DrawCAD: Mouse-sketch-based engineering drawing

Abhiram Ranade and Shripad Sarade
Department of Computer Science and Engineering
Indian Institute of Technology Bombay
ranade@cse.iitb.ac.in

ABSTRACT accepted that such sketching is not useful for making accu-
While there has been a lot of work on freehand drawing rate drawings, e.g. engineering drawings. Indeed, standar
programs, robust programs which are easy to learn are stillengineering drawing programs such as AutoCAD encourage
not available. We feel our program DrawCAD takes signif- the use of the WIMP (windows, icons, menus, pointer) ap-
icant steps in this direction. Two dimensional drawings are proach, i.e. basically ool is provided for every primitive
sketched by the user using the mouse; DrawCAD analyzesobject to be drawn, and the tool is invoked through a series of
the sketches and infers the intent of the user and producesnenus/icons/dialogue boxes. For example, we might want to
beautified drawings. DrawCAD also infers and maintains draw a circle that passes through a given point, is tandéatia
constraints between various elements of the drawing. Sup-agiven line, and has a certain radius. To draw this requires i
ported constraints include horizontality or verticalifflioes, voking the circle drawing tool, and somehow filling in the-dif
tangency between arcs and lines, parallelism/perperatioul ferent attributes, either explicitly through dialogue bexor
between lines, equality of angles or line segment lengths. through a sequence of menu choices and icon clicks. Select-
Some of these constraints are inferred as the user draws, anthg menus and items requires substantial mouse movement
some can be explicitly added using well known conventions and time. How to fill the dialogue boxes and which specific
of Euclidean Geometry (e.g. putting a wedge to indicate per- menus/icons to use presents a substantial learning curve.

pendicularity). The key idea in this is to treat the strokes DrawCAD explores a more natural approach to engineering
drawn by the user on one hand as actual drawing elementsdrawing. The user is asked tketchthe required drawing

but at the same time as gestures. We feel that this makes it" . .
easy for the user to declare his/her intent, and also easy forFusmg the mouse (or touchscreen etc.), and the program in-

. ; fers the user intent, and produces the required exact (much
DrawCAD to recognize the intent. more stringent than just “beautified”) drawing. So in the cir
User studies are presented in which some benchmark draw<le example mentioned above, the user would simply draw a
ings are created using DrawCAD as well as standard pro-freehand curve through the given point, and such that it ap-
grams. Some of our benchmarks are simple informal draw- pears tangential to the given line. At the end of drawing this
ings, and others are detailed engineering drawings with di- curve, the radius of the circle is typed in. If the recogmitio
mensions etc. Our general conclusion is that DrawCAD is process worked well (and doeswork well as you will see

very robust, easy to learn, and fast to use. shortly), you would have your circle. The benefits of this ap-
proach are two-fold: (a) the time to make the drawing can be
Author Keywords much less, and indeed, our experiments indicate that Draw-

CAD is upto 2-3 times faster than conventional drafting pro-
grams such as AutoCAD, and (b) the time required by the
user to learn DrawCAD is miniscule in comparison to stan-

sketching; engineering drawing; constraints

ACM Classification Keywords dard drafting programs.
H.5.2 Information interfaces and presentation: User inter _
faces. - Graphical user interfaces. Note that DrawCAD does not expect users to be artists and

draw accurate sketches. This would be completely unaccept-
INTRODUCTION able! Indeed, most of us artistically challenged people itind

Conventional wisdom has it that mouse drawn sketches areg?‘r?cfg gfr?k\:\;?i? \?vgerf ; g:jri:)entj.i;gt?] g i?r(czllle IS;zlsotTﬁo?Eﬁ gzﬁ
great for rough drawing, i.e. putting down ideas on papdr jus ._. ; ;
as you might doodle on backs of envelopes. There is work tain points etc. then the task becomes very daunting. The

2. : key insight in DrawCAD is to treat the stroke drawn usin
on beautifyingthese sketches, but it seems to be generally thg mom?se not as a precise geometric shape, butcasia g

cature of the actual shape. As we discuss later, while it is
difficult to draw shapes accurately using the mouse, we be-

Permission to make digital or hard copies of all or part of thiork for personal or lieve that most users can control the mouse well enough to

classroom use is granted without fee provided that copesar made or distributed

for profit or commercial advantage and that copies bear titis@and the full citation indicate features such as co-incidence, tangency, hdgkon

on the first page. Copyrights for components of this work aivbg others than ity and so on. Hence DrawCAD pays more attention to in-
ACM must be honored. Abstracting with credit is permittedo dopy otherwise, . . .

or republish, to post on servers or to redistribute to lisexjuires prior specific fer_””,g and managing such featur.es than to thel precise Shape
permission and/or a fee. Request permissions from pewnis@acm.org. This is not to say that the shape is completely ignored. Only
India HCI 2013 and APCHI2013, Bangalore, India. that feature cues, if present, are considered more imptortan

Copyright(© 2014 ACM 978-1-4503-2253-9.

W
L=
s,
E]
—

2 3 4 5 =} 7 2 9 10 11 12 132 14 15 14

_line (are Radius (1.0 Arc Angle 150,33

T LR
Tangent : 40, 71

Tangent : 4, 71

Arc Radius 1.0: 71

Figure 1. Screenshot of DrawCAD

Section (Constraints) gives the features/constrainteantly Our main contribution is in identifying the correct combina
recognized in DrawCAD. tion of ideas needed to make sketch-based drawing viable:
the notion of caricatures, managing constraints, and mgdgi
Our evaluation criteria for this are (a) time to make the draw
ing, (b) time to become familiar with the program. It is cus-

"tomary in the literature to also presestror analysis We
have not done so because our users make very few errors,
and they correct themselves quite easily. Also, our conisern
more with the overall performance.

