
Scheduling Trains with Small Stretch
on a Unidirectional Line

Apoorv Garg1(B) and Abhiram Ranade2(B)

1 Coupa Software India Pvt. Ltd., Pune 411016, Maharashtra, India
apoorv.garg@gmail.com

2 Indian Institute of Technology Bombay, Mumbai 400076, Maharashtra, India
ranade@cse.iitb.ac.in

Abstract. We investigate the problem of scheduling trains to minimize
max-stretch, where the stretch suffered by a train is the ratio of its actual
finishing time to its minimum possible finishing time. This metric is pre-
sumably more appropriate for train scheduling because it is fairer. Our
target network, introduced in [11], is an in-comb: a unidirectional railway
line with equidistant stations, each initially having at most one train; in
addition, there can be at most one train poised to enter each station.
A train takes unit time to enter a station or to move from one to the
next. Trains must move to their destinations such that at any time there
can be at most one train at any station and on the track connecting
it to the next. We prove that minimizing max-stretch is NP-hard even
on this simple network. We also give an O(1)-approximation algorithm.
Our problem can also be interpreted as packet scheduling on in-comb, a
special case of in-trees. Packet scheduling on general graphs and some
special topologies has been studied earlier with different objective func-
tions, e.g., makespan, flowtime, and max-delay, but there has been little
work on max-stretch.

Keywords: Approximation algorithms · Combinatorial optimization ·
In-comb network · Max-stretch minimization · NP-hard · Packet
scheduling · Train scheduling · Unidirectional line

1 Introduction

In the train scheduling problem [2,8,19,21], we are interested in moving a set of
trains to their destinations, respecting track capacity and minimizing an appro-
priate cost metric. A natural expectation is: if trains are to be late, they should
be late in proportion to their planned travel times. This can be achieved by mini-
mizing max-stretch, where the stretch of a train is the ratio of its actual finishing
time to its minimum possible finishing time. Such fairness is not guaranteed by
minimizing other metrics such as max-delay or makespan.

The problem is modeled using a graph: nodes represent stations, links repre-
sent tracks. Initially, each station may hold one or more trains—represented as
point objects—to be moved to specified stations using specified paths. On each
c© Springer Nature Switzerland AG 2021
A. Mudgal and C. R. Subramanian (Eds.): CALDAM 2021, LNCS 12601, pp. 16–31, 2021.
https://doi.org/10.1007/978-3-030-67899-9_2

Scheduling Trains with Small Stretch on a Unidirectional Line 17

link there can be at most one train at a time and it takes a specified time for
a train to traverse a link. There is also a buffering constraint: each station can
hold at most a specified number of trains. Our goal is to schedule the trains such
as to minimize their max-stretch, where in any schedule the stretch of a train is
defined as the ratio (f/fm) between its actual finishing time f in that schedule
and its minimum finishing time fm across all possible schedules which, in our
simple problem, equals the train’s path-length.

This problem is also studied in packet scheduling literature, using the terms
routers, channels, and packets in place of stations, tracks, and trains. We do not
know of any work on max-stretch; for other metrics, the problem is known to
be NP-hard in various versions. With bounded buffering at nodes, minimizing
makespan or max-delay—even to a constant factor—is NP-hard even on leveled
directed graphs in which packets move from the lowest numbered level to the
highest numbered level [6]. Since path-lengths of all packets are the same, the
hardness result also applies to max-stretch but this is rather degenerate. Assum-
ing unbounded buffering at nodes, minimizing makespan is NP-hard on trees as
well as on general graphs [20]. On trees, a 2-approximation can be obtained [20].
However, on unidirectional rings, in-trees, and out-trees, the optimal makespan
can be achieved [16]. For a variant of the problem where buffers are available
in links rather than at nodes, O(1)-approximations, using only O(1) buffers in
each link are known on general graphs [14,15,23,26].

There is also a large body of experimental work on train scheduling using
various approaches, such as simulation, heuristics, mixed integer linear program-
ming, multi-agent systems, genetic algorithms, reinforcement-learning, etc. [3–
5,7,9,12,13,17,18,24,25,27,29], but we do not know of papers which consider
stretch. In any case our goal in this paper is to establish provable bounds.

Given the practical importance of the problem, it is worth asking whether
good scheduling is possible for simpler networks. We have not found any such
results for max-stretch. In this paper we begin such a study by considering an
in-comb network, a special case of in-trees. The in-comb, defined formally later,
is a directed path with an extra, branch edge entering every node on the path.
There can be a train in each node and one poised to enter it from the branch.
Trains may exit the network in any node.

Our motivation for studying this network is two fold. First, for ease of man-
agement, a large railway network is often broken into sub-networks, each con-
sisting of a trunk route with trains entering and exiting from and to branch lines.
Each of the two directions of the route is like an in-comb. Second, the in-comb is
perhaps the simplest interesting network, and it would be good to understand the
computational complexity of scheduling on it with minimum max-stretch. We
further simplify it, assuming identical traversal times for all trains on all links.
Minimizing max-delay is known to be NP-hard on this simple network [11].

Main Results
1. Minimizing max-stretch is NP-hard for train scheduling on in-comb (Sect. 4).
2. A polytime algorithm to schedule trains on the in-comb with a max-stretch

O(1) times the optimal (Sect. 3).

