
DrawCAD: Mouse-sketch-based engineering drawing

Abhiram Ranade and Shripad Sarade
Department of Computer Science and Engineering

Indian Institute of Technology Bombay
ranade@cse.iitb.ac.in

ABSTRACT
While there has been a lot of work on freehand drawing
programs, robust programs which are easy to learn are still
not available. We feel our program DrawCAD takes signif-
icant steps in this direction. Two dimensional drawings are
sketched by the user using the mouse; DrawCAD analyzes
the sketches and infers the intent of the user and produces
beautified drawings. DrawCAD also infers and maintains
constraints between various elements of the drawing. Sup-
ported constraints include horizontality or verticality of lines,
tangency between arcs and lines, parallelism/perpendicularity
between lines, equality of angles or line segment lengths.
Some of these constraints are inferred as the user draws, and
some can be explicitly added using well known conventions
of Euclidean Geometry (e.g. putting a wedge to indicate per-
pendicularity). The key idea in this is to treat the strokes
drawn by the user on one hand as actual drawing elements,
but at the same time as gestures. We feel that this makes it
easy for the user to declare his/her intent, and also easy for
DrawCAD to recognize the intent.

User studies are presented in which some benchmark draw-
ings are created using DrawCAD as well as standard pro-
grams. Some of our benchmarks are simple informal draw-
ings, and others are detailed engineering drawings with di-
mensions etc. Our general conclusion is that DrawCAD is
very robust, easy to learn, and fast to use.

Author Keywords
sketching; engineering drawing; constraints

ACM Classification Keywords
H.5.2 Information interfaces and presentation: User Inter-
faces. - Graphical user interfaces.

INTRODUCTION
Conventional wisdom has it that mouse drawn sketches are
great for rough drawing, i.e. putting down ideas on paper just
as you might doodle on backs of envelopes. There is work
on beautifyingthese sketches, but it seems to be generally

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists,requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
India HCI 2013 and APCHI, 2013, Bangalore, India.
Copyright c 2014 ACM 978-1-4503-2253-9.

accepted that such sketching is not useful for making accu-
rate drawings, e.g. engineering drawings. Indeed, standard
engineering drawing programs such as AutoCAD encourage
the use of the WIMP (windows, icons, menus, pointer) ap-
proach, i.e. basically atool is provided for every primitive
object to be drawn, and the tool is invoked through a series of
menus/icons/dialogue boxes. For example, we might want to
draw a circle that passes through a given point, is tangential to
a given line, and has a certain radius. To draw this requires in-
voking the circle drawing tool, and somehow filling in the dif-
ferent attributes, either explicitly through dialogue boxes, or
through a sequence of menu choices and icon clicks. Select-
ing menus and items requires substantial mouse movement
and time. How to fill the dialogue boxes and which specific
menus/icons to use presents a substantial learning curve.

DrawCAD explores a more natural approach to engineering
drawing. The user is asked tosketchthe required drawing
using the mouse (or touchscreen etc.), and the program in-
fers the user intent, and produces the required exact (much
more stringent than just “beautified”) drawing. So in the cir-
cle example mentioned above, the user would simply draw a
freehand curve through the given point, and such that it ap-
pears tangential to the given line. At the end of drawing this
curve, the radius of the circle is typed in. If the recognition
process worked well (and itdoeswork well as you will see
shortly), you would have your circle. The benefits of this ap-
proach are two-fold: (a) the time to make the drawing can be
much less, and indeed, our experiments indicate that Draw-
CAD is upto 2-3 times faster than conventional drafting pro-
grams such as AutoCAD, and (b) the time required by the
user to learn DrawCAD is miniscule in comparison to stan-
dard drafting programs.

Note that DrawCAD does not expect users to be artists and
draw accurate sketches. This would be completely unaccept-
able! Indeed, most of us artistically challenged people findit
hard to draw a perfect circle using a pencil, let alone a mouse.
On top of that if we need to make the circle pass through cer-
tain points etc. then the task becomes very daunting. The
key insight in DrawCAD is to treat the stroke drawn using
the mouse not as a precise geometric shape, but as acari-
catureof the actual shape. As we discuss later, while it is
difficult to draw shapes accurately using the mouse, we be-
lieve that most users can control the mouse well enough to
indicate features such as co-incidence, tangency, horizontal-
ity and so on. Hence DrawCAD pays more attention to in-
ferring and managing such features than to the precise shape.
This is not to say that the shape is completely ignored. Only
that feature cues, if present, are considered more important.



Figure 1. Screenshot of DrawCAD

Section (Constraints) gives the features/constraints currently
recognized in DrawCAD.

Features/constraints are thus very important and intrinsic to
DrawCAD. DrawCAD provides another important mecha-
nism by which the user can indicate geometric constraints,
which we callNudging. In this, the mouse is used to drag a
point/line/arc in the drawing. The geometry/constraint engine
of DrawCAD lets the element be dragged while simultane-
ously adapting the rest of the drawing so that all constraints
inferred so far continue to be obeyed. The user stops drag-
ging at a convenient juncture: say when the dragged arc looks
(within a certain preset tolerance) tangential to the required
line. On release, the constraint inference kicks in again, and
the arc is indeed declared to be tangential and the constraint
is installed into DrawCAD. Nudging is very useful in many
cases, e.g. when two points need to be merged. We also im-
plement the conventions used in Euclidean geometry to in-
dicate parallelism (arrows on the relevant lines), or equality
of line segments or angles (similar tick marks on them), or
perpendicularity (wedge between the two lines). These sym-
bols: arrows, ticks and wedges are collectively referred toas
markers in what follows.