Features/constraints are thus very important and intritasi
DrawCAD. DrawCAD provides another important mecha-
nism by which the user can indicate geometric constraints
which we callNudging In this, the mouse is used to drag a
point/line/arc in the drawing. The geometry/constrairgiae

of DrawCAD lets the element be dragged while simultane-
ously adapting the rest of the drawing so that all constsaint
inferred so far continue to be obeyed. The user stops drag-We evaluate DrawCAD using a benchmark set of drawings
ging at a convenient juncture: say when the dragged arc looks(Section (USER TRIALS)). We give a 30 minute introduc-
(within a certain preset tolerance) tangential to the negii tion to DrawCAD and then ask the users to make the draw-
line. On release, the constraint inference kicks in agaid, a ings. We report the time taken by users. Likewise we also ask
the arc is indeed declared to be tangential and the contstrainusers to make the drawings using their favourite programs,
is installed into DrawCAD. Nudging is very useful in many e.g. CATIA or AutoCAD. In this case we also report the ex-
cases, e.g. when two points need to be merged. We also impertise level of the users. We find that it takes 2 to 3 times
plement the conventions used in Euclidean geometry to in- longer to draw using these programs than using DrawCAD.
dicate parallelism (arrows on the relevant lines), or eiyual

of line segments or angles (similar tick marks on them), or
perpendicularity (wedge between the two lines). These sym-
bols: arrows, ticks and wedges are collectively referreaisto
markers in what follows.

It is also worth comparing DrawCAD to programs such as
Parsketch[7] and Quickdraw [9]. We discuss this later.

Outline

We begin by showing a small session using DrawCAD. Then
we discuss the philosophy and design of DrawCAD. Then we
Contributions describe the some of the drawings we have done using Draw-
Many of the ideas we have discussed above, except perhap€AD. Then we present our benchmark drawings and report
the notion of caricatures, are natural and obvious, and haveour user trials. After that we present the previous work & th
appeared in previous papers. area. We have deferred the discussion of the previous work

R1.0 6. Dra
9. Type - W
: \
A 0.8 1.0 120a

RO.8 T
5. Type
7. Type
4. Draw
8. Draw /
1. Draw/
60 / 5.0
5.
B C 2. Draw 3. Type
-~ 50 >
(a) Target figure (b) As sketched in DrawCAD

Figure 2. Using DrawCAD

so that it can be better compared with DrawCAD. Finally we will appear at your cursor position, and vanish when you hit
summarize and conclude. ENTER.

A SAMPLE SESSION Figure 2(b) pictorially gives the sequence of actions yaerthe
Figure 1 gives a screenshot of DrawCAD in action. As you to perform. Here is a brief textual explanation of each actio
can see, there are 3 main panels: the Drawing panel at thq praw a vertical looking line. This is meant to become line
top, the Edit panel below it, and the Constraints panel atthe ap.

bottom. Drawing is done in the Drawing panel, and the fig-

ure shows a drawing in progress. Information about the last2. Continue and draw a horizontal looking line. This is meant
drawn (or last selected) element appears in the Edit pamel. | to become BC.

the figure this is the panel in which some buttons and text
boxes are visible. These can be used to delete the element’
or change the element parameters. The constraints related
to the last drawn/selected element appear in the Congraint
panel. The figure shows the constraints related to the top ar&. Continue and draw a line at an incline. This is meant to
in the drawing, which was the selected element. The selected become line CD.

element is highlighted in a different colour in the Drawing) -

panel. By hovering the mouse on a constraint in the Con-5- Type “120a”. This specifies the angle made by the last
straints panel, a constraint can be highlighted, as shosm A drawnline, CD, with the positive axis.

result, the elements involved in the constraint get hidtitd g | this step we draw the arc DA. For this, draw a stroke
in the Drawing panel as shown. from D to A. It will be good if the stroke appears to be
We will use DrawCAD to draw the figure of Figure 2(a). tangential to CD, and also to AB. Other than this, nothing
Drawing is accomplished in DrawCAD using the left mouse IS heeded. As you can see, we have drawn it as an inverted
button. Move the mouse to the position you want to start 'V’ shape, with a sharp angle. It can even knots, i.e. it can
drawing. Press the left button and drag' a line appears on self intersect |:f you find that while dranng the stroke your
the screen. When you want to stop drawing, release the but- mMouse has drifted too far.

ton. This is what is meant when the directions below ask you ;. Type “1.0". This specifies the radius of the arc.

to “draw”. Typing in dimensions is easy: you merely type,
without worrying about where the cursor is. What you type 8. Draw the circle.

Type “5.0” followed by enter. This specifies the length of
the last drawn line, AB. Note that typing does not require
the mouse to be moved.

9. Type “0.8". This specifies the radius. touch screens. It may be noted that mice were invented orig-

10. Right click on the center of the circle, and drag it to the

inally not for drawing, but as a pointing device. If we wish
to merely draw a straight line segment connecting two ppints

center of the arc DA. it can usually be drawn fairly reliably. However, suppose we

The last step, step 10, is not shown in Figure 2. wish to draw an incircle of a triangle, then maneuvering the

Most likely, at this point you would have correctly drawn the

mouse is usually very difficult for most users.

figure. However, if you did not, you can easily correct your- In contrast, here is what we think can be done well by (not
self as you go along. Here are some of the possibilities. necessarily artistic) users using available (noisy) migée

1.

