the points input by leaf i have no smaller x-coordinates than those input by leaf $i + 1$. If the input is in sorted order, then it is possible to compute the convex hull in time $O(N)$ on a sequential processor, so our algorithm gives linear speedup.

The algorithm is quite similar to the PRAM algorithm, except that the data structures are modified to reduce data movement. As in the PRAM, the input is read into an array Points[1..N]. The array is distributed amongst the leaf processors, so that leaf processor i holds subarray Points[si+1..si+s], with $s = N/P$. As mentioned above, we are guaranteed that the points are read in sorted order of their x-coordinates.

The algorithm for computing upper hulls is as follows:

Step 1: Each leaf processor i computes the upper hull of the points in Points[si+1..si+s], and stores the result in an array $U(i)$. Each processor i also maintains three additional integers: $Count(i)$ which holds the length of $U(i)$. The other two $Rank(i)$ and $Size(i)$ will be explained below, but they are initially set so that $Rank(i) = 0$, and $Size(i) = Count(i)$. Notice that this step is entirely local to each processor, and since the points are already sorted, takes time $O(s) = O(N/P)$.
Step 2: The P hulls are merged pairwise to produce a common upper hull, in a total of $p = \log P$ substeps: $2.1, 2.2, \ldots, 2.p$. Each substep will be seen to require time $O(\log P \log N)$, for a total time of $O(\log^2 P \log N)$ for the entire step.

The key to merging hulls quickly is the representation used to store the hull in a distributed manner. In general, at the beginning of substep $2.i+1$, leaf processors $j2^i$ through $(j+1)2^i - 1$ together hold a single hull U_j. In particular, $U_j = U(j2^i)[..]|U((j+1)2^i - 1)$, where $|$ denotes concatenation of the sequences. The other data structures maintained by processor x have the following interpretation. $\text{Count}(x)$ denotes the length of $U(x)$, $\text{Rank}(x)$ denotes the number of points appearing in $U_{[x/2^i]}$ before the first point in $U(x)$, and $\text{Size}(x)$ denotes the number of points in $U_{[x/2^i]}$. The initialization in step 1 is consistent with this interpretation.

We now describe the action of step 2.$i+1$, for $i = 0..p - 1$.

Step 2.$i+1$: Let U_j be defined as above, with j even. This step will merge hulls U_j and U_{j+1} to form a single hull U using a binary search like technique as in the PRAM algorithm. The merging process is itself performed by the processor Q in level $i + 1$ that is the common ancestor of leaf processors $j2^i$ through $(j + 2)2^i - 1$ which together hold U_j and U_{j+1}. The binary search requires processor Q to be able to issue requests of the form:

Fetch the kth leftmost point on hull U_j (or U_{j+1}).

This is performed simply by broadcasting the request to the processors in the left or right subtree rooted at Q. Each leaf processor x can determine in constant time if it is holding the requested point using $\text{Rank}(x)$ and $\text{Count}(x)$, and return the result to Q. The time for a single request is $O(i) = O(\log P)$. The binary search requires a total of $O(\log s2^i) = O(\log N)$ accesses, together requiring time $O(\log P \log N)$. The binary search enables processor Q to determine the number $n1$ of (leftmost) points on U_j, and the number $n2$ of (rightmost) points on U_{j+1} that survive to be included into U. Q then broadcasts $n1$ and $n2$ to its subtree, and each processor x updates $U(x)$, $\text{Rank}(x)$, $\text{Count}(x)$ and $\text{Size}(x)$, so as to cooperatively store U. After receiving $n1$ and $n2$, each processor in the subtree can perform the update in constant time. Each processor is now ready to enter step 2.$i+2$.

The total time for all substeps of step 2 is thus $O(\log^2 P \log N)$. Adding the time for step 1, we have the total time to be $O(\log^2 P \log N + N/P)$. If we choose $N = \Omega(P \log^3 P)$, we have total time $O(N/P)$ as claimed.

Notice that we really didn’t need a complete binary tree. Any binary tree with height $O(\log P)$ and P leaves will do to get the bounds mentioned above.

19.7 Butterfly Network

We will show that even if the points are not given in a sorted order, it is possible to compute convex hulls on a P processor Butterfly (processors in all levels) in time $O((N \log N)/P)$. For getting a deterministic algorithm this requires $N = \Omega(P^{1+\epsilon})$ for some constant $\epsilon > 0$. For randomized algorithms we need $N = \Omega(P \log^3 P)$.

The algorithm has two steps: (1) Sort points by x-coordinate, (2) embed a tree of height $O(\log P)$ in the Butterfly and emulate the algorithm given in the previous section.

Step 1 takes time $O((N \log N)/P)$ using the Reif-Valiant Flashsort (randomized), or in the deterministic case using Leighton’s columnsort (we need $N = \Omega(P^{1+\epsilon})$ in that case). Step 2 can also be seen take the same time using the analysis of the previous section.
19.8 Other networks

The idea of the Butterfly algorithm can obviously be extended to other hypercubic networks.

If the points are input in an arbitrary (unsorted) order, then linear speedup is achieved on non-hypercubic networks such as the mesh only with very few processors as compared to the number of points. This is because sorting can be reduced to computing convex hulls (see Preparata-Shamos). On a mesh sorting takes time $\theta(N/\sqrt{P})$ because of the bisection width bound. Thus for linear speedup on sorting (and convex hulls) we must have $N/\sqrt{P} = O(N \log N/P)$. This implies that $P = O(\log^2 N)$, i.e. very little parallelism.

Similar arguments can be made for other low bisection width networks.

19.9 Exercises

Problem 1. Let P denote a set of n points $p_0, p_1, \ldots, p_{n-1}$ in the plane, given in sorted order of their x coordinate. The following is a sketch of an n processor CREW PRAM algorithm for computing their upper hull.

1. \sqrt{n} way recursion: Let $P_i = \{p_{i\sqrt{n}}, \ldots, p_{(i+1)\sqrt{n}-1}\}$. In parallel recursively compute the upper hull of P_i for all i, using \sqrt{n} processors for each recursive call. Let $U_0, U_1, \ldots, U_{\sqrt{n}-1}$ denote the upper hulls computed.

2. Computation of common tangents: Find the common tangents between hull U_i and U_j for all i, j. This is where the concurrent read feature might be important.

3. Mark off the points on each U_i that survive.

4. Compact the points that survive and return them as the joint upper hull.

Show that step 3, determining which points survive can be done in $O(\log n)$ time for all i together. Consider some hull U_i, where $0 < i < \sqrt{n} - 1$. Is it possible that no points on U_i will appear in the upper hull of P? Give an example to justify.
Chapter 20

VLSI Layouts

So far we have considered the number of vertices and edges of a graph to be indicative of its cost. However, when the graph becomes large, other considerations come into the picture. This is because at the lowest level, a circuit or a computer network is designed by laying it out on the nearly planar surface of a VLSI (very large scale integration) chip. In this the same resource: chip area, is used to build processing components as well as wires. To a first approximation, the cost of a chip may be considered to be proportional to its area. It is conceivable that a network with fewer edges than another may require more area, and hence should be considered more expensive. So we need a clear model for estimating the layout area.

To formulate the model we need to understand something about the process used to fabricate chips, and the imperfections in it. It should seem reasonable that every wire or processor (or really a gate or a transistor) must have some finite area on the chip. The process by which the wires and devices are configured on a chip is photographic. A drawing is made of the circuit and is projected onto the silicon surface coated with photo sensitive materials in various combinations. Light reacts with the photosensitive material and renders it dissolvable in acids which might subsequently used to wash it out, leaving behind components that we want. This may be done several times, and in addition there maybe other processes such as implanting specific dopants into the exposed areas.

The important point is that the photographic and other processes only have a certain finite geometric precision: whatever gets constructed on the silicon surface may be different from what was intended by a certain length parameter λ which is a property of the fabrication process. This implies, for example, that all wires that will be fabricated must have width substantially larger than λ, so as to ensure that errors will not cause them to be broken. Likewise two wires or other components should be substantially farther from each other than λ, otherwise they may get shorted because of errors in the fabrication process.

In the rest of this chapter, we will define the model used to layout networks onto a chip, and then use that model to layout different networks and compare their area. See the texts [12, 4] for details.