18 A. Garg and A. Ranade

w1 w2 wN−1 wN

0 1 2 N−1 N

Fig. 1. The in-comb network

2 Preliminaries

2.1 Network Definition and Problem Statement

Our target network is an in-comb (Fig. 1). It consists of:

1. Line: sequence of stations, labeled 0, 1, . . . , N , and links (s − 1, s) ∀s ∈ [N]
2. Branches: for each station s > 0, an outer ws and a link (ws, s)

For every node (station or outer), at most one train is given to be there at time 0,
along with its destination. No more trains are introduced into the network later.
Trains starting at stations are called internal trains; those starting at outers
external trains. Each node can hold at most one train at a time. Any train takes
one step1 to enter a station from its outer or to move from a station to the next,
and vanishes (exits the network) on reaching its destination. An external train
entering the line is called an entry, to distinguish it from a movement which
means a train moving from one station to the next. The required output is a
schedule for the trains, minimizing the max-stretch. (Note: A train of path-length
! finishing its journey at time f is said to have suffered a stretch f/!).

2.2 The Chain-Hole View

Our arguments to prove the claimed results are based on a chain-hole view of
schedules [11], summarized next.

Hole refers to a vacancy at a station s. The hole might have been at s since
the very beginning (time 0), or created later by the exit of a train at s, or it
might have come to s from upstream. Some clarifications are needed regarding
holes and their progress on the line. First, for convenience we assume an infinite
number of suitably numbered artificial stations2 to the left and right of the line,
with no external or internal trains, i.e., each artificial station having a hole.
Second, suppose a station u has a hole h at time t. For any v > u, if trains at
stations u + 1, . . . , v − 1 remain stationary but the trains at stations u−1 and
v move, the hole in station u will vanish and a hole will appear in station v.
1 ∀t ∈ Z+, step t is the unit time duration (t − 1, t] that ends at time t.
2 Stations −1, ...,−∞ upstream of station 0, and N + 1, ...,∞ downstream of N .

Scheduling Trains with Small Stretch on a Unidirectional Line 19

Fig. 2. Spatial view of a chain 〈p0, h0, p1, h1, . . . , pk−1, hk−1, pk〉. Station s0 is the origin
(•) of the internal train p0 with which the chain begins. Stations s1, . . . , sk are the entry
points (!) of external trains p1, . . . , pk. s

′
0, s

′
1, . . . , s

′
k−1 are the destinations (◦) of non-

terminal trains p0, p1, . . . , pk−1, where the holes h0, h1, . . . , hk−1 get created when those
trains exit. Links (–) crossed by train-movements of the chain are shown in red while
those crossed by hole-jumps are in green. (Color figure online)

We define this as the hole h jumping from station u to station v. In this view
both holes and trains can move forward, but only a hole can jump across several
stations in a step. It is also useful to consider that holes and trains contend for
links in order to progress down the line: across any link in any step, either a
train can move or a hole can jump but not both.

An external train can enter a station s only by filling a hole that might have
already been at s, or might jump to s from upstream. When a train p1 exits the
line at a station s′

1, it leaves behind a hole which can be used for the entry of
another train p2 at a station s2 > s′

1; p2 would exit at some station s′
2 ≥ s2,

re-creating the hole; and so on. Such a sequence of trains is called a chain. Thus,
a chain consists of a preexisting hole or an internal train followed by a sequence
of some k external trains p1 . . . pk; p1 must fill a hole h0 which is a preexisting
hole or a hole created by the exit of an internal train p0, and for j > 1, pj must
fill the hole hj−1 created by the exit of pj−1 (See Fig. 2). The chain is said to
begin with the preexisting hole h0 (or the train p0). Clearly, in any schedule,
every external train will be placed in some chain.

In order to build a schedule, we must somehow form such chains of trains.
After we form chains, we can worry about how to move the trains so that the
entries happen as per the chains. This is the structure of our algorithms.

3 An O(1)-Approximation of the Optimal Max-Stretch

The first ingredient of our algorithm is a strategy for scheduling any single class
of external trains in an optimal manner, where trains with path-lengths between
2i−1 and 2i − 1 constitute class i. This is discussed in Sect. 3.1.

The second ingredient is: schedule classes in increasing class order. Since the
path-lengths of trains in classes 1 through i−1 roughly add up to the path-length
of a class i train, the delay caused to the class i trains by lower class trains itself
does not substantially affect the stretch of class i trains. However, the movement
of lower class trains causes the holes to move. So this makes it harder to apply

20 A. Garg and A. Ranade

the lower bound on delivery time of class i trains derived in Sect. 3.1. We show
in Sect. 3.2 that the movement of holes from their initial positions only causes a
constant factor increase in the stretch. A second problem is that in the optimal
schedule, class i trains may need to use holes created by departure of internal
trains of classes up to some j. We show that we can estimate j through a pre-
computation. Thus, before scheduling the movement of class i external trains,
we deliver all class j internal trains. Again, this may not create the holes we
need in the same positions as in the optimal. In Sect. 3.2, we also show that the
drift of these holes also does not matter too much.

3.1 Schedule for a Single Class Using only Preexisting Holes

We consider how to minimize the makespan of a class i using only preexisting
holes and holes created by the exits of class i external trains. For ease of exposi-
tion, rather than say “we do not use the holes created by the exit of any internal
trains”, we modify all internal trains to have the last station N as their des-
tination. Positions of the preexisting holes remain unchanged. Note that since
the path-lengths in a class differ at most by a factor of 2, minimizing makespan
instead of max-stretch may worsen the latter at most by a factor of 2.

We show below that good schedules are possible if and only if the initial holes
are well distributed among the external trains, and to the extent they are well
distributed. We begin with the lower bound: good schedules are not possible if
some region with many external trains has very few holes.

