Report on the design of the introductory
programming course

Abhiram Ranade, Venkatesh Chopella, Shrawan Kumar
ACM India

May 18, 2021

Education consists of knowledge, skill, and a confident, enthusiastic,
contemplative disposition, as per the recently released draft of the ACM
IEEE Computing Curricula 2020 (www.cc2020.net). While Indian Educa-
tion has generally done well on knowledge, it is often considered lacking on
skill /application of knowledge. Furthermore, there is also concern regarding
disposition/outlook. CC2020 suggests that cultivating a proper outlook can-
not be left as matter of pedagogical style/choice, but it must done explicitly.

In this document we present a design for an introductory programming
course which pays more attention to the skill and disposition aspects. We pro-
pose a syllabus together with pedagogical and assessment strategies. Courses
(nearly) based on our design have been conducted in some universities and
on NPTEL. So there is a fair amount of experience and resource created
from that. ACM India will be glad to assist other universities desirous of
implementing our material.

The rest of this note implicitly refers to 3 resources.

1. An NPTEL course, An Introduction to Programming through C++.
https://nptel.ac.in/courses/106/101/106101208/

2. An NPTEL course for teachers, Design and Pedagogy of the Introduc-

tory Programming Course. https://nptel.ac.in/courses/106/101/106101182/

3. A textbook, An Introduction to Programming through C++, McGraw
Hill Education.



In some sense, this document is an executive summary of the material pre-
sented in the above courses and book. There is also some new material,
especially when it concerns exercises/assessment.

We have tried somewhat to structure this document using the competency
framework suggested in the CC 2020 report mentioned above. We have al-
ready mentioned three components of a competency: knowledge, skill, and
disposition. An additional component is the Task, which refers to the pur-
pose served by the learning. The task is the function or the job that the
graduate will be capable of after the learning is over. CC 2020 envisages
competencies to be used to discuss the entire course as well as the individ-
ual topics, sometimes called knowledge units. In Section 1 we discuss the
framework in more detail and also remark on how to apply it in the Indian
context.

In Section 2 we discuss the Task in introductory programming. This is
often implicit in common curriculum designs. But as we will see, making
a distinction between ends and means is crucial. In Section 3 we discuss
the knowledge component, followed by Section 4 about skill and Section 5
about disposition. In Section 6 we focus on assessment. In Section 7 we
discuss some scaffolding: a library we use as a learning aid. We believe
that scaffolding can go a long way towards speeding up learning, connecting
students to interesting problems, and also improving disposition. In Section 9
we propose some ideas on how to take this forward.

1 Competencies and Indian education

As remarked above, the first component of the competency framework is the
Task: a clear statement of the purpose of the learning. The task is the end,
while the components knowledge and skill are the means. Disposition is an
overall mental attitude that ensures care and attention in performing the
task.

Knowledge refers to the information, ideas needed for accomplishing the
task. Skill refers to the ability and practice of using the ideas. In the con-
text of motor skills, the distinction between knowledge and skill is very clear
— there is a difference between knowing the theory of swimming and actu-
ally getting into water and floating. Something happens when you get into
the water that cannot be conveyed through lectures: something new is en-
countered and needs to be encountered for the learning to be complete. In



the cognitive domain skill is again the application of knowledge. Even in
the cognitive domain the application of knowledge unearths something not
experienced while the knowledge was being conveyed.

The four components are mutually reinforcing. If the Task is unclear,
then the learning process can become a barren chore. “Why am I learning
this, why should I care?” are questions that sometimes do not get answered
satisfactorily (at least at the level of individual topics) and do frustrate the
learner. Knowledge is necessary in order to apply it to develop skill; but the
process of application reinforces knowledge.

I hear, I forget. I see, I remember. I do, I understand.
— Confucius

Skill creates confidence and energy — important aspects of desired dispo-
sition. Only repeated practice can create intuition, another desired aspect.
And finally it should be noted that good disposition will invariably help in
learning. The education system needs to exploit this synergy.

We feel that overall, the Indian education system is strongest in con-
veying knowledge to students, but deficient in the other three components.
From time to time students struggle through topics not knowing the pur-
pose, studying only because of the examinations. This could be because the
teacher himself is unclear and uses the “you will understand it and thank me
later” justification. The lack of skill development, or the prevalence of “rote
learning” has been remarked quite a bit in many fora. Overall, we do see
students who come out frustrated as much as well disposed.