Contributions
Many of the ideas we have discussed above, except perhaps
the notion of caricatures, are natural and obvious, and have
appeared in previous papers.

Our main contribution is in identifying the correct combina-
tion of ideas needed to make sketch-based drawing viable:
the notion of caricatures, managing constraints, and nudging.
Our evaluation criteria for this are (a) time to make the draw-
ing, (b) time to become familiar with the program. It is cus-
tomary in the literature to also presenterror analysis. We
have not done so because our users make very few errors,
and they correct themselves quite easily. Also, our concernis
more with the overall performance.

We evaluate DrawCAD using a benchmark set of drawings
(Section (USER TRIALS)). We give a 30 minute introduc-
tion to DrawCAD and then ask the users to make the draw-
ings. We report the time taken by users. Likewise we also ask
users to make the drawings using their favourite programs,
e.g. CATIA or AutoCAD. In this case we also report the ex-
pertise level of the users. We find that it takes 2 to 3 times
longer to draw using these programs than using DrawCAD.

It is also worth comparing DrawCAD to programs such as
Parsketch[7] and Quickdraw [9]. We discuss this later.

Outline
We begin by showing a small session using DrawCAD. Then
we discuss the philosophy and design of DrawCAD. Then we
describe the some of the drawings we have done using Draw-
CAD. Then we present our benchmark drawings and report
our user trials. After that we present the previous work in the
area. We have deferred the discussion of the previous work



A

B C

D

60

R 0.8

R 1.0

5.0

1.0

7. Type

8. Draw

9. Type

120a

6. Draw

1. Draw

4. Draw

5. Type

0.8

5.0
2. Draw 3. Type

(b) As sketched in DrawCAD(a) Target figure

Figure 2. Using DrawCAD

so that it can be better compared with DrawCAD. Finally we
summarize and conclude.

A SAMPLE SESSION
Figure 1 gives a screenshot of DrawCAD in action. As you
can see, there are 3 main panels: the Drawing panel at the
top, the Edit panel below it, and the Constraints panel at the
bottom. Drawing is done in the Drawing panel, and the fig-
ure shows a drawing in progress. Information about the last
drawn (or last selected) element appears in the Edit panel. In
the figure this is the panel in which some buttons and text
boxes are visible. These can be used to delete the element
or change the element parameters. The constraints related
to the last drawn/selected element appear in the Constraints
panel. The figure shows the constraints related to the top arc
in the drawing, which was the selected element. The selected
element is highlighted in a different colour in the Drawing
panel. By hovering the mouse on a constraint in the Con-
straints panel, a constraint can be highlighted, as shown. As a
result, the elements involved in the constraint get highlighted
in the Drawing panel as shown.

We will use DrawCAD to draw the figure of Figure 2(a).
Drawing is accomplished in DrawCAD using the left mouse
button. Move the mouse to the position you want to start
drawing. Press the left button and drag, a line appears on
the screen. When you want to stop drawing, release the but-
ton. This is what is meant when the directions below ask you
to “draw”. Typing in dimensions is easy: you merely type,
without worrying about where the cursor is. What you type

will appear at your cursor position, and vanish when you hit
ENTER.

Figure 2(b) pictorially gives the sequence of actions you need
to perform. Here is a brief textual explanation of each action.

1. Draw a vertical looking line. This is meant to become line
AB.

2. Continue and draw a horizontal looking line. This is meant
to become BC.

3. Type “5.0” followed by enter. This specifies the length of
the last drawn line, AB. Note that typing does not require
the mouse to be moved.

4. Continue and draw a line at an incline. This is meant to
become line CD.

5. Type “120a”. This specifies the angle made by the last
drawn line, CD, with the positivex axis.

6. In this step we draw the arc DA. For this, draw a stroke
from D to A. It will be good if the stroke appears to be
tangential to CD, and also to AB. Other than this, nothing
is needed. As you can see, we have drawn it as an inverted
’V’ shape, with a sharp angle. It can even knots, i.e. it can
self intersect if you find that while drawing the stroke your
mouse has drifted too far.

7. Type “1.0”. This specifies the radius of the arc.

8. Draw the circle.



9. Type “0.8”. This specifies the radius.

10. Right click on the center of the circle, and drag it to the
center of the arc DA.

The last step, step 10, is not shown in Figure 2.

Most likely, at this point you would have correctly drawn the
figure. However, if you did not, you can easily correct your-
self as you go along. Here are some of the possibilities.

1. You meant to draw a straight line, but it was recognized as
an arc by DrawCAD. In this case you simply need to select
the radio button labelled Line in the Edit panel. Vice versa
if your stroke was recognized as a line when you meant an
arc.

2. If the line you drew was not recognized as vertical (or hor-
izontal), drag an endpoint with the mouse right button, and
release when it becomes nearly vertical (or horizontal).