Lemma 1. Suppose all internal trains go to the last station N . Suppose a con-
tiguous sequence S of stations has w external trains of class i and h holes. Then,
class i trains have a makespan at least max

{
2i−1,min

{
w·2i−1

2h ,
√
w · 2i−1

}}
.

Proof. Suppose all w external trains of class i enter by time T . Their makespan
F is at least T+ d−1, where d=2i−1, and one of the following must be true:

1. At least w
2 trains enter in chains beginning with the holes within S: at most

h can enter in step 1 (and exit in step d, re-creating those h holes), h more in
step d+1, and so on. By time T , at most

(
1 + T−1

d

)
h trains can enter. But all

do enter by time T , i.e.,
(
1 + T−1

d

)
h ≥ w

2 =⇒ T +d−1 ≥ wd
2h =⇒ F ≥ wd

2h .
2. At least w

2 trains enter in chains beginning with the holes upstream of S.
Since in each step no more than one hole may jump into S from upstream,
in each of the first d steps at most one train can enter. Each can exit d steps
later to re-create a hole, so in the 2nd set of d steps, trains can fill these holes
and another d holes from upstream, i.e., two entries per step. In nth set, at
most n entries per step. Thus, at most q(q+1)d2 + (q+1)r entries by time T ,
where q='T

d (and r=T mod d, i.e., q(q + 1)d2 + (q + 1)r ≥ w
2 and:

(a) If r = 0 then T = qd and (q+ 1
2)

2d2 > wd ⇒ T + d
2 >

√
wd ⇒ F ≥

√
wd

(b) If r ≥ 1 then (qd+d)(qd+2r) ≥ wd ⇒ (qd+r+d−1)2 ≥ wd ⇒ F ≥
√
wd

Thus, F ≥ min
{

wd
2h ,

√
wd

}
. But F ≥ d, the minimum class i path-length.

Scheduling Trains with Small Stretch on a Unidirectional Line 21

We next prove that if every region, or segment as defined below, has a large
number of holes as compared to the number of external trains within it then all
trains can be scheduled with small makespan.

Definition 1 (Class i segment of size w). Any contiguous sequence of sta-
tions initially having w external trains of class i (at their outers), such that:

1. The first station of the sequence has a class i external train.
2. Either the downstream neighbor of its last station has a class i external train,

or the sequence includes the downstream artificial stations N+1, ...∞.

Lemma 2. Suppose all internal trains go to the last station N , and i, w, and
h are given such that h ≥ min{w, 2i} and every class i segment of size w has at
least h holes. Then in polytime we can schedule class i trains to finish by time
2h+ w·2i

h + 2i.

Proof Sketch. Here we only give the main idea (the details are in Appendix A):
We partition the network into a sequence of class i segments of size w and in
each we form h chains, every chain having at most w/h + 1 trains. In the first
h steps, the chain-heads enter in parallel in all segments—each filling one of the
h or more initial holes of the w-sized segment upstream of it. Afterwards, the
chains progress in parallel; conflicts are resolved by prioritizing external trains
over internal, and downstream chains over upstream. We can show that all chains
finish before time 2h+ w · 2i/h+ 2i.

Next we define grain-size of an instance, which tells how to apply the lemmas.

Definition 2 (Grain-size for class i). The smallest w ∈ {1, ...,Wi} for which
every class i segment of size w initially has at least

√
w·2i holes, where Wi is

the number of class i external trains.

Note: Since the segment of size Wi has infinite holes, grain-size is well defined.

Theorem 1. Suppose all internal trains go to the last station N . In polytime,
we can schedule class i trains to finish by time O(F ∗), where F ∗ is their optimal
makespan. Moreover, F ∗ ≥ F̃ = max

{
2i−1, 1

4

√
w · 2i−1

}
where w is the grain-

size for class i.

Proof. Let d = 2i−1, the minimum class i path-length, and w be the grain-
size for class i, i.e., each class i segment of size w has at least h = *

√
2wd+

holes. Then
√
2wd ≤ h <

√
w · 2d + 1 and Lemma 2 gives a schedule where

class i trains finish by time F < 3
√
w · 2d + 2d + 2. For w ≥ 2, we know that

some segment of size w
2 must have less than

√
wd holes, so applying Lemma 1

we have: F ∗ ≥ max
{
d,min

{
1
4

√
wd, 1√

2

√
wd

}}
= max

{
d,

√
wd
4

}
. For w = 1,

F ∗ ≥ d ≥ max
{
d,

√
wd
4

}
. Thus, F ∗ ≥ F̃ = max

{
d,

√
wd
4

}
≥ 1

8

√
wd+ 1

2d.

22 A. Garg and A. Ranade

Algorithm 1: Preprocessing
Input: Π

1 for i = 1, ..., (logN)+1 do
2 Π0 = Π;
3 For j > 0: Πj = Π with all internal trains of classes 0, ..., j replaced by

holes, and destinations of all internal trains of classes > j set to N ;
4 for j = 0, ..., logN do
5 w(j) ←− the grain-size for class i in Πj as per Definition 2;

6 M(j) ←− max
{
2j−1, 2i−1, 1

4

√
w(j) · 2i−1

}
;

7 end

8 Ji ←− argminj M(j); wi ←− w(Ji); hi ←− +
√
wi ·2i-;

9 end
Output: (Ji, wi, hi) for each class i ∈ {1, ..., (logN)+1}

3.2 The Overall Scheduling Algorithm

We now consider the scheduling of all trains, using holes created by the exits of
internal trains as well as the preexisting holes. As mentioned earlier, the classes
are scheduled one after another in ascending order. Scheduling of each class i is
as in the previous section but with the following two crucial differences.

