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Figure 1: Illustration of human-object interaction detection in video (CAD-120) and image (V-COCO) settings

ABSTRACT

Analyzing the interactions between humans and objects from a
video includes identification of the relationships between humans
and the objects present in the video. It can be thought of as a spe-
cialized version of Visual Relationship Detection, wherein one of
the objects must be a human. While traditional methods formu-
late the problem as inference on a sequence of video segments, we
present a hierarchical approach, LIGHTEN, to learn visual features
to effectively capture spatio-temporal cues at multiple granulari-
ties in a video. Unlike current approaches, LIGHTEN avoids using
ground truth data like depth maps or 3D human pose, thus increas-
ing generalization across non-RGBD datasets as well. Furthermore,
we achieve the same using only the visual features, instead of the
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commonly used hand-crafted spatial features. We achieve state-of-
the-art results in human-object interaction detection (88.9% and
92.6%) and anticipation tasks of CAD-120 and competitive results on
image based HOI detection in V-COCO dataset, setting a new bench-
mark for visual features based approaches. Code for LIGHTEN is
available at https://github.com/praneeth11009/LIGHTEN-Learning-
Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-
for-HOI
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1 INTRODUCTION

A key element of Scene Understanding is perception and interpre-
tation of humans and the associated interactions. While human

https://doi.org/10.1145/3394171.3413778
https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOI
https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOI
https://github.com/praneeth11009/LIGHTEN-Learning-Interactions-with-Graphs-and-Hierarchical-TEmporal-Networks-for-HOI
https://doi.org/10.1145/3394171.3413778


perception typically involves inferring the physical attributes about
the humans (detection [5, 35, 43, 50], poses [3, 4, 8, 25, 28, 41],
shape [13, 20, 29, 30], gaze [44] etc.), interpreting humans involves
reasoning about the finer details relating to human activity [6,
24, 27, 48, 49], behaviour [26, 34], human-object visual relation-
ship detection [23, 33, 36, 37, 39, 40], and human-object interac-
tions [23, 32, 33, 36, 37, 39, 40, 42]. In this work, we investigate
the problem of identifying Human-Object Interactions in videos.
Given a video stream, the goal is to identify the objects interacting
with the humans while also estimating the kind of interaction, eg.,
holding the cup, placing the bowl, moving the furniture, etc. The
availability of such information can be crucial in understanding
the finer details of human behaviour than in, say, action recogni-
tion. Such information has the potential to facilitate downstream
applications like unmanned supermarkets, surgery documentation,
robotics, etc.

While investigating into the HOI problem, we especially focus
on video settings. There has been a significant amount of research
on HOI with images [21, 32, 42, 46], thanks to the availability of V-
COCO [9] and HICO [1] datasets. However, learning human-object
interactionswithin videos is challenging and relatively less explored
owing to multiple reasons. Firstly, it requires the model to account
for the changing orientations of objects in the scene with respect
to the humans. This makes it difficult to extend the image-based
approaches that use the RoI features of the union of human and
object to the video setting. Secondly, the unavailability of large scale
video datasets (except CAD-120 [15]) makes it difficult to train an
HOI model that is generic, and performs well for in-the-wild videos.
Finally, the interaction definitions tend to become confusing when
defined for a video, e.g., placing vs. moving vs. reaching, opening a
jar vs. closing a jar, etc. In spite of these challenges, videos allow
for exploiting temporal visual cues that are, otherwise, absent in
images.

Most existing methods are designed to work in either the image
setting[21, 42], or the video setting [12, 16] but not both. Recently,
Qi et al. [32] proposed a graph-parsing basedmethod that fits into to
both the settings. While the method indeed achieves state-of-the art
results in video setting, it does so by using carefully designed and
pre-computed hand-crafted features such as SIFT [31] transforms,
object centroids, 3D poses, object depths, etc. which were originally
proposed in [15]. It is worth noting that these features were derived
from the ground-truth data provided by the CAD-120 dataset. It is
straightforward to see that using ground-truth based features for
estimating HOI would not allow the method to perform well on in-
the-wild videos because such features may either not be available
(3D pose) or may be noisy and inconsistent across frames (object
bounding boxes, centroids, etc.)

With these caveats in mind, we propose a hybrid approach that
uses Graph Convolutional Network (GCN) and hierarchical RNNs,
LIGHTEN, for detecting human-object interactions from videos
that does not rely on hand-crafted features. We use pure visual
features derived from a re-trainable off-the-shelf network to repre-
sent the inputs to LIGHTEN and demonstrate strong performance
on the CAD-120 dataset. Furthermore, The proposed network is
designed to leverage the spatio-temporal cues that are crucial to
disambiguate confusing interactions. Specifically, we design a two-
level architecture which, i) performs graph-based spatial embedding

extraction from the video and learns temporal reasoning functions
at the frame level, followed by ii) a segment level temporal network
which learns inter-segment temporal cues from previous segments,
for regressing the human sub-activities and object affordances. The
temporal functions are designed to learn the temporal relationships
between human-object pairs across the video.