20.1 Layout Model

Based on the above considerations, Thompson proposed a model for circuit layouts. It is designed to be simple while representing all the essential features of the layout process. It makes it easy to analyze layouts mathematically (albeit with a certain over simplification). Indeed the model used by circuit designer will be more complex, but probably not different in any essential sense.
In Thompson’s model, a chip is regarded as a two-dimensional grid, with horizontal and vertical tracks drawn at regular spacing. Each track can accommodate one edge, and each track intersection can accommodate a node of the network. A node need not be placed in every intersection, instead the intersection could be occupied by edges connecting distant nodes. In fact, the edges in horizontal and vertical tracks may cross and will be deemed to not have any electrical connection between them. An edge may also change direction at an intersection, from running horizontal to running vertical.

The primary cost measure for the layout is the area of the bounding box of the circuit, defined as the product of the height and width of the box measured in number of tracks.

Roughly, it may be considered that the intertrack separation is \(\lambda \) (something larger, say \(3\lambda \) will be better, but we will ignore this constant factor), to ensure that distinct wires or nodes do not get accidentally connected in the fabrication process. The width of the tracks is also \(O(\lambda) \), for similar reasons.

The idea of placing a node in a vertex is appropriate if the node is small; if the node is large (say a processor), it is more appropriate to assign it a bigger region covering several adjacent track intersections. With this it is also possible to allow more than 4 wires from entering a node. For simplicity we will assume that a node fits in the track intersection.

20.1.1 Comments

The model may seem too simple and overly rigid, and it is. But it is possible to argue that it is right in essence: if you get a layout of area \(A \) in a more relaxed model, it is possible to automatically transform it into a layout of area \(O(A) \) in the Thompson model.

For example, a more relaxed model might allow wires to run at arbitrary directions rather than just horizontally or vertically. Note that these would still need to be separated from other wires/components by distance \(\Omega(\lambda) \), and the width of the wires (at whatever orientation) would also need to be \(\Omega(\lambda) \). Any such layout can be digitized, i.e. we magnify it enough so that the magnified image of each wire contains a continuous sequence of horizontal and vertical tracks from one end of the wire to the other. Now we simply use this track sequence rather than the original wire which could be at an arbitrary inclination or even curved. The key point is that the amount of magnification needed is \(\Theta(1) \), assuming the original wires have width \(\lambda \). Thus the area required in the new (Thompson) layout is worse only by a constant multiplicative factor.

Another way in which actual layouts differ from the Thompson model is that they may have several layers. Indeed modern chips can have wires in as many as 8 or more layers, one on top of another. One way to imagine this is to consider tracks with depth \(h \), the number of layers, and allow \(h \) wires to be stacked one on top of another in each track. In fact, we may allow \(h \) devices also to be stacked one on top of the other, and each device to have 6 connections, one in each direction. Suppose a chip of area \(A \) is fabricated using \(h \) layers. It is possible to show that the same chip can indeed be fabricated in the Thompson model in area \(O(h^2A) \).

1. Suppose the layers are in the \(z \) dimension.

2. First apply the transformations listed above to ensure that wires run only in the \(x, y \) dimensions. For this, we may need to scale the layout by a constant factor.

3. Next, stretch the chip by a factor \(h \) along the \(x, y \) dimension. This makes the area \(O(h^2A) \).

4. We will further stretch by a factor of 2 so as to make each device occupy a \(2 \times 2 \) subgrid.
5. Displace the \(i \th \) pair of layers by \(2i\lambda \) in the \(x, y \) dimensions each, the width. As a result of this, no device will be on top of another device. Also no wire along the \(x \) dimension will be on top of a wire along the \(x \) dimension. Likewise for wires along the \(y \) dimension. Further, vertical connections between devices can also be accommodated since our devices have been stretched.

6. Project the layers in the \(z \) direction. This will produce a layout with wires crossing at intersections but not overlapping. So this can now be layed out using two standard layers.

20.1.2 Other costs

It should be mentioned that the model ignores an important electrical issue: long wires have greater signal propagation delays. If we consider wires to be mainly capacitative, the delay turns out to be \(O(\log L) \) where \(L \) is the length of the wire. If the wires are capacitative, the delay is \(O(L^2) \), but it can be made \(O(L) \) by introducing *repeaters*.

Thus if we have two networks with same total area but one containing longer wires, the one with longer wires will likely slower (i.e. have a smaller clock speed). However, the basic Thompson model considers both networks to be equivalent.

To address this somewhat, we will characterize a layout by not only its area, but also the length of the longest wire in it. In other words, our goal will be to get layouts which simultaneously have small areas as well as small longest wire lengths.

20.2 Layouts of some important networks

The two dimensional array with \(N \) processors clearly has area \(N \).

A 3 dimensional \(n \times n \times n \) array can be layed out in \(n \) layers in area \(n^2 \). By implementing the procedure above we can turn this layout into a 2 layer layout of area \(O(n^2A) = O(n^4) = O(N^{4/3}) \). The length of the longest wire in this layout is \(O(n^2) = O(N^{2/3}) \).

A complete binary tree can be layed out recursively. Place the root at the center of a square. The 4 subtrees will be layed out in the smaller squares left behind when you remove the central horizontal track and the central vertical track. The children of the root can be placed in the central horizontal track, between their children. This gives the recurrence \(S(N) = 2S(N/4) + 1 \) for the layout of an \(N \) leaf tree. This solves to \(S(N) = O(\sqrt{N}) \).

20.2.1 Divide and conquer layouts

The binary tree layout is a special case of a general divide and conquer strategy. For this we need the notion of a *graph bisector*.

A set \(S \) of edges and vertices of a graph \(G \) is said to be a bisector for \(G \) if on removing \(S \) from \(G \) we have \(G \) splitting into disconnected subgraphs \(G_1 \) and \(G_2 \) such that the number of vertices in \(G_1 \) as well as \(G_2 \) is at most half of those in \(G \).

We will say that a graph has a \(f(n) \) bisector if \(|S| = f(n) \) where \(n = \text{number of vertices in the graph} \). We will say that the graph has a \(f(n) \) bisector recursively if \(G_1, G_2 \) also have \(f(n) \) bisectors and so on.

As an example, a \(N \) node butterfly has a \(N/\log N \) bisector, a complete binary tree has \(O(1) \) bisector, and by the theorem of Lipton-Tarjan, any \(N \) node planar graph has a \(O(\sqrt{N}) \) bisector.
Theorem 14 If a bounded degree graph has \(f(n) \) bisector recursively, then it can be layed out with side length \(S(n) \) where \(S(n) = 2S(n/4) + O(f(n)) \).

Proof: Divide the graph into 4 parts by applying two bisections. Lay out the 4 parts in 4 squares of side length \(S(n/4) \). Now we must insert the removed edges and vertices. For each of these the side length increases by \(O(1) \).

For trees we get \(S(N) = 2S(N/4) + 1 \), which is the same recurrence as before. For \(N \) node butterflies we get \(S(N) = 2S(N/4) + O(N/\log N) \). This solves to \(S(N) = O(N/\log N) \) which is optimal as will be seen later. For planar graphs we get \(S(N) = O(N/\log N) \).

20.3 Area Lower bounds

The simplest lower bounds come from the bisection width.

Theorem 15 Area = \(\Omega(B^2) \) where \(B = \text{bisection width} \).

Proof: Consider the optimal layout. Let its length be \(l \) and height \(h \), with \(h \leq l \). Number the track intersections in it 1 through \(A \) in column major order. Let \(P_i \) denote a partition of the layout consisting of intersections 1, \ldots, \(i \) on one side and the rest on the other. All such partitions have at most \(h + 1 \leq \sqrt{A} + 1 \leq 2\sqrt{A} \) wires crossing them. Since there is at most one processor in each intersection, one of the partitions say, \(P_j \) is a bisection of the graph. This partition will be crossed by at least \(B \) wires. Thus \(B \leq 2\sqrt{A} \).

This shows that the area of an \(n \times n \times n \) array must be \(\Omega(n^2) \), which was matched above. Likewise the area of a butterfly must be \(\Omega(N^2/\log^2 N) \), also matched above.

20.4 Lower bounds on max wire length

Theorem 16 Max wire length \(L_{\text{max}} = \Omega(\sqrt{A}/d) \), where \(A \) is the minimum area needed for the layout and \(d \) the diameter of the network.