First, for the entry of external trains, now we can also use holes created by
the exits of internal trains (in addition to the preexisting holes). Which of them
to use for class i has to be carefully decided, and the makespan lower-bound
accordingly adjusted. We do that in a preprocessing module.

Second, delivering the previous classes 1, ..., i − 1 delays class i and also
alters the distribution of holes (preexisting as well as created) relative to its
external trains. However, all those holes do become available for class i as they
are re-created at the exits of the trains of previous classes, although they appear
shifted somewhat downstream of their initial positions. We show in a scheduling
module that the delay and the shifts are small enough—relative to the class
i path-lengths—for us to still schedule class i with a max-stretch which is a
weighted sum of the max-stretch lower-bounds of classes i, i − 1, ..., 1 with the
corresponding weights in a decreasing geometric progression. Since the optimal
max-stretch for all trains can be no smaller than the maximum of the class-wise
lower-bounds, the overall max-stretch we achieve is only a constant times the
optimal (Theorem 2).

Preprocessing. This module (Algorithm 1) answers the following question:
for entering class i external trains, which holes should we use? In principle, we
could use the holes left behind by internal trains of any class j as well as the
preexisting holes. So we create an instance Πj by removing internal trains of
classes 1, . . . , j and find the grain-size w(j) for class i trains in Πj , and then
use Theorem 1 to determine a lower bound M(j) on the class i makespan in
Πj . Clearly, minj M(j) is a lower bound on the class i makespan in Π. The

Scheduling Trains with Small Stretch on a Unidirectional Line 23

Algorithm 2: Scheduling
Input: Π, (Ji, wi, hi) for each class i ∈ {1, . . . , (logN)+1}

1 for i = 1, ..., (logN) + 1 do
2 Fi−1 ←− the number of steps already executed for classes 1, ..., i − 1;

3 Execute 2Ji movement steps, with no entries;
4 Schedule class i using Lemma 2 with w = ŵ = riwi and

h = ĥ = rihi − (Fi−1+2Ji), where ri = +Fi−1+2Ji

hi
+max{Fi−1+2Ji

4hi
, 2i

hi
}-;

5 end

corresponding j is returned as Ji. The corresponding grain-size w(j) is returned
as wi, and the promised number of holes per grain as hi. We summarize this as
follows.

Lemma 3. Let F ∗
i denote the optimal makespan if only class i trains are to

be delivered. Then F ∗
i ≥ max{2Ji−1, 2i−1, 1

4

√
wi ·2i−1}, where Ji, wi are as per

Algorithm 1.

Proof. The last two terms are as per Theorem 1. The first term arises as 2Ji−1

steps have to elapse in order to use the holes created by exit of class Ji trains.

Scheduling. We schedule the classes one after another in ascending order. Class
i trains use the holes left behind by internal trains of classes 1, . . . , Ji where Ji is
as determined during preprocessing. To ensure that these trains have exited, we
run 2Ji movement steps. Note that these holes will not be present at the same
positions as in Πj . To account for this and also to account for all the movements
that occurred while delivering class 1, . . . , i−1 trains, we use a somewhat larger
grain-size than wi. (See Algorithm 2.)

Lemma 4. Let Fi denote the makespan for class i trains as per our algorithm,
F ∗
i the optimal class i makespan, and F0 = 0. Then Fi = 3

2Fi−1 +O(F ∗
i).

Proof. In ΠJi , every class i segment of size wi has at least hi ≥
√
wi ·2i holes.

Thus, in Π, every class i segment of size ŵ = riwi has rihi or more potential
holes, i.e., actual holes and internal trains of classes 1, ..., Ji. During the first Fi−1

steps, some of them turn into holes and get used for entries of previous i−1 classes
but then also get re-created. By the end of the following 2Ji movement steps, all
of them would be available as holes but possibly downstream from their initial
positions. At most one train or hole may move out of any segment in a step, hence
at time Fi−1 + 2Ji , every segment of size ŵ must have at least ĥ = rihi−(Fi−1 +
2Ji) holes. Simplifying, we get: max

{
1
4 (Fi−1 + 2Ji), 2i

}
≤ ĥ < 1

4 (Fi−1 +
2Ji) + 2i + hi, which implies: ĥ ≥ 2i ≥ min{ŵ, 2i}. Thus, Lemma 2 can indeed

24 A. Garg and A. Ranade

be used with segment-size ŵ, and ĥ holes per segment, to let class i trains finish
by time:

Fi = (Fi−1 + 2Ji) + 2ĥ+ ŵ · 2i/ĥ+ 2i

< (Fi−1 + 2Ji) +
1
2
(Fi−1 + 2Ji) + 2i+1 + 2hi +

(ĥ+ Fi−1 + 2Ji) · wi · 2i

hi · ĥ
+ 2i

∵ ĥ < 1
4 (Fi−1 + 2Ji) + 2i + hJ , ŵ = rwi , r =

ĥ+Fi−1+2Ji

hi

<
3
2
Fi−1 +

3
2
2Ji + 2hi + 5wi · 2i/hi + 3 · 2i ∵ 1

4 (Fi−1 + 2Ji) < ĥ

<
3
2
Fi−1 +

3
2
2Ji + 2

√
wi · 2i + 2 + 5

√
wi · 2i + 3 · 2i

∵
√
wi · 2i ≤ hi <

√
wi · 2i + 1

=
3
2
Fi−1 +O(F ∗

i)

The last line follows from that F ∗
i ≥ max{2Ji−1, 2i−1, 1

4

√
wi ·2i−1} by Lemma 3.