. You mistyped a number. All you need to do is click on

. If some constraint you did not want is falsely recognized,

)]]) believe that users can reliably start the drawing at thetpoin
You meant to draw a straight line, but it was recognized as they want to. Furthermore, the direction of the movement
an arc by DrawCAD. In this case you simply need to select can pe controlled reasonably well at the start. As the stroke
Fhe radio button labelled Linein the_Edlt panel. Vice versa progresses, however, the noisiness/lack of skill appedre-t
if your stroke was recognized as a line when you meant an come evident. As a result, the mouse drifts from the path the
arc. user might have wanted. However, if the user is assured that

. If the line you drew was not recognized as vertical (or hor- "€/She need notbe worried about the drifting, and may simply

izontal), drag an endpoint with the mouse right button, and try to bring back the mouse on course, we feel that most users

release when it becomes nearly vertical (or horizontal), ~ can €nd the stroke at the designated spot. Furthermore, usu-
ally it is possible to approach the designated ending spot in

. You forgot to make your arc tangential to a line, or you the appropriate direction. Another point is that the usetmi

tried but DrawCAD did not catch it. In this case you have wish to pass the stroke through a certain point. This also can
two choices: be managed by most users; again provided they are told not

))) to get flustered if the mouse seems to drift, but just bring it
ing the right mouse button. If you jiggle it around

enough, you will see that the arc and line do become . . N
The nature of engineering drawings:

Fhe;;rg/mtgtr? ggrr]ltlrzll esgsrzeg?:v:,% Agevl\ﬁﬁl?jit?g trﬂg,? tsheeatRough, |_nformal sketches drawn using a mouse ha\(e been
line and arc are nearly tangential, and so will assume SUPstantially explored. However, these are fundamerdéHy
that you want them tangential. So the constraint will ¢ ent from engineering drawings. Typically, in engineeri
be recognized ' d_rawmg3 all the dr_a_wmg elements will have specmc_dlm_en-
' sions, either specified explicitly for the element, or iredli
Markers: Draw a small arrowhead on the line, and an- py the dimensions of other elements. This implies that the
other one on the arc. This is how parallel lines are activity of assigning dimensions will be almost as frequent
indicated in Euclidean Geometry. In DrawCAD, this as sketching. Second, elements in engineering drawings are
can be used to indicate parallelism as well as tan- also often associated with interesting constraints. Famex
gency. If DrawCAD did not recognize your arrow- ple, a line may be horizontal, or be tangent to an arc and so
head, then you can correct it by selecting the appro- on. We would like DrawCAD to infer these constraints, dis-
priate radio button in the Edit panel. play them to the user, and get immediate confirmation about
the correctness of the inference.

the element and retype. If you realize your mistake before There is also a deeper point. In informal sketching shape
hitting enter, you can just use the backspace and correct, ofof the stroke drawn by the user has great importance. Most
course. drawing programs, e.g. [13] and even Parsketch[7] as far as
we can tell, will pay great attention to the general shape of
the stroke drawn, and try fiit the recognized element to the
stroke shape. Except for very simple strokes, say straight
lines, the fit is unlikely to be exact, because of the noignes

then place your mouse on that constraint in the Constraints
panel. Then press the delete key.

Our constraint recognition is fairly good, so by and large co inherent in the mouse. But in case of engineering drawings,
rective actions are not needed. an approximate fit is useless: if | intended an arc to have ra-

dius 50, it does not make a difference to me if it is recognized

PREMISES to have radius 51 or 100. This is because in both cases | must
We begin by stating our premises regarding what (typical) correct the radius somehow: correcting 51 to 50 is really no
users cannot and can be expected to sketch using the mousélifferent than correcting 100 to 50. But once we realize that
Then we consider how engineering drawing is different from inferring the shape is not too useful, we might as well tedl th
other kinds of informal sketching. user that and ask him/her to concentrate on other aspects suc

as co-incidence and tangency.

On precision sketching:

We have remarked earlier that sketching with reasonable ac-THE DESIGN OF DrawCAD

curacy may not be easy for most users, even using pencil andThe design of DrawCAD follows naturally from the above
paper. The situation is even more difficult with mice, or even discussion.

Before we go into it, we discuss some basic terms. The main
elements in a DrawCAD drawing almes, i.e. straight line
segmentsarcs, markers, points, andconstraints. Points

can be primary, by this we mean endpoints of lines and arcs.
Points can also be secondary, by this we mean centers of arcs
and midpoints of lines.

A stroke is the curve drawn on the screen using the mouse.
As mentioned earlier, we do this using the left mouse button:

to start drawing the left button is pressed, then the mouse is
moved as needed, and finally the left buttion is releaseddo en

the stroke.

