CS 213 Introduction Abhiram Ranade

The goal of this course is to learn techniques by which you can write better
programs, to solve harder problems, than the ones which you might have
encountered in the introductory programming course. Specifically expect
yourself to get better at the following:

1. Reasoning about programs. When you write a program, can you argue
that it will produce the result that you want? Can you estimate the
amount of time it will take to produce the result?

2. Representing objects on a computer. In the introductory programming
course, you might have dealt only with numbers, numerical or other
sequences, matrices. In this course you will learn ways to also represent
real life objects such as road networks, math expressions, circuits etc.

3. Knowing (and to some extent designing) algorithms to solve more com-
plex problems than the ones you encountered in the introductory pro-
gramming course.

While the course is about programming, the main activity in the course will
be thinking about programs. The main concerns will be to argue that a
program runs correctly and also to estimate the time and space required by
the program. We might also ask some fundamental questions such as whether
an algorithm even exists for solving a problem quickly, where quickly will of
course have to be suitably defined.

In the rest of this chapter we study how to argue that a program is correct.
By the phrase “program is correct” we mean (a) that the program eventually
terminates, and (b) by the time it terminates it produces the correct answer
no matter what input it is given. Some programs might be based on very
clever or complex ideas, and it might not be obvious that they should always
work. In addition, you might also have programs whose basic idea is simple,
but which might have been implemented with a “silly mistake”. Indeed,
errors in programs (conceptual or due to silly mistakes) have caused major
accidents leading to loss of life as well as monetary losses. Thus proving
correctness is very helpful. Note that when you write a program you will run
many test cases and check that the program may work correctly on all those

— but that does not guarantee that the program will work correctly on all
cases.

We will study two central ideas: invariants and potential function argu-
ments. We will consider progressively harder programs to illustrate these
idea.

1 Proofs and program correctness

A proof is a sequence of assertions, some of which are assumed to hold (ax-
ioms), and others which follow from previously stated assertions. For exam-
ple, suppose you have proved assertion A, and another assertion which says
“A implies B”. Then from these assertions it is natural to infer the assertion
B. As justification of this inference you might say “But that is what A implies
B means!”, or you might give the technical name for this kind of inference,
modus ponens. Other kinds of claims and justifications are also possible,
for example you might claim something and justify it using mathematical
induction.

A proof of program correctness is similar, except that we will make claims
about values taken by variables or values printed by the program. The usual
justifications, e.g. modus ponens, mathematical induction, and so on will be
available to us. But in addition, we will be able to also justify statements
based on the definition of the programming language. For example, suppose
we proved that in the ith step a certain integer variable x has value 5 and in
the i+ 1th step, we are executing the statement x++;. Then we can conclude
that after the ¢+ 1th step x will have value 6. The justification for this claim
is our knowledge of C+-+. Indeed the manual for C++ will say that the
operator ++ will cause an integer variable to increment by 1.

The general idea of the proof then, is to use our knowledge of the language,
strictly speaking what is given in the language manual, to deduce the values
taken by variables as the program executes, and also which loop tests or
conditions in if statements succeed and so on.

We begin by applying this strategy to straight line code, i.e. a program
in which there are no loops. Then we move on to loops.

2 Straight line code

Our first example program is rather trivial. Given an integer n representing
a distance in inches, it is required to print 3 numbers y, f,7 respectively
denoting the distance in yards, feet and inches.

int n,i,f,y,w; cin >> n; // 1

i=n% 12; // 2
w=n/ 12; // 3
y=w/3; // 4
f=wh3; // 5

cout << y <<? << f <7 << i << endl;

Since there are no loops, this program is guaranteed to terminate, i.e. there is
no question of it going into an infinite loop. So we need to only worry whether
it prints the correct answer. Before we argue this, we need to specify what
correct even means. This is not always easy to specify. In the present case,
we might say that we require that (a) 36i +12f +y = n, and (b) 0 <14 < 11,
0 < f < 2. Note that the requirements (b) are not stated explicitly in the
problem statement above, but we might consider these to be common sense.