Proof: Consider the smallest possible layout with side lengths \(l \geq h \). Let \(s \) denote an active element, i.e. a wire or a node on the left edge of the layout, and \(t \) an active element on the right edge. Consider the shortest path in the graph that completely includes the elements \(s, t \). This path must have length at most \(d + 2 \leq 2d \). The length in the layout is at least \(l \geq \sqrt{A} \). Thus \(2dL_{\text{max}} \geq \sqrt{A} \).

Exercises

1. Show that any \(N \) node binary tree can be bisected by removing \(O(\log N) \) vertices (and incident edges). Show first that any \(N \) node tree can be partitioned into two forests each having at most \(2N/3 \) nodes by removing exactly one node. Using all this show that any \(N \) node binary tree can be layed out in area \(O(N) \).
2. Show that an N node torus can be laid out in area $O(N)$ such that the length of the longest wire is $O(1)$.

3. Give tight upper and lower bounds to lay out a $n \times n \times n \times n$ mesh. Assume each processor occupies a 2×2 region.

4. Write a recurrence to lay out a 2^n node hypercube (assume that each processor occupies an $n \times n$ region). Give matching lower bound.

5. Consider a greedy linear layout strategy as follows. Let G be the graph you want to layout. Place the vertices of G on a line in some carefully chosen order. Then consider vertices left to right, and for each vertex add the incident edges. For each edge being added use the track closest to the line that can accommodate it. Suppose the graph has N nodes.

 (a) Show that if the graph has bisection width B, the total area of any greedy linear layout will be $\Omega(NB)$.

 (b) Consider the shuffle exchange graph on $N = 2^n$ vertices. Define the weight of a vertex to be the number of 1s in its representation. Order the vertices in non-decreasing order of weight and use the algorithm above. Show that this gives a layout with area $N^2/\sqrt{\log N}$. Better layouts matching the bisection bound $\Omega(N^2/\log^2 N)$ exist, but they are much more intricate. You may find it useful to know that $\binom{n}{n/2} = \theta(2^n/\sqrt{n})$.

Chapter 21

VLSI Lower bounds

What is the best way to build a VLSI chip to solve problem X? Here ”best” could mean having minimum area or taking the minimum time. And problem X could be anything, e.g. matrix multiplication, sorting, FFT.

We could exhibit ways to build chips to solve the given problem, and these would constitute upper bounds, i.e. there exists a chip to solve this problem in whatever area and time that our design takes. For this, we could use some of the network algorithms that we have developed so far, e.g. matrix multiplication on 2 dimensional meshes, or FFT on a Butterfly. But we could devise completely new networks also.

Lower bounds would also be useful, say something like

No matter what network is used, area/time/... have to be at least ...

The concern in this chapter is lower bounds. Suppose A, T denote the area and time needed to solve a problem. Then it is possible to prove lower bounds of the following 3 forms.

$A \geq f$: Often called Memory based bounds. The key argument in this is: “At some point while solving problem, it is necessary to remember f words.” The chip must have area at least f to remember f words. Thus the bound.

$AT \geq f$: Often called I/O based bounds. If the input/output consists of f words, then A processors can read/write at most AT words in T steps. Hence the bound.

$AT^2 \geq f$: Often called Bisection based bounds. The intuition here is that at most \sqrt{A} words can flow from one half of chip to other half in one step. If your problem needs f words to flow, then you have the bound.

We begin with a restatement of the model, just to refresh some important points.

21.1 Model

We assume that each processor has $O(1)$ words of memory, and can do 1 word on input or output per step. It can also send 1 word on each link in each step.

We require that each input word must be read exactly once, in a where and when oblivious manner, i.e. where/when the word is read/generated must be declared before execution begins.

Input-output schedule:

 Terminology
Execution: The sequence of events starting at power up and including reading of inputs, computation and generation of outputs. We note that if a chip has \(m \) inputs (words), then it can only have \(2^{mw} \) distinct executions.

State: The values stored in the processors. For simplicity if we assume that each processor can store at most 1 word, a \(P \) processor chip can have at most \(2^{Pw} \) distinct states.

Behaviour: Values generated as outputs. A chip with \(n \) outputs (words) can have at most \(2^{nw} \) behaviours. By "behaviour after time \(t \)" we will mean the values generated after time \(t \).

Note that the chip Behaviour after time \(t \) can be uniquely determined given the chip state at time \(t \) and chip inputs after \(t \). In particular, the values input before time \(t \) need not be known if the chip state at time \(t \) is known.

21.2 Lower bounds on chip area

A chip with area \(A \) has only \(A \) words of memory. If we can prove that \(f(n) \) words of memory are necessary in order to compute some function \(F \) taking \(n \) words of input, then we can say that the chip for computing this function must have area \(f(n) \). Here is an example. We can prove that \(\Omega(n) \) bits of memory are needed to compute the product of \(n \) bit integers. This then implies that any chip that multiplies \(n \) bit integers must have area \(\Omega(n) \).

The key problem is of course, how do we prove that \(\Omega(n) \) bits of memory is needed to compute the product? You might perhaps say that we must first read the input, and \(n \) bits are needed just to read each operand. This argument does not account for the possibility that we may start using up the inputs as we read them: we generate the outputs which depend upon them so that we dont need to remember too many inputs at any time. This strategy in fact works for addition: we can read the summands starting from the least significant bits and generate the sum starting at the least significant bit. At any time during the computation we need to remember only the carry from the bits that have been processed. How can we be sure that this is not possible for multiplication too?

The argument for showing that a certain amount of memory is needed for a certain computation has the following general form. Observe that if a chip produces different behaviours after step \(t \) even if the same input is given after step \(t \), then the chip state must be different in the different executions. So if there are \(N \) executions with different behaviours after step \(t \), even for same external input after step \(t \), then the chip must be capable of holding \(\log N \) bits of state, or \(\frac{\log N}{w} \) words of state. Thus it must have area at least \(\frac{\log N}{w} \).

We next show an example of this for the cyclic shift problem. This will in fact generalize to several problems including integer multiplication.

21.2.1 Cyclic Shift Lower bound

The inputs to the problem are \(x_{n-1}, x_{n-2}, \ldots, x_0 \), the “data” portion, and \(s \), the “shift amount”. We will \(w \geq \log n \). The outputs are \(y_{n-1}, y_{n-2}, \ldots, y_0 \), where we require \(y_i = x_{i+s \mod n} \).

Theorem 17 Cyclic Shift requires \(A = \Omega(n) \)

We need a Lemma.
Lemma 19 All data words must be read before any output word is generated.

Proof: Suppose y_j is generated before x_i is read in some execution. Obliviousness implies that the above is true for all executions.

Set $s = i - j \mod n$. Thus the chip must output $y_j = x_{j+s \mod n} = x_i$. But then, we can feed different value for x_i after seeing what chip outputs as y_j. Thus the chip made a mistake. Hence we have a contradiction.

⇒ Chip forced to make mistake. Contradiction.

If there exists a time instant t at which chip must have all n data words in memory, then it must need enough memory to hold them, unless some data compression is possible. Clearly in this case no data compression is possible. The following proof is just one way of saying that.

Proof of Theorem 17: Let $t = \text{time instant after all inputs read and before any output word is generated.}$

Set $s = 0$. Now the inputs read after t are same in all executions. We can feed 2^w different bit patterns for the inputs x_{n-1}, \ldots, x_0 and these will appear at the data outputs y_{n-1}, \ldots, y_0. The each input pattern will lead to a distinct behaviour. Hence the number of behaviours for chip after time $t = 2^w$.

⇒ $A = \Omega(\frac{\log 2^w}{w}) = \Omega(n)$

21.2.2 Generalizations of the cyclic shift problem

Let $X = \{x_0, x_1, x_2, \ldots, x_{n-1}\}$ denote the inputs to a problem, and $Y = \{y_0, y_1, y_2, \ldots, y_{m-1}\}$ the outputs. We will say that y_i depends upon x_j under control c iff there exist two executions in which

1. Distinct values are assigned to input x_j.
2. Inputs in $X - \{x_j\}$ are assigned the value c, identical in both executions.
3. y_i takes on a different value in the two executions.