One stroke = one element

In our prototype implementation we have chosen to interpret

every stroke drawn as a single drawing element. For example,

if we wish to draw a rectangle, we must raise the mouse after

finishing one side, and lower it again to begin the next side. Figure 3. Acceptable ways of drawing an incircle and a circumcircle
This is clearly inconvenient, and we indeed will remove the

restriction later. However, for now, treating one strokbeoa

single element allows us to experiment with some intergstin hover the mouse over each constraint, which causes the in-
ideas. volved elements to get highlighted in the Drawing panel. If

) o) . a certain constraint has been inferred incorrectly by Draw-
In Section (On precision sketching) we discussed why the cAD then the user can just type DELETE which will cause
stroke data we get should be considered somewhat unreliablethat constraint to be disabled (Section (Constraint retiypva
Butif stroke datais unreliable, itis bestto keep the stsike Needless to say, if a single stroke was segmented into severa
small, and also tell the user how the program interprets the elements, too many constraints might have to be shown in the

last stroke immediately after it is drawrBy asking the user Constraints panel. The clutter might confuse more than. help
to only draw one element per stroke, we are indirectly en-

couraging small strokes! Further, after the program imggp Caricature

the stroke, the interpretation is displayed in the Edit pahe There is also a deeper, somewhat subtle fallout of the single

vrcﬁ)éﬁ ?ﬁ:igg; 'Z'g#riem#tggi;gz;p?ﬁfézgstggdégg:gf leel;fgr‘]%alement rule. It allows us to provide a more convenient draw-
type if the progrm made a mistake in interpretation. Clearly ing protocol to the user.

this would be very clumsy if every stroke was deemed to con- We explain this with an example. Suppose the user wants to
sist of several elements: there would be too much informatio draw an incircle of a given triangle. As mentioned, this is a
to show in the panel. difficult undertaking for most users. What most users draw
The second reason comes from our characterization of engi-WIII invariably have several “corners’, with many straight
neering drawings. Most elements need to be dimensioned. lf_patches, and inevitably the curvature will change manysime

a stroke is deemed to be a single element, the user can immel" the stroke. Without the single element rule, our stroke in

diately give the dimensions for the element. We have already:ﬁ;paest:rr ivr\ll?eur:g:%V?nt?avgf;kc\i/recrgmhgirr?:ltg f'\?vlijtrhe t?]lét ;?r?t l\g Z?t
remarked how this is done: the length(radius) of lines{arcs ment rule. the pr is ver F .r n incircl t%

is typed immediately, and/or so is the inclination(angleme ~ €Me' ugt; ep olcessé? € y.ea%y. tho ta' cl: le' € use
sure). These changes can also be made in the Edit panel if théquthnsﬁgefrigy pucs)tsﬁsérgi]g(rae:;r?g'lhgr tr?arzla}gga?s. incl)'er-i eé;am-
user so chooses. If the stroke was deemed to consist of !severeﬁ is: easy for ourysjtroke classifier to see thatgthfs strokeg:*.o
elements, then the dimensions given by the user would have y

: . ._on itself and hence must be a circle, rather than a straight li
s(vjotiﬁ dr%aet%hu?tivx;tgstgf elements derived from the stroke. This Further, itis also easy for the classifier to see that thésti®

touching the sides of the triangle but never crosses any side
The third reason also comes from our characterization of en- Thus the stroke is immediately classified as an incircle.-Sim
gineering drawings. We remarked that each drawing elementilar remarks apply to drawing a circumcircle. In general, it
usually has some important features (e.g. a line could be ver is easy for our classifier to confidently infer propertiestsuc
tical) or is in some geometric relationship with other eletse as: (a) the given stroke touches a line but remains on one
(e.g. the line is tangential to a previously drawn arc). W fe side, which implies it is tangential, (b) a given stroke jg&ss

it is appropriate to show these features/relationshipsedim through a given vertex. Even a clumsy user can draw strokes
ately to the user and get them confirmed. This we do in the in this manner — note that the line drawn by the user may
Constraint panel. Occasionally the several constraimtsar veer off fromits course, but the user can bring it back withou
ferred for newly drawn element. In such cases, the user mayworrying about “how it looks” to the classifier. Basicallyeth
simplicity makes the task easier for the user as well as for ou
1Analogous to why short packets are preferred in noisy cHanne program. The reader might realize that our directions ip ste

6 of Section (A SAMPLE SESSION) were precisely because
of this protocaol.

The key idea here is that we are inviting the user to draara
icature of the element of interest, rather than worrying about
rendering it realistically. The caricature distorts theké to
emphasize the important feature (tangency in our casd), jus
as in a caricature or a cartoon. A caricature could be consid-
ered to be half way between a realistic drawing and a gesture

Constraints

DrawCAD supports a wide range of constraints, which in-
clude (we think!) the constraints needed most commonly.
In this section we discuss how these sections can be explic
itly added. Several of these constraints do not need to b
added explicitly, but will be inferred by the program, when
the stroke is drawn, or during nudging. We discuss inference
later.

1. Horizontality or verticality of lines: This can be usuyall
inferred at the time of drawing. However, there are many
ways to add it later. One possibility is nudging: one of the
endpoints of the line can be dragged to make the line more
vertical and horizontal. If the endpoint is then released,
the constraint will be inferred. Alternatively, immedibte
after drawing or after explicit selection the angle may be
supplied as “0a” or “90a” to indicate horizontality or verti
cality.

. Co-incidence: Whether an arc/line passes through pri-
mary/secondary points outside the arc/line. Some of this
will be inferred when the arc/line is first drawn. But other-
wise, nudging can be used to enforce this. The point which
is to be on the line must be dragged to the line and released

. Tangency: Whether an arc/line is tangential to other.arcs
This is also most conveniently inferred at the time the
arc/line is drawn. But if not, nudging can be used. Drag
the point of intersection between the first arc/line and the
other arc. There will be a dragging direction, for which you
will see the involved elements become tangential. This di-
rection will be fairly easily found.