Next we make claims about what happens to the program variables as
each statement executes. The main statements here are assignment state-
ments, say p = q;. Such a statement causes the expression q to be evaluated
and its value placed in the variable p, and the value of no variable besides p
changes.!

Thus we can say that after statement 1, variable n must have the value n
that was typed by the user. After statement 2, the value of n does not change
but i gets the value n mod 12. After statement 3, we will know that the value
of n, 1 will not have changed but w will get the value |n/12]. After statement
4, we will have y get the value |[n/12] /3], and after statement 5, the value
of £ will become |[n/12| mod 3. Now it is an algebraic exercise to show that
the printed values y = | [n/12] /3], f = [n/12] mod 3,7 = n mod 12 satisfy
the correctness requirements (a), (b).2

"'We assume here that the expression q only contains simple arithmetic operators, i.e.
there are no operators or function calls that cause side-effects. If the expression contains
operators such as ++ which produce a value as well as modify their operand, or if the
function calls not only return values but modify variables in the calling program, we will
need to be more careful.

2You may need the identities ||p/q]| /7] = |p/(qr)] and (p mod q) + |p/q] * ¢ = p for
integers p, q,r.

The general idea was to determine the values of the variables symbolically,
in terms of the values typed in by the user. As we will see, we might also
assert relationships between values taken by variables rather than specify the
value taken by a single variable.

3 Loop Example 1

We consider the problem of adding up the first n terms of the series for sin(z):

T

r— o7+

Here is a possible program fragment for this.

int n; cin >> n;

double x; cin >> x;

double sum = 0, term = x;

i=1;

while(i <= n){
sum = sum + term;
term = - term * x *x x / (2%ix(2%i+1));
i++;

}

cout << sum;

Once you have a loop in your program, there is the potential that the
program does not halt: the loop termination condition may never be met!

Of course, in this program it is easy to see that the loop terminates.
the variable i starts at 1, increments by 1 in each iteration, and goes up
to n which does not change in the loop. Thus the loop executes exactly n
iterations.

Can we be sure that the correct value is calculated? The key observation
is the following:

When control reaches the beginning of the loop body term =
ith term of the series = (—1)"'2%~1/(2i — 1)! sum = sum of first
i-1 terms of the series.

Here we are using i and ¢ to both denote the value of the variable at the
beginning of the loop body. We will ignore the distinction if our intent is
clear from the context.

It might seem that the claim does not say anything about sum at the end
of the program. But before the loop is exited, control does indeed reach the
top of the loop to make the check. At this time i has the value n + 1. Thus
the claim (with n + 1 substituted for 1) says: sum = sum of the first n terms.
So if we can prove the claim in general, we would have proved the correctness
of the program.

The claim is proved by induction on the number of times the loop is
visited. Specifically, note that the first time the loop is visited, i=1, sum=0,
term=x from the initialization before the loop. The claim with 1 substituted
for i, says that sum must equal the sum of the first 1-1=0 terms of the series,
and it indeed does. The claim also says that term must equal the first term
x of the series, and this is indeed the case.

Now suppose that the claim is true for a certain visit. At the beginning
of that iteration, let ¢ denote the value of the variable i. Then sum equals
the sum of the first ¢ — 1 terms of the series, and term equals the ith term.
Note that the ith term is (—1)"* éj__ll), The first statement will thus cause
sum to become equal to the sum of the first i terms of the series. The next

statement will cause term to equal the (—1)i-t2 1 —o® _ — ()i 2"

i1 @)@t (2it1)!

i.e. the value of the ¢ 4+ 1th term of the series. Note that the last statement
in the loop causes the value of i to increase by 1, i.e. become ¢ + 1. But
because of this update, at the end of the body the value of sum is indeed the
sum of the first i-1 terms and the value of term the ith term (for the new
value of 1). But these values do not change when control goes to the top of
the loop for the next iteration. Thus the claim is true at the next visit also.
Thus proved.