We will say y_i depends upon x_j if there exists c such that y_i depends upon x_j for control c.

Example: In cyclic shift every output word depends upon every data word.

Implication of dependence: If y_i depends upon x_j then x_j must be read before y_i is generated.

We will say that $X' \subseteq X$ depends upon $Y' \subseteq Y$ if every $y \in Y'$ depends upon $x \in X'$.

We will say that $\{x_{i_1}, \ldots, x_{i_k}\} = X' \subseteq X$ flows to $\{y_{j_1}, \ldots, y_{j_k}\} = Y' \subseteq Y$ under control c if there exist there exist 2^{kw} executions in which:

1. The value c is given to the inputs in $X - X'$.
2. The input X' take distinct values.
3. The outputs Y' take on exactly the same values as the inputs X', specifically, $y_{j_l} = x_{i_l}$ for all l.

We will say X' flows to Y' if there exists c such that X' flows to Y' under some control c.

Example 1: In cyclic shift, the data inputs flow to the outputs. The control c needed for this is 0, i.e. the shift amount is set to 0. The same control shows dependence of outputs on data.
Example 2: Problem: Addition modulo 2^n. The inputs here are $A = a_0, a_1, \ldots, a_{n-1}$ and $B = b_0, b_1, \ldots, b_{n-1}$, and the outputs are $C = c_0, \ldots, c_{n-1}$, where a_i, b_i, c_i are all bits, i.e. wordsize is 1. Clearly, A flows to C when under control $B = 0$. But there is no dependence, you will shortly see a way to prove this.

Example 3: Here is an artificial problem, again for wordsize 1. The inputs are $X = \{x_0, \ldots, x_{n-1}\}$, and outputs are $Y = \{y_0, \ldots, y_{n-1}\}$. We require each $y_i = \sum_i y_i \mod 2$ Clearly every y_i depends upon every x_j. However, clearly there is no flow from X to Y. The next theorem will show a way to prove this.

Theorem 18 If Y' depends upon X' and X' flows to Y' under some control c then Area = $\Omega(n)$, where n denotes the number of words in X'.

Proof: Because of dependence X' must be read before any Y' is generated. Let $t = $ time after reading X' but before generating Y'.

Consider 2^{nw} executions in which X' takes different values. In all these executions we will set inputs $X - X'$ to c. Thus in each, Y' takes the same value as X', because of the flow condition.

Further, in all executions chip will read the same input (part of c) after step t. But in each it must produce different output.

Thus at step t chip must have 2^{nw} states. Thus it must be capable of storing nw bits, i.e. have n processors, i.e. area n.

Note that Addition modulo n can be done in $O(1)$ area, and our synthetic problem can also be solved in area $O(1)$. Thus both dependence and flow are needed for large area.

21.2.3 Further generalization

Suppose the inputs are X and $X' = \{x_0, x_1, x_2, \ldots, x_{n-1}\}$ is a subset of X. Likewise the outputs are Y, and $Y' = \{y_0, y_1, y_2, \ldots, y_{n-1}\}$ is a subset of Y.

X' has an f word flow to Y' under control c iff there exist 2^{fw} executions in which:

1. The value c is given to the inputs in $X - X'$.
2. The input X' take distinct values.
3. The outputs Y' take distinct values.

If $f = n = |X'| = |Y'|$ and we require Y' to take exactly the same values as Y', then this is the old definition.

Example: Consider the problem of sorting n 1-bit numbers. Clearly, the inputs do not fully flow to outputs. However, all inputs that are already sorted will appear unchanged at the outputs. Thus there are n executions in which the above conditions are satisfied. Thus $2^{fw} = n$, i.e. $f = \log n$ since we have $w = 1$.

Theorem 19 If Y' depends upon X' and X' has an f word flow to Y' (under some control c) then Area = $\Omega(f)$.

Proof: Similar to the proof of Theorem 18, and hence omitted.
21.2.4 Integer Multiplication

The integer multiplication problem takes as input two \(n \) bit numbers \(a_{n-1} \ldots a_1 a_0 \) and \(b_{n-1} \ldots b_1 b_0 \) and the requirement is to generate their \(2n \) bit product \(c_{2n-1} \ldots c_1 c_0 \).

Theorem 20 Area required for matrix multiplication = \(\Omega(n) \) (bit model).

Proof: Choose \(X' : b_{n-1} \ldots b_{n/2}, \ Y' : c_{3n/2-1} \ldots c_n \).

Every bit in \(Y' \) depends upon every bit in \(X' \). To see this, let \(a = \) suitable power of 2.

\(X' \) flows to \(Y' \) under control \(a = 2^{n/2} \), rest of the inputs 0.

21.3 Summary of Area Bounds

Word model: \(w = \theta(\log n) \)

- Cyclic shift \(\Omega(n) \)
- Sorting \(\Omega(n) \)

Bit model:

- Integer Multiplication \(\Omega(n) \)
- Addition mod \(2^n \) \(\Theta(1) \)
- Addition mod \(2^n - 1 \) \(\Omega(n) \)
- Convolution \(\Omega(n) \)
- Sorting \(n \) integers each \(1 + \log n \) bits wide \(\Omega(n) \)
- Sorting \(n \) integers each \(2 \log n \) bits wide \(\Omega(n \log n) \)

Most of the above have matching upper bounds.

21.4 \(AT \) bounds

If the input to a problem (or the output) consists of \(n \) words, then \(AT = \Omega(n) \). This is because the chip can have at most \(n \) processors, and each processor can read at most \(T \) words in \(T \) steps.

21.5 \(AT^2 \) Bounds

Suppose a network is laid out in a chip with side lengths \(l, h \) with \(l \geq h \). The mere fact that the network can be thus laid out shows that there are certain communication bottlenecks in it. Specifically, number the processors in the chip in column major order. Then for any \(i \), processors 1 through \(i \) can be separated from the remaining processors using a single vertical cut or a single vertical cut with a jog. Let \(CC(i) \) (canonical cut) denote such a cut. There are only \(h+1 \) wires going from one side of \(CC(i) \) to the other. In one step, only \(h+1 \) words can thus be sent across any such cut. If we can argue that \(f \) words of data must be sent across across some such cut, then we must have \((h+1)T \geq f \) where \(T \) is the computation time. But \(A = hl \geq h^2 \geq (h+1)^2/4 \). Thus we will have \(AT^2 = \Omega(f^2) \).
More formally, define a communication transcript of a cut C as the concatenation of all the words transmitted across C over time. For canonical cuts, the communication transcript thus contains at most $(h + 1)T$ words.

Note that if the part of a chip on one side of a cut produces different outputs in different executions, then it can be because (1) it read different input values in different executions, or (2) it received different values from the other side of the cut, i.e. the communication transcript was different.

Theorem 21 (Transcript theorem) Suppose some canonical cut divides a chip into parts L, R. Suppose R reads inputs X' and L generates outputs Y'. Suppose there is a f word flow from X' to Y'. Then $AT^2 = \Omega(n^2)$.

Proof: From the definition of flow we know that there exist 2^fw distinct executions in which Y' takes different values even though the inputs $X - X'$ are held fixed at some c. But Y' lie in L, and inputs in L receive the same values in all these executions. Thus in order to generate different values in these executions, the transcripts received by L must be different. Thus there exist 2^fw distinct transcripts. But a canonical cut can have length at most $h + 1$, where $A = hl, h \leq l$. Thus the number of possible transcripts is at most $2^w(h + 1)^Tw$. Thus $2^w(h + 1)^Tw \geq 2^fw$. Thus $(h + 1)T \geq f$. Thus $AT^2 = \Omega((h^2T^2) = \Omega((h + 1)^2T^2) = \Omega(f^2)$.

21.6 Cyclic Shift

Consider the problem of cyclic shifting of n words, as defined earlier.

Theorem 22 Cyclic Shift requires $AT^2 = \Omega(n^2)$

Before proving the Lemma, we note that the lower bound is matched by two designs. For example a $\sqrt{n} \times \sqrt{n}$ mesh gives $T = O(\sqrt{n})$, $A = O(n)$, thus matching the bound. In other words, if you want $T = O(\sqrt{n})$, then the mesh is optimal, you cannot do it in less area. An n node Butterfly is also optimal, with $T = O(\log n), A = O(n^2/\log^2 n)$. You will note that an n node hypercube is not optimal.