Another way is to use markers: draw little arrows on the el-
ements you want tangential. Then DrawCAD will enforce
tangentiality.

. Whether two lines have equal length: At present, Draw-
CAD does not try to infer this. The user must indicate
equality by drawing a small tick (very small line segment)
on the two lines that are to be declared to have equal length.
This is also exactly like what high school students do in
Euclidean geometry diagrams.

. Whether two angles have equal measure: At present,
DrawCAD does not try to infer this. The user must indicate
equality by drawing a small tick (very small line segment)
in the angles, near the vertex. This is also like what stu-
dents do in Euclidean geometry diagrams.

. Whether two lines are parallel: At present, DrawCAD does
not try to infer this. The user must indicate parallelism by

7.

8.

drawing small arrows on the lines. This is also like what
students do in Euclidean geometry diagrams.

Whether two lines are perpendicular: At present, Draw-
CAD does try to infer this. Inference appears good, but
more experience is needed. To add explicitly, the user must
draw a wedge connecting the sides of the angle that is to be
made a right angle. This is also like what students do in
Euclidean geometry diagrams.

Merging two points: DrawCAD does not merge points by
default even if they come very close. If you want points
merged, you can use nudging, i.e. drag one to the other.

-

Whether two arcs are concentric: At present, DrawCAD
does not try to infer this. This must be done by nudging:
drag the center of one arc to the center of the other.

There is a simple way to remove unwanted constraints, as will
be discussed in Section (Constraint removal).

Note that dimensions of lines or arcs are also treated as con-
straints.

Inference

In principle, it is possible to infer all the above consttain
However, an inference can be incorrect. If an incorrect in-
ference is made, the user must take corrective action which
is an overhead. On the other hand, when a correct inference
is made, the user is spared the effort of indicating the con-
straint explicitly. Clearly, whether we should attemptrndeir

a certain constraint depends upon &), the probability of
false positives, (b)E,, the effort (required to add the con-
straint) saved by the user in case of a correct inference, (c)
'E,., the effort (for constraint removal) wasted by the user in
case we made a wrong inference. Clearly, we should be infer-
ing a constraint providel — Py,)E, > P, E,. From Sec-
tion (Constraints) we can see that the effort of adding or re-
moving constraints explicitly is comparable. But oftererih

is an irrational factor at play: people get annoyed if a wrong
inference is made. So we really only make inferences if we
can have very low false positive probability.

Our experience is that we can correctly infer horizontal-
ity/verticality, with extremely high probability (low fak pos-

itive as well as negative). So we do infer this. Our expemenc

is that horizontal and vertical lines are extremely common,
and making this inference saves us a considerable amount of
time while drawing.

It would seem that a user should be able to indicate fairly
unambiguously whether an arc passes through previously de-
fined points. The problem arises here when the drawing be-
comes very dense, i.e. there are many elements close togethe
on the screen. Remember that for each line we highlight its
endpoints as well as its midpoint, and for each arc its center
as well as its endpoints. We have found that it is somewhat
difficult for the user to navigate his/her way through the gnan
points on the screen. So we adopt a via media. We consider
the midpoints and arc centers to be secondary, and the other
points primary. If a primary point appears anywhere on the
stroke we report that as a constraint. However, we requate th

a secondary point must appear only as a stroke endpoint in
order to get reported as a constraint. If we want a secondary

point to be on a line, it must be nudged in, as discussed in
Section (Constraints).

As for tangency: our experience has been that tangency infer
ences have very low false positive rate (this of course dépen

upon the thresholds we set in the algorithm). So we have de-

cided to infer tangency. This seems to work well.

We have found that equal length constraints are somewhat

tricky to infer. In general there appear to be more false pos-
itives, somewhat independent of the threshold in our algo-

rithm, because users often do not pay attention to the length

when they draw. Second, in engineering drawing, most lines

need to be given a dimension. The cost of adding a dimension

is very little — so the saving from inferring the equal lergyth
constraints is somewhat small. Hence our current decision i
not to attempt to infer the equal length constraint. Thessitu
tion for equal angles is similar.

The rules for inference after nudging are similar to those de
scribed above.

Selecting elements

You can select a line/arc by clicking on it. Selecting an el-

ement causes data regarding the element to be shown in th
Edit panel. Also all constraints associated with the eleémen

are shown in the Constraints panel.

You can also edit the data shown: e.g. change the
length/radius or orientation/angle measure, either byntyp
the values in the Drawing panel (as you would after draw-
ing the element), or in the Edit panel. Also, you may disable
constraints by hovering over them and clicking DELETE.

Note that by default the last drawn element is considered to
be “selected”.

It is also possible to select points. In this case, the rdlate
constraints are shown in the Constraints panel.

Constraint removal

To remove a constraint, it must first get displayed in the Con-
straints panel. Constraints associated with an elemenligret
played in the Constraints panel automatically when the ele-
ment is first drawn. Alternatively, selecting an elemenbals
causes the associated constraints to be shown.

If the user moves the mouse over a constraint shown in the
Constraints panel, then the relevant elements get higkligh

in the drawing panel. To delete a constraint, simply press th
DELETE key when the mouse is over the constraint. This
marks the constraint as disabled and retains it in DrawCAD’s
database. The reason for retaining the constraint in aldidab
formis the following. Since the constraint was inferredenc
very likely it will be inferred again. However, the user hastj

© DrawCAD - IlI
Eile Edit Source

Clear | & Erase | ¥} undo | (™ i ‘Logs Lege... | Segmentati..