Theorem 2. Our schedule has a max-stretch O(1) times the optimal.

Proof. Let X∗
i be the optimal class i max-stretch. Clearly, the overall max-

stretch X∗ ≥ X∗
i for all i. Let Xi be the class i max-stretch in our schedule.

We know that Fi = 3
2Fi−1 + O(F ∗

i). Thus Fi = O(1)
∑i

k=1

(
3
2

)i−k
F ∗
k .

Since trains of class k have path-lengths < 2k, we have X∗
k > F∗

k

2k ⇒ F ∗
k <

2kX∗
k . Since trains of class i have path-lengths at least 2i−1, we get Xi ≤

Fi
2i−1 = 2−i+1Fi. Substituting we have: Xi = 2−i+1 · O(1)

∑i
k=1

(
3
2

)i−k 2kX∗
k =

O(1)
∑i

k=1

(
3
4

)i−k
X∗

k = O(1)X∗ ∑i
k=1

(
3
4

)i−k = O(X∗), because X∗
k ≤ X∗.

4 NP-Hardness

We reduce from the strongly NP-hard 3-Partition problem [10], defined below.

Definition 3 (Problem 3P). Let U be a set of positive integers, and S(U) =∑
u∈U u. Let B = |U |

3 and C = S(U)
B be integers and C

4 < u < C
2 ∀u ∈ U . Can U

be partitioned into B triples such that each triple adds up to the same value C?

The core of the reduction is a solver widget. This contains a train for each
integer in the 3P instance. If and only if the 3P instance has a solution, the three
trains corresponding to each triple in the partition get linked into a single chain.
For making sure that only B chains get formed, we use a hole-blocker widget to
prevent too many holes reaching the solver. The widgets, defined next, have size
polynomial in S(U), the size of the 3P instance in unary.

Lemma 5. For any 3P instance U , there exists a widget Solver(U) with NU

stations and integers T and L such that NU , T, L are polynomial in S(U), NU >
4L, and:

Scheduling Trains with Small Stretch on a Unidirectional Line 25

1. If U has a solution then the trains of the widget can be scheduled with a max-
stretch at most XU = 1 + T

L , and in each step, a train can enter the solver
from upstream and subsequently move forward non-stop.

2. If the trains can be scheduled with max-stretch ≤ XU and no hole enters the
widget from upstream during the first 2T steps, then U must have a solution.

Proof. Let U = {u1, . . . , un} be the 3P instance, where n = |U |. Suppose α = 4B
and NU = 2B + αBC + αC

4 . Define Solver(U) as stations s1, ..., sNU such that:

1. The first B stations s1, ..., sB have holes, labelled respectively as h1, ..., hB .
2. For each ui, we have an external train Qi with path-length αui. These trains

wait at outers downstream of sB such that paths of all Qis are node-disjoint.
Let sD be the destination of the most downstream of Qis, i.e., D = B+αBC.

3. Outers of sD+1...sD+B have trains R1...RB , each with path-length L = αC
4 .

4. sB+1...sD+B have trains going to the last station N , while sD+B+1...sNU have
holes.

Clearly, NU > 4L and L,NU are polynomial in S(U).
Now suppose U has a solution {U1, . . . , UB}. Then schedule the trains as

follows. For each k ∈ {1, . . . , B}, construct a chain c′
k consisting of:

1. the hole hk at station sk,
2. the three external trains (Qis) for the three integers in Uk, and
3. the external train Rk.

In each step k ∈ [B], let the first train of c′
k enter using hk. Then let all chains

progress in parallel—prioritize entries over movements and arbitrarily resolve the
conflicts among entries. Entries occur in at most n+B steps. In other steps, for
each c′

k, a non-terminal train moves on the line unless Rk has already entered;
there can be at most

∑
u∈Uk

(αu − 1) = αC − 3 such steps.3 Then at most
T = (αC − 3)+ (n+B) = α(C +1)− 3 steps occur by the time Rk has entered,
i.e., all Qis and Rks have entered by time T . (Clearly, T is polynomial in S(U).)
So no train needs to halt after time T , i.e., max-delay≤ T . Since every train
has a path-length ≥ L, max-stretch ≤ 1 + T

L = XU . Moreover, since the entries
do not use any holes from upstream of the widget, in each step a train from
upstream can enter the widget and then also move ahead non-stop.

Finally, suppose the trains can be scheduled with max-stretch ≤ XU such
that no upstream hole enters the widget in the first 2T steps. Consider the set of
chains induced by the schedule. Every Qi has a path-length αui < αC

2 = 2L, and
Rk has path-length L. So each suffers a delay < 2L(XU − 1) = 2T , i.e., enters
by time 2T , hence it can not fill a hole from upstream of the widget. All internal
trains go to the last station N . Therefore, entries can use the B holes h1, ..., hB

or exit holes of other external trains, i.e., the chain-set has at most B chains,
say c′

1, ..., c
′
B . Clearly, no two Rks can be in same chain, so each must be the

terminal train of a chain. Then Qis must be the non-terminal trains. ∀k ∈ [B],
let Uk be the set of integers corresponding to the non-terminal trains of c′

k. Then
3 An external train with path-length l moves only l − 1 steps on the line.