3. You forgot to make your arc tangential to a line, or you
tried but DrawCAD did not catch it. In this case you have
two choices:

Nudging: Drag the point where the line and arc meet us-
ing the right mouse button. If you jiggle it around
enough, you will see that the arc and line do become
nearly tangential somewhere. Release the mouse at
that point. On release, DrawCAD will detect that the
line and arc are nearly tangential, and so will assume
that you want them tangential. So the constraint will
be recognized.

Markers: Draw a small arrowhead on the line, and an-
other one on the arc. This is how parallel lines are
indicated in Euclidean Geometry. In DrawCAD, this
can be used to indicate parallelism as well as tan-
gency. If DrawCAD did not recognize your arrow-
head, then you can correct it by selecting the appro-
priate radio button in the Edit panel.

4. You mistyped a number. All you need to do is click on
the element and retype. If you realize your mistake before
hitting enter, you can just use the backspace and correct, of
course.

5. If some constraint you did not want is falsely recognized,
then place your mouse on that constraint in the Constraints
panel. Then press the delete key.

Our constraint recognition is fairly good, so by and large cor-
rective actions are not needed.

PREMISES
We begin by stating our premises regarding what (typical)
users cannot and can be expected to sketch using the mouse.
Then we consider how engineering drawing is different from
other kinds of informal sketching.

On precision sketching:
We have remarked earlier that sketching with reasonable ac-
curacy may not be easy for most users, even using pencil and
paper. The situation is even more difficult with mice, or even

touch screens. It may be noted that mice were invented orig-
inally not for drawing, but as a pointing device. If we wish
to merely draw a straight line segment connecting two points,
it can usually be drawn fairly reliably. However, suppose we
wish to draw an incircle of a triangle, then maneuvering the
mouse is usually very difficult for most users.

In contrast, here is what we think can be done well by (not
necessarily artistic) users using available (noisy) mice.We
believe that users can reliably start the drawing at the point
they want to. Furthermore, the direction of the movement
can be controlled reasonably well at the start. As the stroke
progresses, however, the noisiness/lack of skill appears to be-
come evident. As a result, the mouse drifts from the path the
user might have wanted. However, if the user is assured that
he/she need not be worried about the drifting, and may simply
try to bring back the mouse on course, we feel that most users
can end the stroke at the designated spot. Furthermore, usu-
ally it is possible to approach the designated ending spot in
the appropriate direction. Another point is that the user might
wish to pass the stroke through a certain point. This also can
be managed by most users; again provided they are told not
to get flustered if the mouse seems to drift, but just bring it
back to the target point somehow and carry on.

The nature of engineering drawings:
Rough, informal sketches drawn using a mouse have been
substantially explored. However, these are fundamentallydif-
ferent from engineering drawings. Typically, in engineering
drawing, all the drawing elements will have specific dimen-
sions, either specified explicitly for the element, or implied
by the dimensions of other elements. This implies that the
activity of assigning dimensions will be almost as frequent
as sketching. Second, elements in engineering drawings are
also often associated with interesting constraints. For exam-
ple, a line may be horizontal, or be tangent to an arc and so
on. We would like DrawCAD to infer these constraints, dis-
play them to the user, and get immediate confirmation about
the correctness of the inference.

There is also a deeper point. In informal sketching, theshape
of the stroke drawn by the user has great importance. Most
drawing programs, e.g. [13] and even Parsketch[7] as far as
we can tell, will pay great attention to the general shape of
the stroke drawn, and try tofit the recognized element to the
stroke shape. Except for very simple strokes, say straight
lines, the fit is unlikely to be exact, because of the noisiness
inherent in the mouse. But in case of engineering drawings,
an approximate fit is useless: if I intended an arc to have ra-
dius 50, it does not make a difference to me if it is recognized
to have radius 51 or 100. This is because in both cases I must
correct the radius somehow: correcting 51 to 50 is really no
different than correcting 100 to 50. But once we realize that
inferring the shape is not too useful, we might as well tell the
user that and ask him/her to concentrate on other aspects such
as co-incidence and tangency.

THE DESIGN OF DrawCAD
The design of DrawCAD follows naturally from the above
discussion.



Before we go into it, we discuss some basic terms. The main
elements in a DrawCAD drawing arelines, i.e. straight line
segments,arcs, markers, points, andconstraints. Points
can be primary, by this we mean endpoints of lines and arcs.
Points can also be secondary, by this we mean centers of arcs
and midpoints of lines.

A stroke is the curve drawn on the screen using the mouse.
As mentioned earlier, we do this using the left mouse button:
to start drawing the left button is pressed, then the mouse is
moved as needed, and finally the left buttion is released to end
the stroke.

One stroke = one element
In our prototype implementation we have chosen to interpret
every stroke drawn as a single drawing element. For example,
if we wish to draw a rectangle, we must raise the mouse after
finishing one side, and lower it again to begin the next side.
This is clearly inconvenient, and we indeed will remove the
restriction later. However, for now, treating one stroke tobe a
single element allows us to experiment with some interesting
ideas.