]
; '

B Kl

T

{ Move) 795, 514

Figure4. Test diagram 3

Svants the constraint anyway? He/she simply DELETEs it

again. This time it will be completely removed from Draw-
CAD. Now if it is inferred again it will get installed.

IMPLEMENTATION

We have implemented DrawCAD in Java. The idea was not
to build a full fledged drawing program, but build a test bed
for our ideas about how mouse based sketching can be used
for engineering drawings. As a result, our code does not have
several standard features such as copy/paste, or zooming in
and out, saving drawings in different formats. These will of
course be needed in a production version. In a production
vesion we will also allow several elements to be drawn in
a single stroke. We are optimistic that our program will be
able to tell the difference between a caricature (which t&no

a single element) and a stroke which truly denotes multiple
elements.

A note is in order regarding our constraint solver. We just us
a simple Newton-Raphson method. This requires SVD com-
putation which is done using [2]. It is suggested in the diter
ature that constraints be introduced gradually, e.g. if \aatw

to make two lines have equal length, then look at the current
ratio, and make it go to one in a series of steps. The rationale
for this is that Newton-Raphson is guaranteed to work well
only if the target solution is “close” to the starting poiur
experience has been that basic solver itself converges sati
factorily when constraints get added one at a time. It would
be nice if this experience can be backed by rigorous proof.

told us that the constraint should not be added. So keeping it ;R pRAWING EXPERIENCE

around in the disabled form will tell us not to add it again.
What if the user decides that he/she has made a mistake an

2There could of course be situations with more compellingiarg
ments: e.g. consistent symmetry. We will explore thesearfdture.

have exercised DrawCAD substantially and used it to

e
%gaw many kinds of simple and complex engineering draw-

ings, two of which we will discuss in detail later. We have
also tested DrawCAD on an example taken from [7]. Another

Diagram 1 A further interesting feature is that three of our users whe n
User id | Time taken| Program used Expertise level mally use other programs were able to quickly learn Draw-
1 364 sec CATIA 3years CAD, and they were able to draw the diagrams faster using
1 105 sec DrawCAD | 30 minutes training DrawCAD than their more familiar programs! We feel that
2 243 sec CATIA 5years this is indicative of the ease with which DrawCAD can be
2 102 sec DrawCAD | 30 minutes training learnt.
g 192805seic é‘f;\?v%i% 30 misu)fczgrtsraining A note is in order to explain the difference in the timeg taken
4 70 sec AUtoCAD Expert for DrawCAD and the _other programs. The first major ad-
5 34 sec DrawCAD 1 year (developer) vantage .of DrawCAD is |n.drawmg arcs. Arcs need to be
_ drawn with various properties such as tangency, or that they
_ Diagram 2 , pass through a point or have a certain radius. The test dia-
Userid | Time taken| Program used Expertise level grams as well as the Figure 2 have many examples of this.
1 363 sec CATIA 3years Drawing these arcs is easy in DrawCAD, you merely draw,
1 225sec | DrawCAD | 30 minutes training o petter, just caricature them! In standard programsgsele
2 326 sec CATIA oyears ing the specific properties requires work and also expegienc
2 291sec | DrawCAD | 30 minutestraining The second advantage concetmimming In standard tools,
3 300sec | AutoCAD 4years often you must draw a complete circle (or even line) and then
3 218sec | DrawCAD | 30 minutestraining remove unwanted portions from it. In DrawCAD it suffices
S 100sec | DrawCAD | 1year (developer) tg just draw what you actually want. Another important ad-

Table 1. Data from user trials vantage of DrawCAD is in indicating constraints: we feektha
the combination of standard Euclidean geometry markers and
) _)) nudging works nicely. A simple but important example for
interesting example we tried out was a regular 5 pointed star constraints is recognizing verticality and horizontalitiis

(often called a pentagram). There are of course various waysyorks near perfectly in DrawCAD. It is instructive to com-
in which this can be drawn. We choose one which shows off pare this to an AutoCAD feature Ca”mthO, which makes

the use of DrawCAD'’s constraint solver. We draw the star as it easier to draw horizontal/vertical lines. This featurasn

a sequence of 5 lines, and then put a circumcircle around it. pe invoked explicitly and disabled explicitly when we wamt t
Then we put an incircle for the inner pentagon. Finally, we go back to drawing slanting lines. These mode changes, e.g.
merge the centers of the two circles. If the incircle and cir- ghjfting from different lines to arcs and within arcs to diff
cumcircle have the same center, then it can be easily shownent kinds of arcs and within lines to different kinds of lines
that the star is regular. Another interesting example weehav gjows down drawing in our opinion. And of course, how to
tried out is an animation of a piston-cylinder system. F@& th mgke the mode changes and what modes exist needs to be

we place the midpoints of the horizontal sides of a fixed size |earned. We believe that in all these cases DrawCAD is sim-
I‘eCtangle (“the piSton”) on a fixed vertical Iine, which con- p|er and more natural to use and learn.

strains the piston to move only along the line if nudged. Next)))

a circle is drawn below the piston but centered on the sameWe examined in depth the techniques used by User 4 whose
vertical line. Then, a line (“crankshaft”) connects thetbot ~ timings came closest to the best DrawCAD timings. The fol-
center of the piston to a point on the circle. Finally, we fig th 10wWing important point was revealed. The “polygon drawing

length of the crankshaft. Now nudging the piston will cause tool” was used to draw the hexagonal slot in Diagram 1. This
the figure to be animated as in a piston_cy"nder system. is a dedicated tool in AutoCAD. Doubtless similar tools ex-

_) ist in other programs. However, it is to be noted that our
Figure 4 shows the most complex diagram so far we have other users did not make use of such tools, indicating that
drawn using DrawCAD. We took this from [5] This took Us they either did not learn about the tool, or had forgotten its

182 seconds. use. Clearly, specialized tools require a learning curve. |
contrast, users who have barely seen DrawCAD can quickly
USER TRIALS acheive decent drawing times. Thus we feel that our general

purpose features are as good as specialized features of stan
“dard programs, in addition to being more intuitive and aasie
to learn.

