
CS 606 AT 2 bounds Abhiram Ranade

When we talk about algorithm design on networks: we worry about communication and com-
putation. When we talk about algorithm design on PRAMs: we worry about computation. In
this chapter let us worry only about communication. Thompson grid model is useful for this. The
key question is: Suppose computation were (essentially) free, but not communication. How much
would this limit speedup? We have done this to some extent already when we considered bisection
width based bounds and even diameter based bounds. In this lecture we will make the bisection
width based bounds more formal, and show that communication is a bottleneck even in problems
you might not suspect. For this we will use Thompson’s VLSI model, with wordsize w possibly
larger than 1. This means each track intersection can hold a w bit processor. Each track can carry
w wires.

Here is a flavour of possible results. We can show that no matter what network is used,
AT 2 = Ω(n2) for

1. Cyclic shift of n numbers.

2. Multipliplication of n digit numbers. Each digit is w bit wide.

3. List ranking on n element lists. w = θ(log n)

4. Sorting w = 2 log n bit integers.

It is also possible to prove that multiplying n×n matrices has AT 2 = Ω(n4). This has the following
interesting implication: the time to multiply matrices using n× n array is Ω(n) because for n× n
arrays A = n2. This shows that for the n × n array, the simple algorithm is optimal and cannot
be beaten even if you use Strassen’s algorithm like (or any other) ideas. As you can see, this last
conclusion has nothing to do with VLSI.

In this lecture we will prove the result on matrix multiplication. The exercises will touch upon
the other results.

1 Terminology

In what follows we will use several colloquial words formally. Thus it will be useful to state clearly
what we mean by them.

Execution: The sequence of events starting at power up and including reading of inputs, com-
putation and generation of outputs. We note that if a chip has m inputs (words), then it
can only have 2mw distinct executions.

State: The values stored in the processors. For simplicity if we assume that each processor can
store at most 1 word, a P processor chip can have at most 2Pw distinct states.

1



Behaviour: Values generated as outputs. A chip with n outputs (words) can have at most 2nw

behaviours. By ”behaviour after time t” we will mean the values generated after time t.

Definition 1 The communication transcript into a part P of a chip is the set of words received
by it from the rest of the chip over the entire execution.

Note that if the part has m wires coming in, and T is the exeuction time, then there can be
at most mwT bits communicated, and hence at most 2mwT different transcripts possible.

2 Transcript theorem

Definition 2 Let X, Y be the inputs and outputs of certain computational problem. Let X ′ =
(x0, . . . , xn−1) ⊆ X, Y ′ = (y0, . . . , yn−1) ⊆ Y . Then we will say that X ′ flows to Y ′ under control
c if there exist 2nw executions in which

1. The inputs X −X ′ take the value c in each execution.

2. The inputs X ′ take different values in each execution.

3. The outputs Y ′ take on exactly the same values as X ′.

We will say X ′ flows to Y ′ if there exists c such that X ′ flows to Y ′ under control c.

Example: Consider n× n matrix multiplication R = PQ. By setting P to be the identity matrix
(control), we have Q = X ′ flowing to R = Y ′. Likewise we have a flow from P to R.

Theorem 1 (Transcript theorem) Suppose a cut of size O(
√
A) divides a chip into parts L,R.

Suppose L reads inputs X ′ and R generates outputs Y ′, where X ′ and Y ′ both contains n words.
Suppose X ′ flows to Y ′. Then AT 2 = Ω(n2).

Proof: Let c denote the control for which X ′ flows to Y ′. Consider executions in which all inputs
besides X ′ are set to c, while distinct values are given to X ′. Clearly there are 2nw such executions.

In all these exeuctions, the values read by R from the external world are the same (held at the
control c). Thus for R to have different executions, it must receive different transcipts.

But the cut has size O(
√
A). Thus the number of different transcripts is 2O(

√
AwT ).

Thus 2O(
√
AwT ) ≥ 2nw.

3 Application to matrix multiplication

All that remains is to now show a large flow in matrix multiplication. Further, the flow must cross
a small cut. For this we explore the different kinds of flow inherent in matrix multiplication.