3.1 Remarks

The claim in the comment applies to all iterations of the loop, and is therefore
called a loop invariant.

In proving the invariant, we made (inductive) assumptions about the
values of a variable at the beginning of the iteration and using these deduced
the values at the end of the loop (which is equivalently the beginning of the
next iteration). Note that the loop body itself was straight line code, so the
core of the reasoning in some sense similar to that in Section 2.

Writing down the invariant to be proved (which implies program correct-
ness) is the crux of the proof. The rest of the proof is routine and a bit
laborious, and in this course, you will only be expected to write down the
(correct and complete) invariant.

Writing down the invariant is far from easy in geneal. In the above case,
we might have made a claim only about the value of sum without talking
about the value of term. Such a claim would be correct but we would not
be able to prove it on its own — the induction used above requires us to also
know how term changes in each iteration. Thus the complete invariant would
have to also talk about what values term takes, as was done in above.

We also note that it is possible to get the above program wrong, e.g.
you might exchange the order of the updates to sum and term, or instead
of dividing by 2*i*(2*i+1) you might divide by (2*i+1)*(2xi+2). But
you would not make such a mistake if you carefully write down the invariant
either before writing the code or after. The invariant would either prevent
the error from happening or alert you to the error.

4 A more involved loop

We consider Euclid’s algorithm for finding the Greatest Common Divisor of
two positive integers x, y.

int x,y; cin >> x >> y;
while(x % y !'= 0){

int newy = x % y;

int newx = y;

X = NewX;

y = newy;

cout << y << endl;

Claim: Every time the program checks the loop condition, the GCD of x,y
equals the GCD of the original values typed in by the user into the variables
x,y. Also, at the time of the check x,y > 0.

Observe first that if this claim is true, and if the program did halt, then
it must have printed the correct value. For this, note that before printing y
the program must have checked the loop condition and found it false, i.e. it
must have found that x is a multiple of y. Thus we know that y must be the

6

GCD of the values of x,y at the time of the loop test. But the claim assures
us that this must also be the GCD of the original values of x,y.

Proof of claim: The proof is by induction on the number of times the loop
is tested. Clearly the claim is trivially true on the first test: the variables
X,y contain the values typed by the user. Also, we are expecting that the
user will type positive values.

So suppose that the claim is true just before the ¢th loop test. If the loop
test fails we are done because we have proved the claim for all loop tests that
happen. Suppose that the loop test succeeds, i.e. x % y != 0. So we now
enter the loop and assign new values to x,y. By inspecting the loop body,
we can see that the newx,newy equal y,x%y. Note that given that x,y > 0,
and x% y != 0, newx,newy > O.

We know by the following Lemma that y, x%y have the same GCD as x,y.
But at the end of the loop x,y get the values of newx,newy. Thus the GCD
of x,y does not change even though the values of x,y do. |

Euclid’s Lemma: For integers z,y > 0 if x mod y = 0 then GCD(z,y) = y.
Otherwise GCD(z,y) = GCD(y,x mod y).
Proof: If x mod y = 0, clearly y is ght GCD. Otherwise, Suppose d is any
common divisor of z,y. Then x = ad, y = bd for integers a,b. We know that
x mod y = x — ky for some k. Thus x mod y = (a — kb)d. Thus d is a divisor
of x mod y.

Suppose instead that e is any common divisor of y, 2 = x mod y. Thus
y = pe,z = ge. But z = z + ky for some k. Thus = = (¢ + kp)e, i.e. every
common divisor of y, z = x mod y also divides z, y.