Despite not using the ground truth based pre-computed fea-
tures and in spite of the small amount of data available for training
from videos, our visual input based model achieves state-of-the-art
performance on sub-activity, affordance detection tasks, setting a
strong baseline for the future of such methods. When used with the
segment level pre-computed features, the segment-level temporal
model of our proposal performs at par with the state-of-the-art
methods. Finally, despite being designed for video-based tasks,
our method also demonstrates competitive performance on the
V-COCO dataset that corresponds to the image setting.

In summary, we make three contributions in this paper in the
form of our model, LIGHTEN: First, we propose a generalizable,
multi-level method for identifying Human-Object Interactions from
videos. To the best of our knowledge, ours is the first that performs
video-based HOI estimation purely from learnt visual features. Sec-
ond, we setup a new baseline for such methods as ours on CAD-120
dataset while also approaching competitive results with methods
that are either purely image-based or purely video-based. Third, we
show how LIGHTEN naturally lends itself to static, image-based
settings.

2 RELATEDWORK

Human-Object Interaction detection has been a well researched
problem. In this section, we discuss the existing literature from two
broad viewpoints: static (images) and dynamic (videos).

HOI from images: Prior to deep learning, initial works on HOI
from images were based on using hand-crafted features such as
SIFT, HOG, etc. Among such works, Yao et. al. [48] learned the bases
of actions and parts to reason about HOI. Likewise, Hu et. al. [11]
used HOI exemplars to model the spatial relationships between the
human and the objects. A problem like Human-Object Interaction
should be amenable to the use of structure based reasoning, by
virtue of the fact that HOI requires detection of humans and objects
and their spatial interactions that are expected to persist temporally.
Toward this, Yao et. al. [47] define grouplets as a feature encoder
for capturing structural information, Delaitre et. al. [6] construct
structure-aware feature representations that are trainable with an
SVM.

Recently, deep learning based methods, bolstered by the avail-
ability of large amounts of in-the-wild training data [1, 9] have lead
to significantly improved performance in HOI detection. Among
such methods, Li et. al. [21] proposed to learn the knowledge about
the interactiveness between the humans and object categories from
HOI datasets and use this knowledge as a prior while performing
HOI detection. For understanding the interactions, it has also been
argued that human pose provides useful cues about the type of inter-
action. For example, a human opening a jar will have a significantly
different pose than when the human is reaching for a jar. Several
methods have attempted to leverage the human pose information
in their pipelines. Wan et. al. [42] propose a pose-aware network



architecture that employs a multi-level feature strategy, thereby
dealing with the problem at three levels of granularity: overall in-
teractions (covering both human and object), independent visual
cues from the object and the human RoIs, and the fine-grained
body part level features. Likewise, Xu et. al. [45] use the human
pose features in conjunction with the gaze estimates to discover
human intentions, which are then used for HOI detection. Since
the HOI problem is well-suited for graph-based representations,
Graph Convolutional Networks have been regularly used to model
the interactions. In this line of work, Xu et. al. [46] propose to deal
with long-tail HOI categories by modeling underlying regularities
among verbs and objects. They do so by constructing a knowledge
graph and enforcing similarity of graph embeddings derived from
a GCN with visual feature embeddings derived from a CNN using
a triplet-loss. Qi et. al. [32] propose GPNN, a method that uses an
iterative message passing framework on a parse graph comprising
of verbs and objects as nodes. Our work is inspired by graph based
methods in that we represent humans and objects as graph nodes
and learn their interactions based on the image-based node features.

HOI from Video: The HOI labels predicted in this task are
typically indicative of an activity spanning over a period of time.
Therefore, utilizing temporal cues in a video setting is naturally
expected to provide important insights on the interactions and
thereby benefit the HOI detection. Albeit less, there have also been
significant contributions towards research on HOI detection in
videos, mostly on the CAD-120 dataset. Koppula et. al. [15] pro-
posed the dataset and introduced an MRF base formulation for
handling spatio-temporal requirements. The authors hand-crafted
a set of features for humans (pose, displacement of joints, etc.) and
objects (3D centroids, transforms of SIFT matches between adjacent
frames, etc). Instead of being used at the frame-level, these features,
put together, represented a video segment as a whole. Since then,
most existing methods (deep learning and traditional methods alike)
work on the same segment level features. Qi et. al. [32] extend their
GPNN method for videos and construct a parse graph for every
video segment using the segment level features to initialize the node
and edge features in their parse graph. Likewise, Jain et. al. [12]
design a spatio-temporal graph for performing structured predic-
tions on a video consisting of multiple segments. Kopulla et. al. [16]
present ATCRF - a CRF based approach that models anticipatory
trajectories of objects and humans.