2



3.1 Shift matrix

Let Si = Matrix obtained by rotating all rows of the identity matrix by i circularly.
Example: n = 5, i = 1

S1 =


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0


R = S1Q = circular rotation of rows of Q one step upwards. qij flows to ri−1 mod n,j

R = PS1 = circular rotation of columns of P one step right. pij flows to ri,j+1 mod n

But we can have shifts of any magnitude from 0 to n − 1. Thus by chosing P to be a shift
matrix we can make a row of Q to flow to any row of R; likewise by choosing Q to be a shift
matrix we can make any column of P to flow to any column of R.

3.2 Proof Outline:

You give me a chip. I will examine it and I will tell you one of the following after examining it.

• Your chip contains some processor that generates at least n2/3 elements of R. This will
trivially prove AT 2 = Ω(n4).

• Your chip contains a small cut on one side of which n2/18 elements P ′ of P are read and on
the other side of which n2/18 elements R′ of R are generated, such that P ′ flows to R′. I
will also tell you under what control P ′ flows to R′: this will happen by setting Q to a shift
matrix.

• Your chip contains a small cut on one side of which n2/18 elements Q′ of Q are read and on
the other side of which n2/18 elements R′ of R are generated, such that Q′ flows to R′. I
will also tell you under what control Q′ flows to R′: this will happen by setting R to a shift
matrix.

4 Proof

If any processor generates n2/3 outputs, then we are done. So assume there is no such processor.

4.1 Output partitioning

We show how to find the small cut. Assume the chip has height h length l, h ≤ l. Number
intersections in column major order. Let N(i) denote the number of elements of R generated
by processors in intersections 1 . . . i. We have N(0) = 0, N(A) = n2. We also know that N(i)
increases at most by n2/3. Thus there is some j such that n2/3 ≤ N(j) ≤ 2n2/3. This is our
required cut π. Any such cut has size at most h+ 1 = O(

√
A).

3



4.2 Flow graph

Now we need to find the control under which we have a large flow. We will pose this as a graph
partitioning problem.

Consider a graph in which vertices are elements of P,Q,R. The edges indicate possible flow,
with a colour indicating what shift matrix causes the flow as follows.

If we choose P to be a shift matrix that downshifts by s, we will have a flow from qij to
ri,j+s mod n. So for s = 1, . . . , n we will have an edge (qij, ri,j+s mod n) for all i, j. This edge will
have colour s. Likewise if we choose Q to be a shift matrix that rightshifts by s, we will have a
flow from pij to ri+s mod n,j. So for s = 1, . . . , n we will have an edge (pij, ri+s mod n,j) for all i, j.
This edge will have colour s′.

The graph will have complete bipartite graphs between the jth column of Q to the jth column
of R, and complete bipartite graph between the ith row of P to the ith row of R.

Imagine the graph placed on our chip. We know that at least n2/3 vertices lie on either side
of the cut π of Section 4.1. If we show that n2/18 edges of a single colour s(s′) cross π, we are
done: We simply set P (Q) to be a shift matrix of magnitude s(s′), and we have flow of size n2/18
from elements of Q(P ) to R.

For this we will show that at least n3/9 edges cross π. From this the result follows since there
are only 2n colours.

For this we embed the complete directed graph on n2 nodes into G with vertices placed on the
elements of C. We know that both sides have at least n2/3 vertices. So at least n4/9 edges of the
complete graph must cross the cut. If they are embedded in E edges with congestion C, then we
have EC ≥ n4/9. We will show that the congestion is n, proving that E ≥ n3/9.

The embedding is as follows. The path from rij to rkl is embedded through pik, ril, qjl.
The directed congestion on edges (rij, pik) is contributed by paths from rik to rkt for any t.

Thus the directed congestion is n.
The directed congestion on edges (pik, ril) is contributed by paths from rit to rkl for any t.

Thus the directed congestion is n.
The directed congestion on edges (ril, qjl) is contributed by paths from rij to rtl for any t. Thus

the directed congestion is n.
The directed congestion on edges (qjl, rkl) is contributed by paths from rtj to rkl for any t.

Thus the directed congestion is n.

4