So the overall message is clear. First, be very clear about the task. Sec-
ond, find ways to ensure skill development. Third, ensure good disposition.
For the second, we need to find ways whereby students get over the phobia of
applying knowledge in unseen situations. For the third part: there is a sim-
ple prescription: make efforts to get the student to like the material, fall in
love with the material. This involves careful thought in exposing the power
and elegance of what is taught, and getting the student to experience these
through problem sets and lab work.

Finally, it must be mentioned that the reform needs to be handled at
the level of designing courses. The course designers must carefully plan for
each of the components of competencies, and the teachers carry out the plan,
albeit with some improvization.



2 The Task

We believe that the task in the introductory programming course is the
following.

Write programs to perform computations that the student can do
manually.

Notice the task is not “Learn language X” — that is a part of the means
and will come later. This distinction is important, because often the intro-
ductory programming courses focus too strongly on the language rather than
competency in the general programming ideas.

The phrase “computations that the student can do manually” needs some
interpretation and elaboration.

1. First, the phrase certainly includes writing programs to perform com-
putational processes that have been already taught in high school or
junior college, e.g. arithmetic operations on polynomials, matrices,
(arithmetic on numbers with arbitrary number of digits is also inter-
esting). Often students know processes such as finding roots, finding
integrals. It is also expected that the student will be able to write
programs involving computational processes that may not have been
taught, but are implied by what is taught.

2. The second class of important programs that the student can be ex-
pected to learn to write are those that model the evolution of a simple
system. Here are some examples.

(a) Library management, bank account management.

(b) Simulation of mechanical systems, orbiting planets, circuits.
)
)

(c
(d) Games.

Simulation of computer execution, train systems.

These systems can be extremely complex; what is envisaged here are
systems that non specialized teachers can teach to students in a manner
that the students find the mechanisms “common sense”. For example,
students are taught the laws of Gravitation and motion. Beyond this
what is needed is the notion that the velocities or accelerations in a
system can be considered to be changing discretely after small time

4



steps. This principle is the basis of calculus, and is as such familiar
to the student. The notions such as two trains cannot be on the same
track at the same time unless they are separated by a specific distance
(or typically a signal) are also common sense and are attractive to the
students’ imagination. Games are of course fun and educative.

3. There is an additional important theme. Many of the above applica-
tions require somewhat complex input and output. This could be done
textually; but in this era, graphical input and output is also interesting.
While standard graphical input and output libraries are cumbersome,
it is worthwhile to develop a simple library and have the students use
that.

Finally, we believe that the introductory programming course should be
concerned with correctness and efficiency, but in a minimal manner. The
student should be able to argue that the program written by her is correct
to the extent that it mimics a certain manual algorithm (whose correctness
could be considered obvious). This ability to reason about programs needs
to be cultivated. It will be immediately useful to the student in debugging,
which is an important skill. Also, the programs should not perform more
computation than what natural manual algorithms would. Specifically, while
some understanding of correctness and efficiency is expected, sophisticated
proofs of correctness or efficiency are beyond the scope.

3 Knowledge

“Knowledge” at the level of the course, corresponds to the bullet list of
topics that is often called the “syllabus”. These are the topics about which
the student needs to be informed. There also are skills associated with the
topics, but we discuss them later.

The topics which we consider important are as follows.

1. Basic data types, variables, assignment statements.
2. Conditional execution.
3. Loops. Issues of termination.

4. Basics of program design for a problem involving a loop. Notion of
loop invariants and process of debugging.



5. Elementary algorithms for root finding, evaluating math expressions.

6. Functions including recursion. Functional expressions (lambda expres-
sions).

7. Arrays. Uses such as storing sequences, sets, character strings. Sorting
including merge sort.

8. Structures/classes

9. Introduction to Memory management (for C++) using the operators
new and delete, and issues in automating this using constructors etc.

10. Introduction to standard library classes with good practice for string
and vector.

11. Organizing programs by partitioning into functions and classes.

12. Basic understanding of paradigmatic ideas such as a finite state system
that evolves as per a set of rules. This should happen through examples
accessible to students, e.g. bank accounts, games, elementary physics
simulation, simulation of the working of a simplified computer.

13. Basic notions of user interaction: the idea of interpreting commands
and executing them. The commands could also be given graphically —
this requires understanding some elementary graphical system. See the
discussion on Scaffolding, Section 7.

We should mention here that all the topics above are meant to be at Bloom
level apply and above (except where we say introduction). This aspect will
be discussed in the section on skills. Notice that the depth of understanding
is also implied by what we specified as the Task.

In principle, almost any programming language is acceptable. However,
there are some advantages to choosing a mainstream language. First the
(sane subsets of) mainstream languages are often conceptually simpler, e.g.
they rely less on recursion. Second, many of the important ideas from the
theoretically sophisticated languages such as higher order functions, lambda
expressions, object orientation, have been substantially taken up by main-
stream languages.