In Section (On precision sketching) we discussed why the
stroke data we get should be considered somewhat unreliable.
But if stroke data is unreliable, it is best to keep the strokesize
small, and also tell the user how the program interprets the
last stroke immediately after it is drawn.1 By asking the user
to only draw one element per stroke, we are indirectly en-
couraging small strokes! Further, after the program interprets
the stroke, the interpretation is displayed in the Edit panel. As
may be seen in Figure 1 the Edit panel has radio buttons using
which the user can immediately choose the correct element
type if the progrm made a mistake in interpretation. Clearly
this would be very clumsy if every stroke was deemed to con-
sist of several elements: there would be too much information
to show in the panel.

The second reason comes from our characterization of engi-
neering drawings. Most elements need to be dimensioned. If
a stroke is deemed to be a single element, the user can imme-
diately give the dimensions for the element. We have already
remarked how this is done: the length(radius) of lines(arcs)
is typed immediately, and/or so is the inclination(angle mea-
sure). These changes can also be made in the Edit panel if the
user so chooses. If the stroke was deemed to consist of several
elements, then the dimensions given by the user would have
to be matched with the elements derived from the stroke. This
would be quite messy.

The third reason also comes from our characterization of en-
gineering drawings. We remarked that each drawing element
usually has some important features (e.g. a line could be ver-
tical) or is in some geometric relationship with other elements
(e.g. the line is tangential to a previously drawn arc). We feel
it is appropriate to show these features/relationships immedi-
ately to the user and get them confirmed. This we do in the
Constraint panel. Occasionally the several constraints are in-
ferred for newly drawn element. In such cases, the user may

1Analogous to why short packets are preferred in noisy channels.

Figure 3. Acceptable ways of drawing an incircle and a circumcircle

hover the mouse over each constraint, which causes the in-
volved elements to get highlighted in the Drawing panel. If
a certain constraint has been inferred incorrectly by Draw-
CAD then the user can just type DELETE which will cause
that constraint to be disabled (Section (Constraint removal)).
Needless to say, if a single stroke was segmented into several
elements, too many constraints might have to be shown in the
Constraints panel. The clutter might confuse more than help.

Caricature
There is also a deeper, somewhat subtle fallout of the single
element rule. It allows us to provide a more convenient draw-
ing protocol to the user.

We explain this with an example. Suppose the user wants to
draw an incircle of a given triangle. As mentioned, this is a
difficult undertaking for most users. What most users draw
will invariably have several “corners”, with many straight
patches, and inevitably the curvature will change many times
in the stroke. Without the single element rule, our stroke in-
terpreter would have to work very hard to figure out that what
the user intends is in fact a circumcircle. With the single el-
ement rule, the process is very easy. For an incircle, the user
may inscribe any closed figure inside the triangle. For exam-
ple, the user may just inscribe another triangle, as in Figure 3.
It is easy for our stroke classifier to see that this stroke closes
on itself and hence must be a circle, rather than a straight line.
Further, it is also easy for the classifier to see that the stroke is
touching the sides of the triangle but never crosses any side.
Thus the stroke is immediately classified as an incircle. Sim-
ilar remarks apply to drawing a circumcircle. In general, it
is easy for our classifier to confidently infer properties such
as: (a) the given stroke touches a line but remains on one
side, which implies it is tangential, (b) a given stroke passes
through a given vertex. Even a clumsy user can draw strokes
in this manner – note that the line drawn by the user may
veer off from its course, but the user can bring it back without
worrying about “how it looks” to the classifier. Basically the
simplicity makes the task easier for the user as well as for our
program. The reader might realize that our directions in step



6 of Section (A SAMPLE SESSION) were precisely because
of this protocol.

The key idea here is that we are inviting the user to draw acar-
icatureof the element of interest, rather than worrying about
rendering it realistically. The caricature distorts the stroke to
emphasize the important feature (tangency in our case), just
as in a caricature or a cartoon. A caricature could be consid-
ered to be half way between a realistic drawing and a gesture.

Constraints
DrawCAD supports a wide range of constraints, which in-
clude (we think!) the constraints needed most commonly.
In this section we discuss how these sections can be explic-
itly added. Several of these constraints do not need to be
added explicitly, but will be inferred by the program, when
the stroke is drawn, or during nudging. We discuss inference
later.

1. Horizontality or verticality of lines: This can be usually
inferred at the time of drawing. However, there are many
ways to add it later. One possibility is nudging: one of the
endpoints of the line can be dragged to make the line more
vertical and horizontal. If the endpoint is then released,
the constraint will be inferred. Alternatively, immediately
after drawing or after explicit selection the angle may be
supplied as “0a” or “90a” to indicate horizontality or verti-
cality.

2. Co-incidence: Whether an arc/line passes through pri-
mary/secondary points outside the arc/line. Some of this
will be inferred when the arc/line is first drawn. But other-
wise, nudging can be used to enforce this. The point which
is to be on the line must be dragged to the line and released.

3. Tangency: Whether an arc/line is tangential to other arcs.
This is also most conveniently inferred at the time the
arc/line is drawn. But if not, nudging can be used. Drag
the point of intersection between the first arc/line and the
other arc. There will be a dragging direction, for which you
will see the involved elements become tangential. This di-
rection will be fairly easily found.

Another way is to use markers: draw little arrows on the el-
ements you want tangential. Then DrawCAD will enforce
tangentiality.