Proof: Say a processor P is output-heavy if P outputs $\geq n/3$ values. But if such a processor exists, then the time is at least $n/3$, $AT^2 = \Omega(n^2)$ trivially.

So assume that no processor is output heavy. By the Partition Lemma proved below, there must exist a cut C and constant α such that $X' = \{x_{i_1}, x_{i_2}, \ldots, x_{i_{n/6}}\}$ are input on one side and $Y' = \{y_{i_1-\alpha}, x_{i_2-\alpha}, \ldots, x_{i_{n/6}-\alpha}\}$ are output on the other side.

Set the shift count to be α, and set all the data inputs other than X' to be 0. Under this control we thus have X' flowing to Y', i.e. an $n/6$ word flow.

Thus by the transcript theorem, $AT^2 = \Omega((n/6)^2) = \Omega(n^2)$.

Lemma 20 (Partition Lemma) Assuming no processor is output-heavy, there exists a canonical cut $CC(k)$ and constant α such that $X' = \{x_{i_1}, x_{i_2}, \ldots, x_{i_{n/6}}\}$ are input on one side and $Y' = \{y_{i_1-\alpha}, x_{i_2-\alpha}, \ldots, x_{i_{n/6}-\alpha}\}$ are output on the other side, where subtractions are modulo n.
Proof: We first show that if no processor is output heavy, some $CC(k)$ has at least $n/3$ outputs generated on either side. To see this let $g(i)$ denote the number of outputs generated on left side of $CC(i)$. Let $CC(0)$ be the (degenerate) cut with 0 processors to its left. We know that $g(0) = 0$, and $g(N) = n$, where N is the total number of processors. Clearly g is a non-decreasing function. Let k be smallest such that $g(k) \geq n/3$. Since $g(k-1) < n/3$ and because processor k is not output heavy, we have $g(k) \leq g(k-1) + n/3 < 2n/3$. Thus there must be at least $n/3$ processors to the right of $CC(k)$ as well.

One side of $CC(k)$ must read at least half of the n values x_{n-1}, \ldots, x_0, say the values of $x_{i_1}, x_{i_2}, \ldots, x_{i_{n/2}}$. The other side must generate at least $n/3$ outputs, say $y_{j_1}, y_{j_2}, \ldots, y_{j_{n/3}}$.

Put a complete bipartite graph on above inputs/outputs. To each edge (x_i, y_j) assign the colour $p - q \mod n$. There are n colours overall. Since there are $n^2/6$ edges, at least $n/6$ edges have the same colour, say α. Pick $X', Y' = \text{endpoints of edges with colour } \alpha$. Note that if x_{ij} is one endpoint of an edge with colour α, then the other endpoint must have colour $y_{ij} - \alpha$ as needed.

21.6.1 Summary

The basic ideas are: (a) notion of output heavy processors, (b) showing that there is a canonical cut that has $n/3$ outputs on each side ("output partitioning"), (c) colouring argument to show large flow (d) use of transcript theorem. These are applicable in other problems too, as we will see soon.

21.7 Matrix multiplication

We will show that $AT^2 = \Omega(n^4)$ for computing $R = PQ$ given $n \times n$ matrices P, Q. We follow the same strategy as for cyclic shift. The key question is: can we show that no matter what the chip designer does, a large flow must cross some canonical cut?

There are some natural flows to consider. For example, if P is chosen to be the identity matrix, then $R = Q$. So Q flows to R. This by itself is not a problem. The designer can read q_{ij} and generate r_{ij} in the same processor, and thereby the flow does not have to cross any cut. More generally, we could choose P to be a shift matrix, i.e. a matrix S_i obtained by rotating all rows of the identity matrix by i circularly. Here is an example for $n = 5, i = 1$.

$$S_1 = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$R = S_iQ$ is a circular rotation of rows of Q one step upwards: q_{ij} flows to $r_{(i-1 \mod n)j}$. By choosing P to be shifts of all magnitudes from 0 to $n - 1$, we can effectively force columns to be circularly shifted by whatever amount we choose. Unfortunately the chip designer can still keep the flow small as follows. He chooses to read the ith column of Q close to the processors that generate the ith column of R.

Note however that we can also choose to set Q to shift matrices. This will force rows of R to be cyclically shifted versions of P. To implement the required data movement without having large
flows to cross any canonical cut, the designer would have to read each row or P close to where the corresponding rows of R are generated.

Note now that we have two seemingly conflicting requirements: rows of P should be read close to where rows of R are generated, while columns of Q should be read close to where columns of R are generated. We show next that both the requirements cannot be simultaneously satisfied.

21.7.1 Proof Outline:

You give me a chip. I will examine it and I will tell you one of the following after examining it.

- Your chip contains some processor that generates at least $n^2/3$ elements of R. This will trivially prove $AT^2 = \Omega(n^4)$.

- Your chip contains a canonical cut on one side of which $n^2/18$ elements P' of P are read and on the other side of which $n^2/18$ elements R' of R are generated, such that P' flows to R'. I will also tell you under what control P' flows to R': this will happen by setting Q to a shift matrix.

- Your chip contains a canonical cut on one side of which $n^2/18$ elements Q' of Q are read and on the other side of which $n^2/18$ elements R' of R are generated, such that Q' flows to R'. I will also tell you under what control Q' flows to R': this will happen by setting R to a shift matrix.

21.8 Proof

If any processor generates $n^2/3$ outputs, then we are done. So assume there is no such processor for the rest of the proof.

Next we fix the canonical cut π across which we will show a large flow. Assume the chip has height h length l, $h \leq l$. Number intersections in column major order. Let $N(i)$ denote the number of elements of R generated by processors in intersections $1 \ldots i$. We have $N(0) = 0$, $N(A) = n^2$. We also know that $N(i)$ increases at most by $n^2/3$. Thus there is some j such that $n^2/3 \leq N(j) \leq 2n^2/3$. This is our required cut π.

Next, we pose the problem of finding a large flow as a certain graph partitioning problem. Consider a graph G in which vertices are elements of P, Q, R. The edges indicate possible flow, with a colour indicating what shift matrix causes the flow as follows. If we choose Q to be a shift matrix that downshifts by s, we will have a flow from p_{ij} to $r_{i(j+s \mod n)}$. So for $s = 1, \ldots, n$ we will have an edge $(p_{ij}, r_{i(j+s \mod n)})$ for all i, j. This edge will have colour s. Likewise if we choose P to be a shift matrix that shifts by s, we will have a flow from q_{ij} to $r_{(i+s \mod n)j}$. So for $s = 1, \ldots, n$ we will have an edge $(q_{ij}, r_{(i+s \mod n)j})$ for all i, j. This edge will have colour s'. Thus G will contain complete bipartite graphs between the jth column of Q to the jth column of R, and complete bipartite graph between the ith row of P to the ith row of R.

Imagine G to be placed on our chip. We know that at least $n^2/3$ vertices corresponding to R lie on either side of the cut π. No matter how the other vertices are placed, Lemma 21 shows that $n^2/18$ edges of a single colour s or s' cross π. Then we are done: If the colour is s we set Q to be a matrix that shifts by s, if the colour is s' we set P to be a matrix which shifts by s. In either case we have $n^2/18$ from elements of P or Q to R.
Lemma 21 Suppose no processor outputs more than $n^2/3$ values, and $n^2/3$ vertices of R are on both sides of a canonical cut π. Then no matter how other vertices in G are placed, $n^2/18$ edges of a single colour cross π.

Proof: We first estimate how many edges of G (of any colour) cross π.

For this we embed the complete directed graph on n^2 nodes into G with vertices placed on the elements of R. We know that both sides have at least $n^2/3$ vertices. So at least $n^4/9$ edges of the complete graph must cross the cut. If they are embedded in E edges of G with maximum congestion C, then we have $E \geq n^4/9C$.

The embedding is as follows. The path from r_{ij} to r_{kl} is embedded through p_{ik}, r_{il}, q_{jl}.