26 A. Garg and A. Ranade

{U1, ..., UB} is a partition of U . Since Rk has a path-length L and a stretch at
most 1+ T

L , it must enter by time T+1, i.e., the path-lengths of the non-terminal
trains of c′

k add up to at most T = α(C + 1) − 3, i.e., Uk adds up to at most
T
α = (C + 1) − 3

α < C + 1, i.e., at most C. Then, since C
4 < u < C

2 ∀u ∈ U , the
partition {U1, ..., UB} must be a valid solution to the 3P instance U .

Lemma 6. Given integers ! ≥ 1 and τ ≥ 2, ∃ a widget HoleBlocker(!, τ) of size
polynomial in ! and τ such that:

1. Suppose there are at least 2! stations downstream of the widget, and the wid-
get’s trains can move downstream from the widget and then continue non-stop.
Then they can be scheduled with a max-stretch at most XHB = 1 + τ−1

.
2. Suppose the widget’s trains can be scheduled with max-stretch at most XHB.

Then no holes go downstream from the widget during the first τ steps.

Proof. Let HoleBlocker(!, τ) consist of blocks F0, . . . , Fq−1, E, Fq from upstream
to downstream, where q = 'τ/!(. For each b ∈ {0, ..., q}, Fb has τ − b! stations,
each with an external train going a distance ! and an internal train going to the
last station N . The external trains are labeled Pb,τ−bl to Pb,1 from upstream to
downstream. E has ! stations with only internal trains, each going to the last
station N . Overall, the widget has w = (q + 1)(q!/2 + r) external trains (where
r = τ mod !) and w+ ! internal trains. Clearly, its size is polynomial in ! and τ .

To prove part 1, we make τ chains c1, ..., cτ . Each cj consists of the external
trains Pb,j ∀b∈ {0, ..., q}. In each step j ∈ {1...τ}, we let the first train P0,j of
cj enter using a hole from the artificial stations −1,−2, After the entry of its
first train, each chain progresses non-stop. It is easy to see that all chains can
do so in parallel, and that the number of external trains that will enter by time
τ = q! + r is !q(q + 1)/2 + r(q + 1) = (q + 1)(q!/2 + r) = w, i.e., all of the
Pb,js will enter by time τ . Then all trains move non-stop to their destinations.
So any external train suffers a delay at most τ − 1 and hence a stretch at most
1+ τ−1

= XHB ; any internal train suffers a delay at most τ and hence a stretch
at most 1 + τ/2! ≤ XHB .

To prove part 2, we note that since there were no holes in the widget and all
internal trains go to the last station N , entries may fill the external holes (from
artificial stations −1,−2, ...) or the exit holes of other external trains. Moreover,
in any step at most one external hole can enter the widget. Then, it is easy to
see (similar to part 2 of the proof of Lemma 1) that by time τ = q!+ r, at most
(q!/2+ r)(q+1) trains can enter, but that is exactly the count w of the external
trains. That means if in any of the first τ steps a hole goes downstream from the
widget, i.e., we miss using that hole to enter one of the widget’s external trains,
then not all of those trains can enter by time τ , which implies at least one of
them will suffer a delay of τ or more and hence a stretch at least 1 + τ

> XHB .

With the two widgets defined above, we can now prove the hardness result.

Theorem 3. Minimizing max-stretch on in-comb is NP-hard.

Scheduling Trains with Small Stretch on a Unidirectional Line 27

Proof. The proof is by reduction from the 3-Partition problem. For an instance
U of the 3-Partition problem, our Train Scheduling instance is as follows.

The in-comb network consists of a HoleBlocker(!, τ) followed by a Solver(U).
We choose ! = 2L and τ = 2T + 1, where T,L are as promised by Lemma 5.
Note that the size of our solver widget is NU > 4L, so the path-length of every
internal train of the hole-blocker is at least 4L = 2!, as required by Lemma 6.
Then it can be seen from Lemmas 5 and 6 that the size of the train scheduling
instance is polynomial in S(U). We fix the target max-stretch X to 1 + T

L .
Now, suppose the 3-Partition instance U has a solution. From Lemma 5

part 1, we can schedule trains of the solver widget with max-stretch at most
X such that any trains coming into the solver from the hole-blocker can move
ahead non-stop. Then, from Lemma 6 part 1, trains of the hole-blocker can also
be scheduled with max-stretch at most 1 + τ−1

= X.
Conversely, suppose all trains can be scheduled with stretch at most X. From

Lemma 6 part 2, we know that no hole goes downstream from the hole-blocker
in the first 2T steps. Then, by Lemma 5 part 2, the 3-partition instance U must
have a solution.

Finally, note that the above construction is broadly similar to the one used in
[11] for the max-delay minimization problem, but now the crucial hole-blocker
widget has to be designed more carefully in order to prove the hardness of
minimizing max-stretch.

5 Conclusion

The train scheduling problem on in-comb was introduced in [11]. That work also
gave the chain-hole view as an important insight into the problem and used it
fruitfully to prove the hardness of max-delay minimization as well as design
an O(logN) approximation algorithm for it. We have used the same chain-
hole view but with entirely new ideas for lower and upper bounds to give an
O(1) approximation algorithm and the hardness proof for a lesser explored but
presumably more relevant metric—the max-stretch.

Further work can focus on tighter bounds as well as on possible general-
izations of the problem, e.g., multiple tracks between stations, multiple trains
at every station, variable train speeds, etc. Parametric formulations of the
problem—e.g., with a given maximum number of external trains—should also
be studied.