Thus the greatest common divisor of z,y must also be equal that of
Y,z mod y. |

Finally we will prove that the program in fact stops and does not go into
an infinite loop.
Claim: The program terminates.
Proof: If the loop test fails and the body is executed, then the value of the
variable y reduces because the new value, x%y must always be smaller than
y and also non negative. If the loop test were to never succeed, then y would
have to eventually be negative. Since this does not happen the loop test
must eventually succeed. Thus the program terminates after a finite number

of iterations. [}

In this, the value of y sometimes called a potential, in analogy to the po-
tential energy of a physical system which somehow characterizes its behavious
and must decrease presumably until it drops down to 0.

4.1 Remarks

Note that we don’t really need two variables newx, newy, we could have
directly written int temp=y; y = x % y; x = temp;. Using two variables
makes the logic more obvious, and is therefore recommended.

5 Correctness of recursive programs

We will consider the recursive expression of the GCD algorithm and prove
its correctness.

int gcd(int x, int y){
if(x % y == 0) return y;
return gcd(y, x % y);

}

To argue correctness, we must first clearly state what we expect ged to
do.

For x,y>0, gcd(x,y) will return the greatest common divisor
of x,y.

Next we use induction on a carefully chosen parameter. In the present case,
the second argument is convenient.
Base case: gcd works correctly when second argument y = 1.

Proof: The GCD of any number and 1 is 1. The function will find x % 1
== 0 for any x, and will thus return 1. |

Induction step: Suppose gcd correctly works when the second argument y
has value larger than any number n. Then it works correctly when y has the
value n.

Proof: If x % y == 0 then the GCD must be y, which is indeed returned.
Else the value of the function call gcd(y, x % y) is returned. Clearly the
second argument of this call lies between 1 and n — 1. Thus by the induction
hypothesis this call correctly returns the value of GC'D(y, x mod y). But by
Euclid’s Lemma this equals GCD(z, y). [

6 Concluding remarks

The description of a programming language describes what happens when
each statement of the language executes. As an example, the manual might
say “For an integer variable x the statement x++; will cause the value of
X to increase by 1.”. We can take such descriptions as axiomatic, and use
them in proofs of program correctness. The implications of such claims can
be composed to deduce what happens to variables as the program executes.

It may be observed that in a sense a proof restates the logic we might
have had when we designed the program. This is correct. However, when we
write a proof, we are forced to check that we cover all possibilities. We may
have the correct idea but we might make a silly mistake when we write the
program. For example in the sin(x) calculation program we might exchange
the order of updates to sum, term, i, or we might divide by 2¢ + 1,27 + 2
instead of by 2¢,2¢ + 1. Such mistakes will be caught if we write a proof of
correctness. Of course, we can also make a mistake in writing the proof of
correctness, but at least we get a second chance at discovering our mistake.

It is a bit cumbersome to write a full proof of correctness. It is recom-
mended however, that you at least write the loop invariant completely and
precisely.

Exercises

1. Modify the program for computing sin(z) to be consistent with the
following invariant: The value of sum,term equals the sum of the first
i terms and the ith term respectively.

2. Write the code for computing sin~!(x) using the associated Taylor se-
ries. State the invariant.

3. Write a program that reads an integer n and prints it in binary, from the
least significant bit to the most. Prove its correctness. Note that the
loop invariant will have to include statements about what has already
been printed. Thus you might say “On any visit the numbers printed
comprise the least significant bits of n and ...”. You will need to state
and prove something like “The binary representation of n consists of
n mod 2 followed by the binary representation of [n/2].”

4. Write the above program recursively and argue its correctness.

5. Write a program that reads in what the user types, one character at
a time, and stops if the user types the sequence of letters “kitkat” in
succession.

Your program must have a variable matched. As you are about to read
the next letter, matched should equal the size of the partial match
you have obtained till then. As an example, suppose the letters read
till then were “abckigkit” then the partial match that can potentially
extend consists of the 3 letters “kit”. Thus matched should equal 3.
Use this as the invariant to design your program.

10