We conducted user trials on 2 diagrams, shown in Figure 5
These diagrams were adapted from [11] and [8]

Table 1 gives the results of the trials. The AutoCAD program
was version 2007, and CATIA was version V5R15. Our users
1,2,3 (identified in the table by the column “User id”) were
students who have been trained in the programs mentione
and have been using these for the period mentioned for their
academic work. User 4 is a CAD professional.

Finally, we will also mention some anecdotal feedback we
received from these users. By and large, the users were very
appy with DrawCAD. There was some discomfort, however,
hat DrawCAD did not have a zoom-in feature, something
that is very helpful when the drawing becomes cluttered. It
is true that this is a standard feature that should be added.

A number of points are to be noted. The most important is And we will do so, along with other features discussed in
that for both diagrams, DrawCAD took the least time. The Section (IMPLEMENTATION). It is possible that this may
best DrawCAD time beat the nearest competing time by fac- improve our timings further.

tors of 2 and 3 on diagrams 1 and 2 respectively.

4.0

Figure5. Test diagrams 1 and 2

PREVIOUS WORK No direct comparison is given for the time required to draw
It can be said that sketch based interaction has come of age[1the same figure in Parsketch and in commercial softwares,
4]. A lot of work has been done for use of sketching in a though a comparison of the number of strokes/clicks is given
variety of areas, mathematical formulae, class diagrares, m Also, it does not appear that Parsketch supports nudging or
chanical engineering systems and also general purpose drawcaricatures.

ing programs{13]. We feel that the performance of DrawCAD is clearly su-

Some of the early geometric design systems such as Pegaperior to that of Parsketch. We also feel that we under-
sus[3] did use a “one stroke one segment” principle. Some stand the reason behind this: our performance derives from
of the motivations in Pegasus are similar to ours, e.g. for our premises about sketching and engineering drawing (Sec-
each recognized stroke Pegasus tried to suggest alternatesion (PREMISES)).
However, we feel our system is much richer than P.egaSUS:Another relevant program is Quickdraw [9]. This is meant
Pegasus doesnt appear to support arcs, nor does it suppoft . ; ; .
as rich a set of constraints as ours. It also does not aploeair:nore for casual sketching rather than engineering drawing.
. S : : : . or this reason perhaps they do not talk about providing di-
to allow dimensioning. The idea of suggesting alternatives mensions. The :futhorg are rr){ore agressive than Es aboutginfer
2? zl tEg]e n,\/?lj(fdggep% ;)r)]/ gttgle:jsistggs’sf%rne;?ﬁ;?e'\i/rl]u\:\lljr%gﬁ F?;:]nring constraints. For example, they attempt to infer theaéqu
S . . ; lengths constraints which we do not for reasons discussed in
zazﬁsgaae%noggig?: ?é?;i(t)% :h!g]: be-[vcggns%/hsée;?c%r?g%%a“% Section (Inference). And it appears that their error rates a
(mainly tangency or lack of it) and the user can choose. We godr_respondlnglyhmgher__ ;I_'hey ft%SZthlelr Systtezn usmglqr"f:e; 0
: : . - iagrams, each consisting of 3-4 elements (arcs or lifies).
feel that such relationships can be more conveniently indi- appegrs these were complgted by their test participan@-in 9

?;}%igll |[t) Lilvr\:(l:aé?ng}crédml?; n%fd%riﬁglgrgbl;/sslsfi. n?&irﬁaﬁs 120 minutes. To us these times seem enormous! We expect
" that their simple figures would be drawn much faster using

There is also some concern that explicitly showing too many py . ~Ap I one figure, DrawCAD users would have to ex-
alternatives might confuse the user[13]. plicitly specify the equa,l length constraint; in all the eth
The work closest to ours iBarsketcfi7]. Parsketch is also figures only drawing will suffice.

a program fpr making engineering drawings using mouse- We have compared DrawCAD with AutoCAD/CATIA, how-
sketches as input. Parsketch also attempts infer uset toyen ever it should be noted that this comparison is of codrse very

Eg?csr:daelgg(%\ gsgs\%ac'gg’ug?tvﬁenegti?énse(tsnifnﬁ;q]oegfai ('; :;SIimited. DrawCAD lacks many features, e.g. more complex
yorg curves, facilities such as cut and paste, transformatiocis s

geometry conventions) to explicitly specify constraimisw- . i
ever, it appears to us from the presentation in the paper thattS reflection and so on. Also, AutoCAD/CATIA have exten

the program is somewhat preliminary. For one thing, the SE SPEcial purpose support for a variety of domains from
benchmark figures used are extremely simple, and ev,en Onmechamcal engineering parts to circuits and even flow ‘.j'a'
these, the authors’ comment is as follows[7]; ' grams. DrawCAD is tiny. Our program, as well as our testing

' ' is meant to only evaluate our ideas about how sketches can be

turned into accurate drawings.