4 Skill

The key question in skill development is: What practice problem should we
give after each concept is taught? We have already said that the practice
problems need something not directly discussed in the class. We believe that
the notion of problem families provides just the right amount of novelty to
build up the confidence of the students.

A problem family is a set of problems which can be solved using somewhat
similar programs. It should be large so that the teacher can do a few in class,
leave many as drill, and yet have many for use in examinations. Math is
full of problem families, e.g. after learning about integration the teacher can
create hundreds of integration problems. Design problems in engineering (e.g.
design an amplifier for the following design parameters) are often natural
problem families.

As much as possible, drill problems should have a real world connection.
This often makes them attractive to students, and thus helps in cultivating
disposition. This of course changes when students mature — mature students
can see the real life connections themselves, and may often appreciate crisp,
abstracted problem statements.

We give examples of problem family based drills for 4 important topics
in the introductory programming course.

4.1 Drill for conditional execution

Some may say that conditional execution is too easy and any explicit drill is
not needed. However, drill problems will help the weak students. Also, since
our family is somewhat interesting, it might amuse the other students too.
Our family is:

Write a program to play a guessing game. The user selects an
object from a taxonomy specified as a part of the problem. The
program must ask a series of questions such as “Is your chosen
animal a mammal?” and eventually guess the selected object.

This is an exercise in nesting if statements. It can be made more interest-
ing by demanding that the program ask a minimum number of questions.
Further, the teacher can create taxonomies very easily (e.g. a taxonomy of
vehicles, or food items).

The exercise can neatly lead into standard binary search.

7



4.2 Drill for iteration

The main concepts to be understood in iteration are (a) maintaining state
between iterations and the notion of invariants, (b) ensuring termination, (c)
nesting loops, (d) the use of control variables in not just counting iterations
but affecting what goes on in each iteration. Our first drill family is:

Write a program that evaluates the sum of a given series to n
terms or till some error bound is met (e.g. 1+1/114+1/2!4-...) The
key point is that the ith term of the series should not be calculated
from scratch but using the i — 1th term calculated earlier.

It should be clear that calculating the ith term (1/4!) from the ¢ — 1th (1/(i —
1)!) is typically done very economically (division by i for the example series).
But this improved efficiency comes at the cost of having to manage the state
from one iteration to next. This can be more or less complex depending
upon the series. It should be noted that there are a huge number of natural
series summing problems, based on Taylor series or other recurrence based
calculations such as those in probability theory. Note that the significance
of the series need not be explained. Also other infinitary expressions such as
continued fractions or nested square roots could also be used.

Another family of drill problems comes from drawing parameterized itera-
tive pictures. This requires a picture drawing library, which is useful in many
ways (Section 7). Some of figures to be drawn are shown in Figure 1(left).
Each figure is specified using a parameter, e.g. the number of steps in the
the staircase in each arm of the top left figure. The parameter has to be
related to the loop count and also possibly to turning angles etc. Making
such relationships is an important programming skill, in addition to the skill
of nesting loops appropriately.

4.3 Drill for recursion

Recursion is considered a difficult topic in programming. It is indeed difficult,
if you expect students to design interesting recursive algorithms. Structural
recursion is easier, and far more important for many practitioners. So we
propose drawing recursive pictures as a drill problem for recursion. Fig-
ure 1(right) gives a number of figures having recursive structure. The re-
cursive structure is visually obvious. Furthermore, the student gets direct
visual feedback as the drawing unfolds — in the order in which the recursive



calls execute. So it is felt that drill with such figures will go a long way in
cementing the execution mechanics of recursion in the minds of the students.

4.4 Drill for arrays

We propose the implementation of board games as a drill for arrays. As
an example, consider the common board game of snakes and ladders. The
simplest implementation involves using an array in which the ith element
indicates the action needed if a player lands in square . Each player’s position
is simply an array index. Array indices change by throws of the dice, and at
each step it is necessary to index into the board array to determine what to
do. It is not too hard for the teacher to invent board games — and each can
become a drill problem.

Note however, that if we allow the actions in each square to be interpreted
in a very general manner, then we can actually encode machine language
programming as a board game! For example, the rule for square ¢ could be
something like:

1. Let p, q,r denote the numbers in squares ¢ + 1,7 + 2,4 + 3.

2. Add the numbers in squares p, ¢ of the board, and store the result in
square r of the board.

3. Then move to square ¢ + 4.

We believe that this drill adequately tests the ability to perform array oper-
ations. It also fires up the imagination of the students.