1. (r_{ij}, p_{ik}) : Contributed by paths from r_{ik} to r_{kl} for any t. Hence n.
2. (p_{ik}, r_{il}) : Contributed by paths from r_{il} to r_{kl} for any t. Hence n.
3. (r_{il}, q_{jl}) : Contributed by paths from r_{ij} to r_{tl} for any t. Hence n.
4. (q_{jl}, r_{kl}) : Contributed by paths from r_{tj} to r_{kl} for any t. Hence n.

Thus $E \geq n^4/(9n) = n^3/9$. But there are at most $2n$ colours. So some colour must have $n^2/18$ edges.

21.9 Sorting

Theorem 23 Sorting $2\log n$ bit integers requires $AT^2 = \Omega(n^2)$ in the word model with $w = 2\log n$.

Proof: We are done if some processor generates at least $n/3$ outputs. So we assume contrary. Then as always, we can find a canonical cut which has at least $n/3$ outputs on both sides.

One of the sides of the cut must read $n/2$ inputs. Suppose the input is x_0, \ldots, x_{n-1} and output is y_0, \ldots, y_{n-1}. Wlog suppose the left side generates some $n/3$ outputs, say $Y' = \{y_{i_0}, \ldots, y_{i_{n/3-1}}\}$ and right side reads inputs $X' = \{x_{j_0}, \ldots, x_{j_{n/3-1}}\}$. We can now show an almost full flow from X' to Y' as follows.

We will use the term ”high bits” to mean the most significant $\log n$ bits, and ”low bits” the least significant $\log n$ bits.

First consider $x_j \notin X'$. We set the high bits of these x_j to be the integers $\{0, \ldots, n-1\} - \{i_0, i_1, \ldots, i_{n/3-1}\}$. The low bits are set to 0.

We set the high bits of x_{jk} to equal i_k. The remaining bits are set in an arbitrary manner.

On sorting, x_{jk} must appear at y_{i_k}. Thus we have a flow from the low bits of all x_{jk} to the low bits of y_{i_k}. Thus there are $2^n(n/3)$ executions and thus $(\log 2^n(n/3))/(2n) = n/6$ word flow.

Thus we have $AT^2 = \Omega(n^2)$.

Proof: (Alternate) As above we can assume that there is a canonical cut on one side of which $n/3$ outputs Y' are generated, and on the other $n/2$ inputs X' are read.
Suppose at least a half \(Y'' \) of the the \(n/3 \) outputs \(Y' \) have indices larger than \(n/2 \). In this case, we set all inputs in \(X - X' \) to 0. Now as the inputs in \(X' \) are varied, the outputs in \(Y'' \) take as value all possible non-decreasing length \(|Y''| = n/6 \) sequences on \(w \) bit keys. Thus there are \(\left(\frac{2^w + n/6 - 1}{n/6} \right) \) distinct behaviours. Thus the number of words in the flow is at least

\[
\frac{1}{w} \log \left(\frac{2^w + n/6 - 1}{n/6} \right) \geq \frac{1}{w} \log \left(\frac{2^w}{n/6} \right)^{n/6} = \frac{1}{w} \frac{n}{6} \log 6n = \Omega(n)
\]

for \(w \geq 2 \log n \).

Otherwise at least half of \(Y' \) must have indices smaller than \(n/2 \). Now the result follows by setting the inputs in \(X - X' \) to \(2^w - 1 \).

21.10 Concluding remarks

\(AT^2 = \Omega(n^2) \), with \(n \) the problem size is equivalent to saying that the problem is communication intensive: (i) most output depends on most inputs in a very detailed manner. (ii) essentially all the inputs must cross the width of the chip.

For certain problems it is useful to consider communication in and out of small tiles in the chip, rather than just across a canonical cut.

Another variation is as follows. Consider the problem of determining whether one given bitstring is a rotation of another given bitstring. In this case there is only a 1 bit answer. So our technique does not apply. But it is nevertheless possible to show that \(AT^2 = \Omega(n^2) \).

21.10.1 An interesting observation

We showed that multiplying \(n \times n \) matrices has \(AT^2 = \Omega(n^4) \). This has the following interesting implication: the time to multiply matrices using \(n \times n \) array is \(\Omega(n) \) because for \(n \times n \) arrays \(A = n^2 \). This shows that for the \(n \times n \) array, the simple algorithm is optimal and cannot be beaten even if you use Strassen’s algorithm or any other ideas. As you can see, this last conclusion has nothing to do with VLSI.

21.11 Exercises

1. Show that addition modulo \(2^n - 1 \) requires area \(\Omega(n) \). This is often called “1s complement addition”.

2. Show that sorting \(n \) integers each \(1 + \log n \) bits wide requires \(\Omega(n) \) area in the bit model.

3. Show that sorting \(n \) integers each \(2 \log n \) bits wide requires \(\Omega(n \log n) \) area in the bit model.

4. Show that multiplication of \(n \) bit integers has \(AT^2 = \Omega(n^2) \), assuming wordsize = 1.

Give multiplier designs and estimate if they are optimal for \(AT^2 \). Getting optimal designs is hard, but has been done in the literature.
5. The list ranking problem has as input an array NEXT[1..n] which represents a list. The output is an array RANK[1..n] which represents the ranks, i.e. RANK[i] is the distance of the element stored at position i of the array from the end of the list.

Assume that the wordsize $w = \theta(\log n)$. Show that the list ranking problem has $AT^2 = \Omega(n^2)$. (Hint: Let $n = 10$. Suppose you are told that NEXT[1..3] is read on the left and RANK[8..10] is read on the right of a small cut of the chip. What can you say about the flow from NEXT[1..3] to RANK[8..10]? You have to determine the control under which the flow is maximized. Note that you don’t have complete freedom in setting NEXT: it should form a list.)

6. Show that prefix computation over n numbers has $AT^2 = n \log n$. Hint: Start with an AT lower bound!
Chapter 22

Area Universal Networks

A network U is said to be universal for area A if (i) U has area $O(A)$, (ii) U can simulate any network requiring area A with polylog(A) slowdown.

A natural question is to ask whether standard networks, e.g. trees, mesh, or butterfly are area universal. Given area A, it is possible to build these networks with respectively $O(A)$, $O(A)$ and $O(\sqrt{A} \log A)$ processors at most. Noting that the tree has too small a bisection width, the mesh has too small a diameter, and the butterfly has too few processors, it will be seen that these networks cannot be universal. Specifically, a tree must have slowdown $\Omega(\sqrt{A})$ in simulating the mesh, the mesh and butterfly a slowdown $\Omega(\sqrt{A}/\log A)$ in simulating a tree. These are simple exercises.

So we will define a new network, called the fat-tree, and prove that it is area universal.

22.1 Fat Tree

We describe the construction of a fat tree $F_l(h)$, where l, h are integer parameters. The fat-tree which we ultimately need is $F_h(h)$ which we will denote as F.

$F_l(0)$ consists of a $l \times l$ mesh, with one of the corners designated as the root.

For $i > 0$ a fat-tree $F_l(i)$ consists of 2^i vertices v_0, \ldots, v_{2^ih-1} designated its roots connected to four copies T_0, T_1, T_2, T_3 of $F_l(i-1)$ as follows: the kth root in every T_j is connected to the v_k and v_{k+2^i-1}. Note that v_0, \ldots, v_{2i-1} can be thought of as the least common ancestors of vertices $x \in T_j$ and $y \in T_{j'}$, $j' \neq j$.

The following facts about the fat-tree $F_h(h)$ are easily checked. The total number of nodes in the meshes is $N = h^2 4^h$. The total number of nodes is $O(N)$. The diameter is about $6h = O(\log N)$.

Next we define a layout for fat trees. We will use a divide and conquer strategy and let $S_h(i)$ denote the side-length of the layout for $F_h(i)$. Then we will have for $i > 0$:

$$S_h(i) = 2S_h(i-1) + O(2^i)$$

while for $i = 0$ we have:

$$S_h(0) = h$$

This has the solution $S_h(h) = h 2^h$, or in other words the area of the fat-tree $F = F_h(h)$ is $O(h^24^h) = O(N)$.

123
22.2 Simulating other networks on $F_h(h)$

For the simulation, we must first map the given guest network G (requiring area A) onto the fat-tree F. For this we assume that we are given a square layout of G of area A.

We will use a fat tree with $N = A$ processors at the leaves, i.e. $A = h^{2^i}$. The layout area of such a fattree was proved to be $O(A)$, as desired for the definition of area universality.