A Proof of Lemma 2

Without loss of generality, extend the path-length of every external train (of
class i) to ! = 2d − 1, where d = 2i−1. Starting from upstream, partition the
network into groups of stations, each group being a class i segment of size w,
i.e., containing w external trains.

The schedule is trivial for the case when h ≥ w: external trains of one set
of alternate groups can enter in the first w ≤ h steps and those of the other

28 A. Garg and A. Ranade

set in the next w steps, trains of each group filling the holes of its upstream
neighbour; afterwards all trains can move to their destinations during the next
!−1 steps, thus giving a makespan of 2w+ !−1 < 2h+2i. Next, let us consider
the non-trivial case: w > h > 2d − 1.

(0,0) (1,0) (2,0) (3,0) (0,1) (1,1) (2,1) (3,1) (0,2) (1,2) (2,2) (3,2) (0, 3)

Fig. 3. Chains in a group (i = 2, w = 13, h = 4). Circles denote holes and grey disks
denote internal trains. The other, labeled disks denote external trains, disks of a color
representing trains of a chain.

Within each group, number the external trains from 0 to w− 1 starting
upstream, and then form h chains, allocating the trains to the chains in a round-
robin fashion: train p becomes the jth train of the kth chain, where j = 'p/h(
and k = p mod h. We may refer to train p also as train (k, j). Thus, each chain
will have some J trains where J ≤ *w/h+. (See Fig. 3 for an example of chain
formation in a group.)

For k ∈ {0, ..., h − 1}, consider train (k, 0) in any group G. Let q denote the
first unassigned hole downstream of train (k, 0) in the previous group G − 1.
Assign this is as the initial hole of chain k in group G. Because each segment
of size w starting at any external train is guaranteed to have h holes, it can
be easily seen that this assignment succeeds in finding a distinct initial hole for
every chain.

Each external train has to perform one entry and 2d − 2 movements. Let
us also consider the jump of the hole that it fills as a movement of the entering
train, i.e., the train has 2d−1 movements. In each chain, number the movements
from 1 to (2d − 1) × J , starting upstream and numbering consecutively for all
trains of the chain. We will use 〈k,m〉 to denote mth movement in chain k. Note
that among the movements of different chains, we have an overlap condition: if
k′ > k then the movement 〈k,m〉 may overlap with 〈k′,m′〉 only for m′ ≤ m.

The train movements are scheduled in three phases, as follows:

1. This has h steps: 1, ..., h. In step i, the initial hole of chain h − i in every
group jumps to the first train (h − i, 0) of the chain and gets filled by the
train. It is easily seen that paths of the jumps in each step are disjoint.

2. In this phase, every train—except the last—in a chain completes its journey
and exits the network; the re-created hole then jumps to the next train of the
chain. We discuss this in more detail below.

3. In this last phase, the last trains of all chains move to their destinations. It
is easily seen that there are no conflicts and this phase takes 2d−1 steps.

In Phase 2, the paths of trains in one group do not overlap with those in
other groups. So, we can consider each group separately. To resolve the conflict
between overlapping movements due to take place in the same step, we use a

Scheduling Trains with Small Stretch on a Unidirectional Line 29

very simple scheduling rule: higher numbered chains have higher priority. Now
we can use a simple delay sequence argument—a proof technique used earlier in
[1,22,28]—to prove the time bound as follows.

Suppose 〈k,m〉 occurs in step t. Then, for t−1, one of the following is true:

1. Movement 〈k,m − 1〉 occurred in step t−1.
2. Movement 〈k′,m′〉 occurred in step t−1, delaying the (lower priority) move-

ment 〈k,m〉. Here k′ > k because of the scheduling rule and m′ ≤ m because
of the overlap condition.

Thus, if the last movement of Phase 2 occurs in step h + T then we can find a
sequence of movements 〈k,m〉, one for each of the steps h+T, h+T −1, ..., h+1,
such that:

1. k never decreases,
2. m never increases, and
3. at least one of the two does change.

But this can happen only h+(2d−1)(J −1) < h+2d ·w/h times. So, the overall
time for all the three phases is only less than 2h+ 2d · w/h+ 2d.

Figure 4, on page 16, illustrates the schedule for a small example as a space-
time diagram. Note that while the space-time trajectories of trains can not cross
one-another, trajectories of holes may cross those of trains because a hole can
jump over stationary trains.

0

Space (i.e. stations)

Time

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Fig. 4. Space-time diagram of a group, say G, for i = 2, w = 12, h = 4. Colored disks
and circles at the top respectively represent external trains (of G) and holes (matched
to the entries of the next group G + 1) at their initial positions. External trains of a
color belong to same chain. Thus, black lines mark the space-time trajectory of the
0th chain, red lines the trajectory of the 1st chain, and so on. Solid lines represent
train-movements. Dashed lines represent hole-jumps for the entries of G, while dotted
lines represent the hole-jumps for the entries of G+ 1. (Color figure online)

30 A. Garg and A. Ranade

References

1. Aleliunas, R.: Randomized parallel communication (preliminary version). In: Pro-
ceedings of the First ACM SIGACT-SIGOPS Symposium on Principles of Dis-
tributed Computing, PODC 1982, pp. 60–72. ACM, New York (1982)

2. Cacchiani, V., et al.: An overview of recovery models and algorithms for real-time
railway rescheduling. Transp. Res. Part B: Methodol. 63, 15–37 (2014)

3. Cai, X., Goh, C., Mees, A.I.: Greedy heuristics for rapid scheduling of trains on a
single track. IIE Trans. 30(5), 481–493 (1998)