4.5 Reasoning about programs, testing and debugging

Bugs are a fact of life in programming: programmers will make mistakes and
as a result programs will typically not run correctly on the first attempt.
How to recover from this is an important skill.

This skill can be cultivated through some explicit instruction and subse-
quent practice. First, the student be able to identify important test cases
(e.g. random, “corner”). Second, the student must develop some facility in
figuring out what values the different variables will have at different points
in execution. This could be expressed as: if the input is x then variable y
will have value z, either symbolically in terms of x, or for a specific value of



00/00|[og@oo
Ol o)L gl o
00 00
N 0
0000
Ol O
00
0

il Hd b

T TH E
il
Tl T

i

Figure 1: Drills for iteration and recursion

10




x. Third, the student must be expliciltly told to put print statements in the
program and check whether the values of variables are as expected.

If a simple debugger and interactive development environment (IDE) are
available they could be used. Stepping through a program can give a feeling
of “looking inside the computer”.

The ability to write and understand invariants — crisp statements about
values taken by variables at different points in the program — is valuable in
a different way. Students can first be given the invariants and then asked
to develop code that implements the invariant. This is useful for developing
familiarity with invariants as well as as a way to give hints about how to
develop a program.

5 Disposition

CC 2020 expects graduates to have an enthusiastic, confident, thoughtful
disposition towards their subject. We feel this translates to saying, for prac-
tical purpose, “Students should like whatever it is that they are learning!”
Someone who is taking up a subject as a profession had better like it; liking
it will also help in learning.

Liking anything of course has an irrational subjective component. But
we can help along by highlighting and showcasing the power as well as the
elegance of our subject. This is easier said than done; in the daily grind of
teaching there is a certain urgency to “cover material”. Furthermore, it is not
easy to crisply articulate the elegance and the power. Simple articulation is
usually not enough; it must be backed by demonstrations and opportunities
for the student to experience the ideas herself. This can be done by creating
exercises that enable the student to explore the stated elegant/powerful ideas.
This part is greatly facilitated by using graphics as scaffolding (Sections 4.2,
4.3, 7).

It should also be noted that the first lecture is crucial for inducing love at
first sight. It needs to begin with a topic which shows of the power and the
elegance. A demo of what exciting programs can be written can also be very
useful. The course mentioned at the beginning of this document provides
some suggestions.

Examples play an extremely important role in showing off elegant /powerful
ideas. For example, a very short recursive procedure is enough to draw a very
complex, realistic looking tree on the screen. Such demonstrations have to

11



happen at different levels: first at the level of introducing the course. Then
at the level of teaching each topic. Indeed CC 2020 envisages the education
at each level to involve a clear statement of the task, imparting of the rele-
vant knowledge, development of skill, and creating a warm disposition in the
student.

One important idea in this is to introduce every new idea by a so called
killer application — an application which cannot be implemented (well) using
the ideas the student knows so far, and hence the new idea is essential. If a
new idea is a variation on an idea learnt earlier, then the incremental benefits,
which might be apparent only in certain settings, should then be discussed,
e.g. multiple statements for looping.

Do note that cultivation of disposition also happens through the assign-
ments given to the student. Students will get excited if you give assignments
that have real application rather than synthetic assignments. Students will
get excited if the assignments are fun. Note however that students appreciate
difficult assignments too — if they see that the end goal is worthwhile.

6 Assessment

We believe that the assessment in introductory programming should focus
on writing programs. The best way today is to have an online programming
test, where sample inputs and outputs are given, and the program is tested on
hidden inputs. This requires some initial investment in getting the student
to become familiar with the set up of submitting programs, having them
compiled and run automatically. But it is worth the effort because this is a
skill of use in all subsequent learning.

There should be some simple programs from the drill problem families
discussed above. In addition there could be harder programs, so long as the
harder problems are also of the type discussed in the classroom or solved in
labs.

In addition to program design, there can be some other types of problems
too. The most important amongst these deals with invariants: complete the
program given so that it upholds the given invariant. This tests the ability
to reason about code, and also introduces a student to ideas that are needed
for proving correctness and even designing clever algorithms.

Other types of questions are also fine, so long as they are drilled in the
classroom.

12



7 Scaffolding

The term scaffolding refers to libraries or code that is given to the student
as a black box which helps in learning. The contents of the black box are
not expected to be understood. We use two kinds of scaffolding.