We next give a strategy to map processors of G onto some leaf mesh processor in F which will simulate it. This idea uses the natural divide and conquer strategy. We divide the layout of G into 4 equal square tiles, and assign each tile to one of the fat-trees $F_h(h-j)$ contained in $F_h(h)$. In general, a tile of area $N/4^i$ is assigned to some fat-tree $F_h(h-j)$. This continues until $j = h$, where we are left with a $N/4^h = h^2$ area tile, which is simulated directly by the h^2 node mesh.

So this maps each processor of G onto a unique leaf mesh processor in F.

22.2.1 Simulating wires of G

Each wire from node u to node v in G is simulated by sending a message between corresponding nodes u', v' of F.

We need to determine a path for this communication. Let U' and V' denote the root corners of meshes in the fat-tree in which u', v' respectively lie. Then the path from u' to v' will start at u', go up to U' then go to a least common ancestor of U', V', then down to V' and finally to v'. There will in general be several least common ancestors, and one of them will be chosen at random.

22.2.2 Congestion

Let T be a $F_h(i)$ fat-tree in F. Let T_1 be a sub-fat-tree of T. Let a be one of the roots of T and b of T_1. We will estimate the congestion edge (b, a). Suppose (b, a) is used by some message simulating the wire (u, v). The message goes from u' to v' in F. There are two important facts:

1. Since u' is in T_1, u must lie in a tile t of G of area $N/4^{h-i}$ associated with T_1. Vertex v' must lie outside this tile.

2. Since the path is randomly chosen from u' to v', the message could have passed through any of the 2^{i+1} edges connecting the roots of T_1 to those of T, and hence the probability that wire (u, v) is mapped to edge (b, a) is $2^{-(i+1)}$.

Thus the number of messages passing through (a, b) is a sum of independent zero one random variables, corresponding to each wire leaving t. Since t has area $N/4^{h-i} = h^24^i$ its side length is $h2^i$. Thus even considering the entire perimeter, there can be just $4h2^i$ such wires and variables at most. Each variable has probability $2^{-(i+1)}$ of taking value 1, and hence the expected congestion is $4h2^i \cdot 2^{-(i+1)} = 2h$. With $h = O(\log N)$ it is easy to show that the congestion is $O(\log N)$ with high probability, over all the edges in the network.

22.2.3 Simulation time

Now we know that the length of the longest path is $6h = O(\log N)$, and the congestion is also $O(\log N)$. Hence we know that there exists a schedule using which the messages can be delivered in time $O(\log N)$.

Alternatively, we can do this by constructing a levelled directed network, with $O(\log N)$ levels.
Exercises

Note that while proving that A cannot be simulated by B, it is necessary to consider all possible ways of mapping A onto B, hence it is best to show a computation that can be done well by A but not by B and thereby prove the result.

1. Show that the neither of the mesh, the tree, and the Butterfly all taking area A can simulate each other with at most polylog slowdown.

2. Consider a mesh on area A. Consider a tree also on area A, laid out using the H-tree layout. Now consider the union of these two, i.e. each node in the new has mesh connections, as well as a connection to the parent (if any) in the H-tree layout. Clearly the new graph has diameter $O(\log A)$, bisection width $O(\sqrt{A})$ and number of processors A. Determine whether this graph is universal (I don't know the answer to this.).

3. What is area of $F_0(h)$? Is this area universal?

4. In this problem we consider $F_0(h)$ which we will call the simple fat-tree. The nodes in this naturally fall into levels, with 2^h at level h, and 4^h at the leaves. Suppose each node in level 0 sends a message to a randomly chosen node in level h. The message must move using the unique upward path. Evaluate the congestion in different levels of the network assuming (a) that messages destined for the same node cannot be combined, and (b) messages destined for the same node can be combined.

5. How long does it take if each mesh processor sends a message to a random mesh processor anywhere in the fat tree?

6. Consider a $\sqrt{A} \times \sqrt{A}$ mesh. It requires layout area A, and we know it can be simulated with slowdown $O(\log A)$ using a fat-tree of area $O(A)$. In this problem we will argue that the simulation overhead is the same, even if we allow some additional operations in the mesh such as unit time broadcasting. Using this we will be able to show that the fat-tree can multiply a $\sqrt{A} \times \sqrt{A}$ matrix by a \sqrt{A} long vector in time $O(\log A)$.

The additional operations allowed are: broadcasting within rows or columns, and accumulation (i.e. computing the sum) within rows or columns. Clearly, using this the matrix multiplication can be done.

Here is how accumulation over rows is implemented (broadcast is analogous, as are operations over columns). Corresponding to each row i we will designate a memory location l_i. This will be assumed to be held in some randomly chosen root at level h. Now to implement the accumulation, the processors in row i simply store their value in location l_i, specifying addition as the combining operator. While sending these messages we will use random priorities $p(i)$ where p is a hash function. Using the levelled directed network theorem we will have at most one message to any l_i passing through any link (because messages will get combined). So the question is what is the link congestion.

Show that the link congestion is $O(\log A)$. For this you need to understand how exactly a row or column is mapped to the fat-tree – specifically, bound the number of different rows that can get (partially) placed in any single sub-fattree.
Chapter 23
Parallel Programming

When we wish to design a parallel program to solve some problem, the following could be considered to be the main tasks.

1. **Parallelism identification**: We need to find a way to solve the problem using operations that can be performed in parallel. Sometimes we could start with a good sequential algorithm and identify what operations can be performed in parallel. Or we could design a new algorithm (e.g. as we did for prefix, sorting, expression tree evaluation) which contain operations that can be performed in parallel. Note that if we design a new algorithm, the total number of operations it performs should not be much larger than the best sequential algorithm.

2. **Load balancing**: We need to assign the parallel operations to different processors. It is desirable that each processor receive about the same load, i.e. the number of computations it has to perform.

3. **Communication minimization/management**: When an operation is designated to be performed on a certain processor, its operands must be communicated to that processor. This communication must happen efficiently, otherwise the processor might have to remain idle as it waits for the operands. It is better, in general, if we minimize communication: try as much as possible to schedule operations on the same processor that generates the operands. We might try to be more sophisticated and attempt to have data move short distances in the network, or follow non congested paths.

4. **Synchronization**: If the programming model uses the notion of shared memory, then we must make sure that data is written into a shared memory location before a processor tries to read the location. This can be done in a *local* way as follows: store some auxiliary information with each location indicating whether it holds the correct data. A *global* method is to divide the execution of processors into steps, and ensure that each processor starts on the ith step only after all processors finish the $i-1$th step. With this, it suffices to ensure that if a value is written in step i and read in step j, then $j > i$.

The simplest parallel programming languages will expect the programmer to perform all the above tasks. Indeed, in this course we have designed algorithms in this manner: we wrote a program for each processor and decided how to perform the required communication. Our model used global synchronization typically as mentioned above.
However, there could be more ambitious approaches. The automatic parallelization approach for example expects the user to write a sequential program, and attempts, using compile time analysis, to perform all the tasks mentioned above. In addition to deciding what can be done in parallel the compiler must know the target parallel architecture in order to minimize communication. For some domains, e.g. those involving dense matrix computations or very structured numerical computation, powerful parallelizing compilers have indeed been developed.

Note that each of the tasks mentioned above must be done by someone, either by the programmer, or by the programming system1. It is desirable if the programmer has to do as little as possible. But for this we either must have (a) sophisticated compilers or runtime systems which analyze the program being run and perform appropriate load balancing and communication, or (b) a general load balancing strategy (which does not exploit the specific structure of the program being executed) is used. The difficulty of course is that sophisticated compilers may not be available, or general load balancing strategies may not work well enough.

\section{23.1 The map reduce model}

The map reduce model is a high level programming model. It allows parallel programs to be written without explicitly specifying code for processors or communication. The program is written as a sequence of \textit{map} steps and \textit{reduce} steps, which effectively express computation and communication.

A map step takes as input a set of objects. A mapper function must be specified which is applied to all objects, in parallel. The mapper function could be different for different map steps. When a mapper function is applied to an object, it can generate one or more key, value pairs. Such key, value pairs resulting from the mapper function applied to all objects, is considered to be the output of the map step.