4. Whether two lines have equal length: At present, Draw-
CAD does not try to infer this. The user must indicate
equality by drawing a small tick (very small line segment)
on the two lines that are to be declared to have equal length.
This is also exactly like what high school students do in
Euclidean geometry diagrams.

5. Whether two angles have equal measure: At present,
DrawCAD does not try to infer this. The user must indicate
equality by drawing a small tick (very small line segment)
in the angles, near the vertex. This is also like what stu-
dents do in Euclidean geometry diagrams.

6. Whether two lines are parallel: At present, DrawCAD does
not try to infer this. The user must indicate parallelism by

drawing small arrows on the lines. This is also like what
students do in Euclidean geometry diagrams.

7. Whether two lines are perpendicular: At present, Draw-
CAD does try to infer this. Inference appears good, but
more experience is needed. To add explicitly, the user must
draw a wedge connecting the sides of the angle that is to be
made a right angle. This is also like what students do in
Euclidean geometry diagrams.

8. Merging two points: DrawCAD does not merge points by
default even if they come very close. If you want points
merged, you can use nudging, i.e. drag one to the other.

9. Whether two arcs are concentric: At present, DrawCAD
does not try to infer this. This must be done by nudging:
drag the center of one arc to the center of the other.

There is a simple way to remove unwanted constraints, as will
be discussed in Section (Constraint removal).

Note that dimensions of lines or arcs are also treated as con-
straints.

Inference
In principle, it is possible to infer all the above constraints.
However, an inference can be incorrect. If an incorrect in-
ference is made, the user must take corrective action which
is an overhead. On the other hand, when a correct inference
is made, the user is spared the effort of indicating the con-
straint explicitly. Clearly, whether we should attempt to infer
a certain constraint depends upon (a)Pfp, the probability of
false positives, (b)Ea, the effort (required to add the con-
straint) saved by the user in case of a correct inference, (c)Er, the effort (for constraint removal) wasted by the user in
case we made a wrong inference. Clearly, we should be infer-
ing a constraint provided(1� Pfp)Ea > PfpEr. From Sec-
tion (Constraints) we can see that the effort of adding or re-
moving constraints explicitly is comparable. But often, there
is an irrational factor at play: people get annoyed if a wrong
inference is made. So we really only make inferences if we
can have very low false positive probability.

Our experience is that we can correctly infer horizontal-
ity/verticality, with extremely high probability (low false pos-
itive as well as negative). So we do infer this. Our experience
is that horizontal and vertical lines are extremely common,
and making this inference saves us a considerable amount of
time while drawing.

It would seem that a user should be able to indicate fairly
unambiguously whether an arc passes through previously de-
fined points. The problem arises here when the drawing be-
comes very dense, i.e. there are many elements close together
on the screen. Remember that for each line we highlight its
endpoints as well as its midpoint, and for each arc its center
as well as its endpoints. We have found that it is somewhat
difficult for the user to navigate his/her way through the many
points on the screen. So we adopt a via media. We consider
the midpoints and arc centers to be secondary, and the other
points primary. If a primary point appears anywhere on the
stroke we report that as a constraint. However, we require that



a secondary point must appear only as a stroke endpoint in
order to get reported as a constraint. If we want a secondary
point to be on a line, it must be nudged in, as discussed in
Section (Constraints).

As for tangency: our experience has been that tangency infer-
ences have very low false positive rate (this of course depends
upon the thresholds we set in the algorithm). So we have de-
cided to infer tangency. This seems to work well.

We have found that equal length constraints are somewhat
tricky to infer. In general there appear to be more false pos-
itives, somewhat independent of the threshold in our algo-
rithm, because users often do not pay attention to the length
when they draw. Second, in engineering drawing, most lines
need to be given a dimension. The cost of adding a dimension
is very little – so the saving from inferring the equal lengths
constraints is somewhat small. Hence our current decision is
not to attempt to infer the equal length constraint. The situa-
tion for equal angles is similar.2

The rules for inference after nudging are similar to those de-
scribed above.

Selecting elements
You can select a line/arc by clicking on it. Selecting an el-
ement causes data regarding the element to be shown in the
Edit panel. Also all constraints associated with the element
are shown in the Constraints panel.

You can also edit the data shown: e.g. change the
length/radius or orientation/angle measure, either by typing
the values in the Drawing panel (as you would after draw-
ing the element), or in the Edit panel. Also, you may disable
constraints by hovering over them and clicking DELETE.

Note that by default the last drawn element is considered to
be “selected”.

It is also possible to select points. In this case, the related
constraints are shown in the Constraints panel.

Constraint removal
To remove a constraint, it must first get displayed in the Con-
straints panel. Constraints associated with an element getdis-
played in the Constraints panel automatically when the ele-
ment is first drawn. Alternatively, selecting an element also
causes the associated constraints to be shown.

If the user moves the mouse over a constraint shown in the
Constraints panel, then the relevant elements get highlighted
in the drawing panel. To delete a constraint, simply press the
DELETE key when the mouse is over the constraint. This
marks the constraint as disabled and retains it in DrawCAD’s
database. The reason for retaining the constraint in a disabled
form is the following. Since the constraint was inferred once,
very likely it will be inferred again. However, the user has just
told us that the constraint should not be added. So keeping it
around in the disabled form will tell us not to add it again.
What if the user decides that he/she has made a mistake and

2There could of course be situations with more compelling argu-
ments: e.g. consistent symmetry. We will explore these in the future.