4. Caimi, G., Chudak, F., Fuchsberger, M., Laumanns, M., Zenklusen, R.: A new
resource-constrained multicommodity flow model for conflict-free train routing and
scheduling. Transp. Sci. 45(2), 212–227 (2011)

5. Chiang, T., Hau, H., Chiang, H.M., Kob, S.Y., Hsieh, C.H.: Knowledge-based
system for railway scheduling. Data Knowl. Eng. 27(3), 289–312 (1998)

6. Clementi, A., Ianni, M.D.: Optimum schedule problems in store and forward net-
works. In: 13th Proceedings of IEEE Networking for Global Communications,
INFOCOM 1994, vol. 3, pp. 1336–1343, June 1994

7. D’Ariano, A.: Improving real-time train dispatching: models, algorithms and appli-
cations. Doctoral thesis, TRAIL Research School, Deft, The Netherlands (2008)

8. Fang, W., Yang, S., Yao, X.: A survey on problem models and solution approaches
to rescheduling in railway networks. IEEE Trans. Intell. Transp. Syst. 16(6), 2997–
3016 (2015)

9. Flier, H., Mihalák, M., Schöbel, A., Widmayer, P., Zych, A.: Vertex disjoint paths
for dispatching in railways. In: Erlebach, T., Lübbecke, M. (eds.) 10th Workshop
on Algorithmic Approaches for Transportation Modelling, Optimization, and Sys-
tems (ATMOS’10). OpenAccess Series in Informatics (OASIcs), vol. 14, pp. 61–73.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

11. Garg, A., Ranade, A.G.: Train scheduling on a unidirectional path. In: Lokam,
S., Ramanujam, R. (eds.) 37th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science (FSTTCS 2017). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 93, pp. 29:1–29:14. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2018)

12. Iyer, R.V., Ghosh, S.: Daryn-a distributed decision-making algorithm for railway
networks: modeling and simulation. IEEE Trans. Veh. Technol. 44(1), 180–191
(1995)

13. Krasemann, J.T.: Design of an effective algorithm for fast response to the re-
scheduling of railway traffic during disturbances. Transp. Res. Part C: Emerg.
Technol. 20(1), 62–78 (2012). Special issue on Optimization in Public Trans-
port+ISTT2011

14. Leighton, F.T., Maggs, B.M., Rao, S.B.: Packet routing and job-shop scheduling
in o(congestion+dilation) steps. Combinatorica 14(2), 167–186 (1994)

15. Leighton, T., Maggs, B., Richa, A.W.: Fast algorithms for finding o(congestion +
dilation) packet routing schedules. Combinatorica 19(3), 375–401 (1999)

16. Leung, J.Y.T., Tam, T.W., Young, G.H.: On-line routing of real-time messages. J.
Parallel Distrib. Comput. 34(2), 211–217 (1996)

17. Mannino, C., Mascis, A.: Optimal real-time traffic control in metro stations. Oper.
Res. 57(4), 1026–1039 (2009)

Scheduling Trains with Small Stretch on a Unidirectional Line 31

18. Mascis, A., Pacciarelli, D.: Job-shop scheduling with blocking and no-wait con-
straints. Eur. J. Oper. Res. 143(3), 498–517 (2002)

19. Narayanaswami, S., Rangaraj, N.: Scheduling and rescheduling of railway oper-
ations: a review and expository analysis. Technol. Oper. Manage. 2(2), 102–122
(2011)

20. Peis, B., Skutella, M., Wiese, A.: Packet routing: complexity and algorithms. In:
Bampis, E., Jansen, K. (eds.) WAOA 2009. LNCS, vol. 5893, pp. 217–228. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12450-1 20

21. Pellegrini, P., Rodriguez, J.: Single European sky and single european railway area:
a system level analysis of air and rail transportation. Transp. Res. Part A: Policy
Pract. 57, 64–86 (2013)

22. Ranade, A.G.: Fluent parallel computation. Ph.D. thesis, Department of Computer
Science, Yale University, New Haven, CT, USA (1989). aAI9010675

23. Rothvoß, T.: A simpler proof for o(congestion + dilation) packet routing. CoRR
abs/1206.3718 (2012)

24. Sahin, I.: Railway traffic control and train scheduling based oninter-train conflict
management. Transp. Res. Part B: Methodol. 33(7), 511–534 (1999)

25. Salim, V., Cai, X.: A genetic algorithm for railway scheduling with environmental
considerations. Environ. Model Softw. 12(4), 301–309 (1997)

26. Scheideler, C.: Universal routing strategies for interconnection networks. In: Goos,
G., Hartmanis, J., van Leeuwen, J. (eds.) Lecture Notes in Computer Science, vol.
1390, pp. 57–67. W. H. Freeman & Co., New York (1998)

27. Tormos, P., Lova, A., Barber, F., Ingolotti, L., Abril, M., Salido, M.A.: A genetic
algorithm for railway scheduling problems. In: Xhafa, F., Abraham, A. (eds.) Meta-
heuristics for Scheduling in Industrial and Manufacturing Applications. Studies in
Computational Intelligence, vol. 128, pp. 255–276. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-78985-7 10

28. Upfal, E.: Efficient schemes for parallel communication. J. ACM 31(3), 507–517
(1984)

29. Šemrov, D., Marsetič, R., Žura, M., Todorovski, L., Srdic, A.: Reinforcement learn-
ing approach for train rescheduling on a single-track railway. Transp. Res. Part B:
Methodol. 86, 250–267 (2016)