A reduce steps takes as inputs a set of key value pairs. It is useful to consider that there are as many reducer tasks as the number of different keys. A reducer task for key \(k \) operates on all pairs in which the key has the value \(k \). Furthermore, it is expected that the receiver task be fed the pairs in sorted order of the values. Each reducer task generates one or more objects, which could be the end result of the program or could be fed to subsequent map steps.

It is expected that a reduce step starts only after all processors have finished the preceding map step.

A mapper function or a reducer function could be considered to be defining a \textit{process}. A key value pair \((k, v) \) can be considered to be a message \(v \) meant for reducer \(k \). Likewise the objects generated by reducer processes are message to the next round of mapper processes.

Notice that the communication is happening at the level of processes and not at the level of processors. The map reduce compiler will schedule several processes on a single processor. If communicating processes get scheduled on different processors, then a communication will be necessary. One strategy for scheduling is random: each process is scheduled on a randomly chosen processor, in which case most key value pairs will be transmitted as messages. Note further that the model provides for synchronization: the reduce operations must start only after the preceding map operation is complete. A further idea could be to schedule processes where the data resides. Specifically, a mapper process will be scheduled on the processors whose memory holds the concerned object. Note that this could also be randomized, i.e. the objects could be placed on a random processor.

1Many computers have caches, and these also help in communication, but we will ignore such issues for now.
The map reduce system has thus taken over the job of load balancing, communication management, and synchronization. This could be done using randomization as suggested above, or in a different manner by some clever analysis if possible. As we will see shortly, the communication required is slightly complex: some sorting might also be necessary.

The programmer is expected to identify parallelism: by forming the map and reduce functions. Note that efficiency of the program will be high if each map or reduce function performs more computation as compared to the number size of the data that it generates or consumes. Designing such map and reduce functions (more computation as compared to the communication) is thus the important task of the programmer. It is also important that the map reduce program be sequentially efficient, i.e. if it is executed on a single processor, the time required is the same as the best sequential program. Note that this task does not require knowledge of the interconnection network or even the number of processors. Thus it could be said that the programmer is shielded from such issues.

23.1.1 Implementation of map reduce programs

Here we sketch a default strategy for implementing map reduce programs on a network computer. Randomization is used liberally. There is no requirement that the map operation take the same time on each object, or produce the same number of pairs. Likewise, it is possible that each reducer receives different number of pairs and generates different numbers of objects. However, for simplicity, we will assume uniformity.

We consider a simple map reduce program with a single map step and a single reduce step. Suppose we have \(N \) objects in our map operation, each of which generates \(s \) key value pairs. Suppose there are \(K \) distinct keys, and \(t \) values per key. Clearly \(Ns = Kt \). Suppose a single reduce operation generates a single object. Suppose a single map and a single reduce take time \(T_m, T_r \) respectively. Clearly \(T_m > s \) and \(T_r > t \). Suppose there are \(P \) processors. We assume some parallel slack, specifically we assume \(N, K \) are polynomial in \(P \), and also that \(N, K \geq P \log P \).

Thus \(\log N, \log K \) are both \(\theta(\log P) \).

We assume that the inputs to a map operation are located in random processors (or really at random locations in the memories of randomly chosen processors). Because of the assumed slack, each processor will hold \(O(N/P) \) objects whp (with high probability). The mappers will thus take time \(O(NT_m/P) \) whp.

Before any reducer can start execution, we must ensure that all mappers have finished. So a synchronization is needed. For this we can construct a tree amongst the processors (any small depth spanning tree is good). After a leaf processor finishes its work, it sends a "finished" signal to its parent in the tree. When a non-leaf processor receives "finished" signals from its children and finishes itself, it sends a "finished" signal to its parent. When the root receives a finished signal from its children and finishes itself, it knows that all processors have finished. It then broadcasts a "continue" signal to all processors along the same tree. When a processor receives the "continue" signal, it can move on to the reduce step. The additional delay introduced due to the above steps will be seen to be proportional to the network diameter, \(\Delta(P) \).

A simple implementation of the reduce step is as follows. A reducer for key \(k \) is run on a processor \(H(k) \) where \(H \) is a hash function. Thus the key value pairs for key \(k \) must be sent to processor \(H(k) \). If the number of pairs having the same key is the same for all keys, then this strategy also balances the communication load. Finally, if the reduces processes take the same time, the computation is also well balanced.
Suppose now that we have \(N \) objects in our map operation, each of which generates \(s \) key value pairs. Suppose there are \(K \) distinct keys, and \(t \) values per key. Suppose there are \(P \) processors. Suppose the computational part in a single map and a single reduce respectively takes \(T_m, T_r \) respectively. Then with high probability the computation will take time \(O((NT_m + KT_r)/P) \) steps. The communication is a balanced communication in that each processor will send and receive the same number of messages with high probability. If \(L + wg \) is the time to send out/receive \(w \) words of messages per processor (random destinations) then we have \(w = NS/P = Kt/P \) and so the communication time will be \(O(gNs/P + L) \) with high probability. We have not put ceilings on each of the fractions above, this is under the assumption that \(N, K \gg P \). The case of small \(K \) can be handled if the reduction operation is associative, as we see in Section 23.1.2.

Finally, the synchronization time will be \(O(\Delta(P)) \), where \(\Delta(P) \) is the diameter of the network.

Assuming the map reduce program is sequentially efficient, then it must takes time \(\Omega(N(T_m + s) + KT_r) \). Thus the speedup of the parallel implementation is

\[
\frac{N(T_m + s) + K(T_r + t)}{N(T_m + KT_r)/P + gNs/P + L + \Delta(P)}
\]

For a butterfly or a mesh we have \(g = \Delta(P), L = \Delta(P) \). Thus we get the speedup to be \(\theta(1) \) if \(T_m = \Omega(s \cdot \Delta(P)) \) or \(T_r = \Omega(t \cdot \Delta(P)) \).

23.1.2 Commutative associative reductions

If the reduction is associative, the work of a single reducer can be shared amongst many processors. Thus, we will sort the key value pairs first by key and then by value. We then perform a global reduction step. The pairs having the same key can be considered to be forming a segment, and we desire a reduction in each segment. This is a special case of the segmented prefix we have studied, and can be done efficiently on a tree in time proportional to the network diameter.

Thus the total time reduces to the time required to sort \(Ns \) keys. The sequential computation is dominated by the term \(N(T_m + s) \). Thus we need \(N(T_m + s)/P \) to be larger than the time to sort \(Ns \) keys for the parallel implementation to

23.2 Example

An important operation in text mining is finding the number of times each word occurs in a corpus. We will see how this can be expressed in the map reduce framework.

The input given to us is a multiset: the multiset of word occurrences in the corpus. The output should be a set of (word, count) pairs, i.e. for each word we should have a count of how many times it appears.

The map operation is simple: for each word \(w \) in the corpus, we generate a pair \((w, 1)\), where \(w \) is the key and 1 the value.

If we use the implementation from Section 23.1.1, then we will need one routing operation. However, the routing operation could be expensive if the word frequencies are very different. In the extreme case that the entire corpus contains the same word, the routing problem will cause all messages to go to the same processor, and thus the time taken will be proportional to the number

\[2\]The reducer needs to sort the incoming values, the time for which we have ignored. This is acceptable if \(s \) is small.
of words. Thus there will be no speedup. If on the other hand, the words have nearly the same frequency, then we will have a balanced communication problem, and the time taken will essentially be the time to route N/P permutations. The synchronization time and even the computation time will typically be smaller than the communication time.

In this case, the reduce operation is commutative associative, so the implementation of Section 23.1.2 will also be possible. In this case the time will be the time to sort N keys, followed by the time to synchronize, followed by the time to do prefix/reduction on N keys. Clearly the sorting time will dominate. This time will likely be larger than the time to route N/P permutations, but probably only by a constant factor. But the constant factor gives you robustness: the time is the same for all possible word frequencies.

23.3 Additional remarks

The map reduce framework was invented for distributed computing, i.e. it is assumed that the input will not fit in the memory of any single processor. Second, it is often assumed that communication is very slow, i.e. the goal is to usually minimize communication time and not worry about computation time.

Exercises

1. Evaluate the time taken for implementing a map-reduce computation on a fat tree. What is the condition for efficiency?
Bibliography