Figure 4. Test diagram 3

wants the constraint anyway? He/she simply DELETEs it
again. This time it will be completely removed from Draw-
CAD. Now if it is inferred again it will get installed.

IMPLEMENTATION
We have implemented DrawCAD in Java. The idea was not
to build a full fledged drawing program, but build a test bed
for our ideas about how mouse based sketching can be used
for engineering drawings. As a result, our code does not have
several standard features such as copy/paste, or zooming in
and out, saving drawings in different formats. These will of
course be needed in a production version. In a production
vesion we will also allow several elements to be drawn in
a single stroke. We are optimistic that our program will be
able to tell the difference between a caricature (which denotes
a single element) and a stroke which truly denotes multiple
elements.

A note is in order regarding our constraint solver. We just use
a simple Newton-Raphson method. This requires SVD com-
putation which is done using [2]. It is suggested in the liter-
ature that constraints be introduced gradually, e.g. if we want
to make two lines have equal length, then look at the current
ratio, and make it go to one in a series of steps. The rationale
for this is that Newton-Raphson is guaranteed to work well
only if the target solution is “close” to the starting point.Our
experience has been that basic solver itself converges satis-
factorily when constraints get added one at a time. It would
be nice if this experience can be backed by rigorous proof.

OUR DRAWING EXPERIENCE
We have exercised DrawCAD substantially and used it to
draw many kinds of simple and complex engineering draw-
ings, two of which we will discuss in detail later. We have
also tested DrawCAD on an example taken from [7]. Another



Diagram 1
User id Time taken Program used Expertise level

1 364 sec CATIA 3 years
1 105 sec DrawCAD 30 minutes training
2 243 sec CATIA 5 years
2 102 sec DrawCAD 30 minutes training
3 120 sec AutoCAD 4 years
3 98 sec DrawCAD 30 minutes training
4 70 sec AutoCAD Expert
5 34 sec DrawCAD 1 year (developer)

Diagram 2
User id Time taken Program used Expertise level

1 363 sec CATIA 3 years
1 225 sec DrawCAD 30 minutes training
2 326 sec CATIA 5 years
2 291 sec DrawCAD 30 minutes training
3 300 sec AutoCAD 4 years
3 218 sec DrawCAD 30 minutes training
5 100 sec DrawCAD 1 year (developer)

Table 1. Data from user trials

interesting example we tried out was a regular 5 pointed star
(often called a pentagram). There are of course various ways
in which this can be drawn. We choose one which shows off
the use of DrawCAD’s constraint solver. We draw the star as
a sequence of 5 lines, and then put a circumcircle around it.
Then we put an incircle for the inner pentagon. Finally, we
merge the centers of the two circles. If the incircle and cir-
cumcircle have the same center, then it can be easily shown
that the star is regular. Another interesting example we have
tried out is an animation of a piston-cylinder system. For this
we place the midpoints of the horizontal sides of a fixed size
rectangle (“the piston”) on a fixed vertical line, which con-
strains the piston to move only along the line if nudged. Next,
a circle is drawn below the piston but centered on the same
vertical line. Then, a line (“crankshaft”) connects the bottom
center of the piston to a point on the circle. Finally, we fix the
length of the crankshaft. Now nudging the piston will cause
the figure to be animated as in a piston-cylinder system.

Figure 4 shows the most complex diagram so far we have
drawn using DrawCAD. We took this from [5] This took us
182 seconds.

USER TRIALS
We conducted user trials on 2 diagrams, shown in Figure 5.
These diagrams were adapted from [11] and [8]

Table 1 gives the results of the trials. The AutoCAD program
was version 2007, and CATIA was version V5R15. Our users
1,2,3 (identified in the table by the column “User id”) were
students who have been trained in the programs mentioned
and have been using these for the period mentioned for their
academic work. User 4 is a CAD professional.

A number of points are to be noted. The most important is
that for both diagrams, DrawCAD took the least time. The
best DrawCAD time beat the nearest competing time by fac-
tors of 2 and 3 on diagrams 1 and 2 respectively.

A further interesting feature is that three of our users who nor-
mally use other programs were able to quickly learn Draw-
CAD, and they were able to draw the diagrams faster using
DrawCAD than their more familiar programs! We feel that
this is indicative of the ease with which DrawCAD can be
learnt.

A note is in order to explain the difference in the times taken
for DrawCAD and the other programs. The first major ad-
vantage of DrawCAD is in drawing arcs. Arcs need to be
drawn with various properties such as tangency, or that they
pass through a point or have a certain radius. The test dia-
grams as well as the Figure 2 have many examples of this.
Drawing these arcs is easy in DrawCAD, you merely draw,
or better, just caricature them! In standard programs, select-
ing the specific properties requires work and also experience.
The second advantage concernstrimming. In standard tools,
often you must draw a complete circle (or even line) and then
remove unwanted portions from it. In DrawCAD it suffices
to just draw what you actually want. Another important ad-
vantage of DrawCAD is in indicating constraints: we feel that
the combination of standard Euclidean geometry markers and
nudging works nicely. A simple but important example for
constraints is recognizing verticality and horizontality: this
works near perfectly in DrawCAD. It is instructive to com-
pare this to an AutoCAD feature calledortho, which makes
it easier to draw horizontal/vertical lines. This feature must
be invoked explicitly and disabled explicitly when we want to
go back to drawing slanting lines. These mode changes, e.g.
shifting from different lines to arcs and within arcs to differ-
ent kinds of arcs and within lines to different kinds of lines
slows down drawing in our opinion. And of course, how to
make the mode changes and what modes exist needs to be
learned. We believe that in all these cases DrawCAD is sim-
pler and more natural to use and learn.