First, we use a library for two dimensional graphics. The library supports
simple coordinate graphics as well as turtle graphics as pioneered by the
Logo programming language. We have found graphics to be invaluable for
creating drill problems as has been noted above. In fact our simple system is
adequate even to create elementary animation as well as graphical simulators
and editors. These are often easier to program than text based systems,
and thus enable the student to go farther in building interesting programs.
Finally, students seem to love graphics — clearly a great help in cultivating
disposition. We built our own library in C++; such libraries are available in
Java and Python also.

Second, we find it useful to teach a very elementary looping construct
on the first day. We manufactured this in C++, using the macro feature
to create a repeat (count) { body } statement which has no conditions,
nor any control variables, but simply causes the body to be executed count
many times. This is the second part of our scaffolding. The macro feature
is missing in Java or Python, so the standard statement could be used with-
out explaining its details, e.g. in Python on day 1 you may say, “If you
want to repeat statement xyzzy 10 times, write it as for repetitions in
range(10) : xyzzy”. The detailed semantics of the range construct or the
fact that repetitions is really a variable can be explained in due course.

Our experience is that a loop which runs a fixed number of times is very
easily understood even in the first lecture of the course. In fact students are
even able to understand nested loops. This enables us to get to interesting
programs, e.g. drawing iterative pictures as in Figure 1. We find this fires up
students — a big victory on the dispositional front. Note that in the standard
teaching order it would be several weeks before loops are taught; we cannot
afford to delay exciting assignments this long.

8 Concluding Remarks

It could be said that traditionally the Task component is left implicit, the
knowledge component is specified as the syllabus by the course designers,

13



while the skill and disposition are left to the teachers. We feel that this
state is not acceptable; the course design needs to have a discussion of all 4
components as we have provided here.

Of course, the level of preparation, morale, maturity and alignment of
the students to the course does determine the actual amount of time spent
in the course on the different components of competencies. For example,
certain student populations may come in with a very positive attitude and for
them cultivating the disposition may happen automatically. In the present
climate in Indian universities we believe however that very strong emphasis
and class room time needs to be given to cultivating disposition. Second, our
focus in this document has been on somewhat elementary skill development.
The drill problems we have suggested are meant as small but definite steps
towards writing programs to solve unseen problems. They are meant to give
confidence to students to move out of their current rote learning mindset
without scaring them off with harder problems. Once they take the baby
steps, they can be given harder problems for sure.

The CC 2020 notion of disposition includes ethical behaviour. It is clearly
an important attribute of graduates. Universities can cultivate this as much
by explicit discussion and courses on ethics as by adopting high ethical stan-
dards in their own conduct. For example, cheating in examinations needs
to be eradicated; without that discussion of ethics might sound theoreti-
cal and even hypocritical. Within the introductory programming course,
ethical questions could be raised through imaginary dialogues with employ-
ees/clients. The key question here would be: “How can you assure that your
program is correct?” This is a scientific question as well as ethical, and stu-
dents often have notions such as “I should get as many marks as the number
of test cases passed by my program.” The fact that an erroneous program can
lead to monetary losses and even loss of life, and that a “no error whatsoever”
promise is made in delivering a program needs to be emphasized.

Finally, we should mention that CC 2020 framework is very extensive. In
this report we have only picked up broad points and interpreted them in the
context of introductory programming.

9 Deploying these ideas

Through this document, and the resources mentioned, we have provided sub-
stantial guidance and help for the teaching of the introductory programming

14



course. So one possibility is just to recommend all this as a resource on
the AICTE website. It should be helpful for all introductory programming
courses because most of the ideas are language independent.

But we feel more could be done. We have pointed out some specific flaws
in the current system: lack of an articulation (and often a misunderstanding)
of the task, lack of skill development plans, and also lack of plans to inculcate
disposition. We feel that these flaws need to be corrected.

One step in this regard would be to ask course designers (Board of stud-
ies members) to prepare a course conduct document describing these three
aspects (including assessment). It could be at the same level of detail as
Sections 2 through 6 of this document. Teachers could be given the freedom
to deviate, but then they would need to be ready with the rationale for the
deviation. Furthermore, we feel that course designers should accept feed-
back from teachers, discuss it appropriately in meetings, and modify courses
accordingly.

We feel that such a protocol will be useful in all courses, not just this
one. But to evaluate the practicality of this proposal, perhaps this protocol:
that course designers should provide a course conduct document and that
they should be in dialogue with teachers, could be first tried out for the
introductory programming course.

ACM India will be willing to support all the efforts mentioned above,
through development of additional resources and holding workshops as needed.

Acknowledgements

We are grateful to several individuals including members of the ACM Educa-
tion Committee for giving comments on this report and general discussions.

15