“The recognition rate for gesture recognition was 90 per-

cent. Rates for geometry recognition were very variable, CONCLUDING REMARKS

depending upon the complexity of the generated stroke Our most important contribution, of course, is to show that
and the ability of the user creating the sketch.” engineering drawings can be created much faster through

sketching than standard programs, and that sketching if muc ACKNOWLEDGMENTS

easier to learn.

Our claims are based on significant sizeDrawCAD has evolved over time starting form the work

benchmarks diagrams, and we do head-to-head comparisovishal Khandelwal, Chintan Shah, Sunil Kumar, and Prateek

with standard programs.

We feel the success of our program derives from our premises
about the nature of engineering drawing and about the
precision possible while sketching (Section (PREMISES)).

Metaphorically it could be said that we model the mouse as

a noisy channel. We have proposed what signals this channel 2.

can convey well (features such as co-incidence and tanyency
and what signals the channel cannot (the precise shape to be
drawn). Our drawing protocol tries to match the strengths
of the channel and the requirements of engineering drawing:
our advice to users is not to worry about the precise shape
but concentrate on other features and draw a caricature. Be-

cause of this, we can set our tolerances in a relaxed manner 4.

and improve our recognition performance. As far as we can
tell, our notion of nudging is also new. Yes, dynamic geom-

etry programs all the way from Sutherland’s Sketchpad[12]

to Geometer’s Sketchpad[10] allow geometric elements to be
dragged around while the other elements adjust to maintain
the constraints. However, we believe we are the first to com-
bine this with a subsequent inference as happens in nudging.

We believe that our software architecture has room for rou-
tine and non-routine extensions. A simple example is tret th
edit panel could offer choices of attributes such as coldr an
line type (whether the line is a construction line or dotied |
and so on). More ambitiously, in an ongoing project, we have
expanded the Edit panel to include a “spline” type element,
which if selected by the user would (re)interpret the cuttyen
drawn stroke as a spline. Of course, we continue to rely onin-
ferring whether the new stroke is tangential to other eleémen
etc.

It is possible to think of DrawCAD as parametric editor

By this we mean that a drawing constructed using DrawCAD 8.

consists of drawing elements, constraints between the ele-
ments, and element dimensions. It is possible to change the
dimensions, e.g. change the length of a certain line, and get
a new drawing with the given set of drawing elements satis-
fying the given constraints, but with the dimensions change

A fairly simple extension that will further these ideas is to

allow entering symbolic expressions when line lengthsirad 10.

or angles are entered. Enterimgor one line length an@z

for another will effectively assert that the second linewdtdo

be twice as long as the first. We believe our constraint solver
will easily handle such input.

We can use DrawCAD for building interesting animations
too. We have discussed how we used nudging to make an
animation of a piston moving inside a cylinder and coupled
to a shaft. In general, the main idea in building animations
is to fix some elements, and relate other elements using con-

straints. A user can interact with such diagrams by nudging; 13.

the constraint management system responds to produce the
animation as a byproduct.

11.

Sharma.

REFERENCES
1. Davis, R. Magic Paper: Sketch-Understanding Research.

Computer(Sept. 2007), 34—41.

Hicklin, J., Moler, C., and Webb, P. Java Matrix
Package. http://math.nist.gov/javanumerics/jamat Las
accessed on: 12/4/2012.

3. lgarashi, T., Kawachiya, S., Tanaka, H., and Matsuoka,

S. Pegasus: A drawing system for rapid geometric
design. InProceedings of CHI 981998), 24-25.

Igarashi, T., and Zeleznik, B. Guest editors’
introduction: Sketch-based interactidBEE Computer
Graphics and Applications 2{2007), 26-27.

. Mechanical Engineering, A Complete Online Guide for

Every Mechanical Engineer. CAD 3D Drawing 2.
http://www.mechanicalengineeringblog.com/tag/autisca
drawing/. Last accessed on:

12/4/2012.

. Murugappan, S., Sellamani, S., and Ramani, K. Towards

beautification of freehand sketches using suggestions. In
EUROGRAPHICS Workshop on Sketch-Based Interfaces
and Modelling(2009), 69—-76.

. Naya, F., Contero, M., Aleixos, N., and Company, P.

Parsketch: A Sketch-Based Interface for a 2D
Parametric Geometry Editor. Human-Computer
Interaction, Part II, HCI 2007J. Jacko, Ed., vol. 4551
of Lecture Notes in Computer Scien&pringer Verlag,
Berlin Heidelberg, 2007, 115-124.

NC state university. Autocad tutorial.
http://www.ncsu.edu/project/ graphicscourse/gc/
acadtut/ tutor2Anew.html. Last accessed on: 12/4/2012.

9. S. Cheema, S. Gulwani, J. L. J. QuickDraw: Improving

Drawing Experience for Geometric Diagrams GHll
2012(2012).

Scher, D. Lifting the curtain: the evolution of the
Geometer’s SketchpaMathematics Educator 1Q
(Winter 2000), 42-48.

SolveSpace. Parametric 2D-3D CAD.
http://solvespace.com/2d.pl. Last accessed on:
12/4/2012.

2. Sutherland, I. Sketchpad: A man-machine graphical

communication system. IAFIPS Sprint Joint Computer
Conferenc€1963), 329—-346.

Zeleznik, R., Bragdon, A., Liu, C., and Forsberg, A.
Lineogrammer: creating diagrams by drawing. In
Proceedings of ACM UIST Q2008), 161-170.