We examined in depth the techniques used by User 4 whose
timings came closest to the best DrawCAD timings. The fol-
lowing important point was revealed. The “polygon drawing
tool” was used to draw the hexagonal slot in Diagram 1. This
is a dedicated tool in AutoCAD. Doubtless similar tools ex-
ist in other programs. However, it is to be noted that our
other users did not make use of such tools, indicating that
they either did not learn about the tool, or had forgotten its
use. Clearly, specialized tools require a learning curve. In
contrast, users who have barely seen DrawCAD can quickly
acheive decent drawing times. Thus we feel that our general
purpose features are as good as specialized features of stan-
dard programs, in addition to being more intuitive and easier
to learn.

Finally, we will also mention some anecdotal feedback we
received from these users. By and large, the users were very
happy with DrawCAD. There was some discomfort, however,
that DrawCAD did not have a zoom-in feature, something
that is very helpful when the drawing becomes cluttered. It
is true that this is a standard feature that should be added.
And we will do so, along with other features discussed in
Section (IMPLEMENTATION). It is possible that this may
improve our timings further.



Figure 5. Test diagrams 1 and 2

PREVIOUS WORK
It can be said that sketch based interaction has come of age[1,
4]. A lot of work has been done for use of sketching in a
variety of areas, mathematical formulae, class diagrams, me-
chanical engineering systems and also general purpose draw-
ing programs[13].

Some of the early geometric design systems such as Pega-
sus[3] did use a “one stroke one segment” principle. Some
of the motivations in Pegasus are similar to ours, e.g. for
each recognized stroke Pegasus tried to suggest alternates.
However, we feel our system is much richer than Pegasus:
Pegasus doesnt appear to support arcs, nor does it support
as rich a set of constraints as ours. It also does not appear
to allow dimensioning. The idea of suggesting alternatives
has been explored by others too, for example Murugappan
et al [6]. Murugappan et al discuss an example in which an
arc is drawn connected to a line. Their system graphically
shows the possible relationships between the arc and the line
(mainly tangency or lack of it) and the user can choose. We
feel that such relationships can be more conveniently indi-
cated in DrawCAD at the time of drawing itself. And as a
fall back it can be indicated by nudging or by using markers.
There is also some concern that explicitly showing too many
alternatives might confuse the user[13].

The work closest to ours isParsketch[7]. Parsketch is also
a program for making engineering drawings using mouse-
sketches as input. Parsketch also attempts infer user intent by
considering constraints between geometric elements. Pars-
ketch also has a vocabulary of gestures (similar to Euclidean
geometry conventions) to explicitly specify constraints.How-
ever, it appears to us from the presentation in the paper that
the program is somewhat preliminary. For one thing, the
benchmark figures used are extremely simple, and even on
these, the authors’ comment is as follows[7]:

“The recognition rate for gesture recognition was 90 per-
cent. Rates for geometry recognition were very variable,
depending upon the complexity of the generated stroke
and the ability of the user creating the sketch.”

No direct comparison is given for the time required to draw
the same figure in Parsketch and in commercial softwares,
though a comparison of the number of strokes/clicks is given.
Also, it does not appear that Parsketch supports nudging or
caricatures.

We feel that the performance of DrawCAD is clearly su-
perior to that of Parsketch. We also feel that we under-
stand the reason behind this: our performance derives from
our premises about sketching and engineering drawing (Sec-
tion (PREMISES)).

Another relevant program is Quickdraw [9]. This is meant
more for casual sketching rather than engineering drawing.
For this reason perhaps they do not talk about providing di-
mensions. The authors are more agressive than us about infer-
ring constraints. For example, they attempt to infer the equal
lengths constraints which we do not for reasons discussed in
Section (Inference). And it appears that their error rates are
correspondingly higher. They test their system using a set of
9 diagrams, each consisting of 3-4 elements (arcs or lines).It
appears these were completed by their test participants in 90-
120 minutes. To us these times seem enormous! We expect
that their simple figures would be drawn much faster using
DrawCAD. In one figure, DrawCAD users would have to ex-
plicitly specify the equal length constraint; in all the other
figures only drawing will suffice.

We have compared DrawCAD with AutoCAD/CATIA, how-
ever it should be noted that this comparison is of course very
limited. DrawCAD lacks many features, e.g. more complex
curves, facilities such as cut and paste, transformations such
as reflection and so on. Also, AutoCAD/CATIA have exten-
sive special purpose support for a variety of domains from
mechanical engineering parts to circuits and even flow dia-
grams. DrawCAD is tiny. Our program, as well as our testing
is meant to only evaluate our ideas about how sketches can be
turned into accurate drawings.

CONCLUDING REMARKS
Our most important contribution, of course, is to show that
engineering drawings can be created much faster through



sketching than standard programs, and that sketching is much
easier to learn. Our claims are based on significant size
benchmarks diagrams, and we do head-to-head comparison
with standard programs.

We feel the success of our program derives from our premises
about the nature of engineering drawing and about the
precision possible while sketching (Section (PREMISES)).
Metaphorically it could be said that we model the mouse as
a noisy channel. We have proposed what signals this channel
can convey well (features such as co-incidence and tangency)
and what signals the channel cannot (the precise shape to be
drawn). Our drawing protocol tries to match the strengths
of the channel and the requirements of engineering drawing:
our advice to users is not to worry about the precise shape
but concentrate on other features and draw a caricature. Be-
cause of this, we can set our tolerances in a relaxed manner
and improve our recognition performance. As far as we can
tell, our notion of nudging is also new. Yes, dynamic geom-
etry programs all the way from Sutherland’s Sketchpad[12]
to Geometer’s Sketchpad[10] allow geometric elements to be
dragged around while the other elements adjust to maintain
the constraints. However, we believe we are the first to com-
bine this with a subsequent inference as happens in nudging.

We believe that our software architecture has room for rou-
tine and non-routine extensions. A simple example is that the
edit panel could offer choices of attributes such as color and
line type (whether the line is a construction line or dotted line
and so on). More ambitiously, in an ongoing project, we have
expanded the Edit panel to include a “spline” type element,
which if selected by the user would (re)interpret the currently
drawn stroke as a spline. Of course, we continue to rely on in-
ferring whether the new stroke is tangential to other elements
etc.

It is possible to think of DrawCAD as aparametric editor.
By this we mean that a drawing constructed using DrawCAD
consists of drawing elements, constraints between the ele-
ments, and element dimensions. It is possible to change the
dimensions, e.g. change the length of a certain line, and get
a new drawing with the given set of drawing elements satis-
fying the given constraints, but with the dimensions changed.
A fairly simple extension that will further these ideas is to
allow entering symbolic expressions when line lengths/radii
or angles are entered. Enteringx for one line length and2x
for another will effectively assert that the second line should
be twice as long as the first. We believe our constraint solver
will easily handle such input.

We can use DrawCAD for building interesting animations
too. We have discussed how we used nudging to make an
animation of a piston moving inside a cylinder and coupled
to a shaft. In general, the main idea in building animations
is to fix some elements, and relate other elements using con-
straints. A user can interact with such diagrams by nudging;
the constraint management system responds to produce the
animation as a byproduct.

ACKNOWLEDGMENTS
DrawCAD has evolved over time starting form the work
Vishal Khandelwal, Chintan Shah, Sunil Kumar, and Prateek
Sharma.

REFERENCES
1. Davis, R. Magic Paper: Sketch-Understanding Research.

Computer(Sept. 2007), 34–41.

2. Hicklin, J., Moler, C., and Webb, P. Java Matrix
Package. http://math.nist.gov/javanumerics/jama/. Last
accessed on: 12/4/2012.

3. Igarashi, T., Kawachiya, S., Tanaka, H., and Matsuoka,
S. Pegasus: A drawing system for rapid geometric
design. InProceedings of CHI 98(1998), 24–25.

4. Igarashi, T., and Zeleznik, B. Guest editors’
introduction: Sketch-based interaction.IEEE Computer
Graphics and Applications 27(2007), 26–27.

5. Mechanical Engineering, A Complete Online Guide for
Every Mechanical Engineer. CAD 3D Drawing 2.
http://www.mechanicalengineeringblog.com/tag/autocad-
drawing/. Last accessed on:
12/4/2012.

6. Murugappan, S., Sellamani, S., and Ramani, K. Towards
beautification of freehand sketches using suggestions. In
EUROGRAPHICS Workshop on Sketch-Based Interfaces
and Modelling(2009), 69–76.

7. Naya, F., Contero, M., Aleixos, N., and Company, P.
Parsketch: A Sketch-Based Interface for a 2D
Parametric Geometry Editor. InHuman-Computer
Interaction, Part II, HCI 2007, J. Jacko, Ed., vol. 4551
of Lecture Notes in Computer Science. Springer Verlag,
Berlin Heidelberg, 2007, 115–124.

8. NC state university. Autocad tutorial.
http://www.ncsu.edu/project/ graphicscourse/gc/
acadtut/ tutor2Anew.html. Last accessed on: 12/4/2012.

9. S. Cheema, S. Gulwani, J. L. J. QuickDraw: Improving
Drawing Experience for Geometric Diagrams. InCHI
2012(2012).

10. Scher, D. Lifting the curtain: the evolution of the
Geometer’s Sketchpad.Mathematics Educator 10, 1
(Winter 2000), 42–48.

11. SolveSpace. Parametric 2D-3D CAD.
http://solvespace.com/2d.pl. Last accessed on:
12/4/2012.

12. Sutherland, I. Sketchpad: A man-machine graphical
communication system. InAFIPS Sprint Joint Computer
Conference(1963), 329–346.

13. Zeleznik, R., Bragdon, A., Liu, C., and Forsberg, A.
Lineogrammer: creating diagrams by drawing. In
Proceedings of ACM UIST 08(2008), 161–170.