While there have been remarkable improvements over the years,
we submit that there are two major areas for improvement. Firstly,
avoiding over-dependence on such hand-crafted features, since the
above approaches limit the scope for in-the-wild HOI detections.
Such over-dependence has been averted in both textual [2] and
image [18] domains and we take inspiration from such works. More
often than not, the 3D poses or 3D centroids of objects (used as
features) are either not available or are too erroneously estimated
to be simply plugged into a model trained on hand-crafted features.
Secondly, all the existing methods model temporal relations only
between multiple segments of a video. This may be, partly, because
the hand-crafted features discussed above are defined for a segment
as a whole. We believe that there is scope for exploring temporal
cues even at a more fine-grained level, viz., frame-level. Using

image-based features facilitates the same.
We, therefore, propose an approach to model HOI relevant spatial-
structures from every frame of a segment and further design a
temporal aggregation regime using these frame level structures.
Again, such aggregation strategies have provided to be extremely
effective in other domains such a entity-linking [17, 19]. Deep-
learning based computer vision models have enough representation
power to be able to extract meaningful visual features from images
or videos. Thus, our primary intent is to construct a model which
can effectively learn hierarchical HOI embeddings at a fine-grained
frame level as well as at a coarser segment level, using only visual
attributes, and set a new baseline for human-object interaction
detection in videos.

3 OUR APPROACH: LIGHTEN

In this section, we present our method, LIGHTEN (Learning Interac-
tions using Graphs and Hierarchical TEmporal Networks) for HOI
detection on video. The HOI information in the videos can be dealt
with at two levels of granularity. The first, and the coarser, granu-
larity corresponds to viewing the video as a sequence of segments,
with each segment representing an atomic interaction. For example,
a video may include a sequence of segments such as: reaching for
a jar, opening the jar, and placing the jar back. The second, and
finer, granularity corresponds to dissecting each segment into its
constituent frames. Lastly, the visual features at frame level provide
crucial spatial cues about the possible interactions.

In LIGHTEN, we attempt to exploit these well defined constructs
and put them under consideration when choosing the architecture.
The overall pipeline of LIGHTEN is illustrated in Figure 2.

3.1 The Proposed Learning Architecture

Given an input video I = {𝐼1, 𝐼2, . . . , 𝐼𝑇 } consisting of 𝑇 frames
such that the video includes a single human and 𝑁 objects, our
task is to regress human subactivities (placing, opening, etc.), 𝐻 =

{𝐻0, 𝐻1, . . . , 𝐻𝑀 } for the human and object affordances (placable,
openable etc.),𝑂 = {𝑂0,0,𝑂0,1, . . . ,𝑂𝑁,𝑀 } for each of the 𝑁 objects
and 𝑀 segments in the video. To this end, we propose a pipeline
consisting of three stages: (i) the spatial subnet, (ii) the frame-level
temporal subnet, and (iii) the segment-level temporal subnet.

The spatial subnet feeds on an input frame 𝐼𝑡 and learns a set
of embeddings 𝜙𝑡 ∈ R𝐷𝑒𝑚𝑏 for each human and 𝜃𝑛,𝑡 ∈ R𝐷𝑒𝑚𝑏 for
each object. These per-frame, spatial embeddings are then fed to
the frame-level temporal subnet that churns out the corresponding
spatio-temporal embeddings, Φ𝑡 ∈ R𝐷𝑒𝑚𝑏 and Θ𝑛,𝑡 ∈ R𝐷𝑒𝑚𝑏 , while
also providing initial estimates of 𝐻𝑚 and 𝑂𝑛,𝑚 , where 𝑚 corre-
sponds to the segment index, and 𝑛 corresponds to the object index.
The frame-level spatio-temporal embeddings are then consolidated
for each segment using an attention mechanism to produce𝐴Φ

𝑚 and
𝐴Θ
𝑛,𝑚 , and passed on to segment-level temporal subnet that produces

the final outputs for the subactivity and affordance estimates.
To the best of our knowledge, LIGHTEN is the first approach

to detection of human-object interactions from videos that is com-
pletely pivoted on end-to-end learning. On the contrary, majority
of prior work [12, 16, 32] has dealt with the problem only at the



Figure 2: Overall pipeline in LIGHTEN. Given an input video segment with T frames and bounding box coordinates of the

humans and objects in every frame, we (a) first extract the visual features from ResNet-50. (b) These features are then pro-

cessed in a per-frame fashion by a Spatial Subnet. (c) The graph structure is disentangled and temporal cues between frames

in a segment are learnt from spatial features. (d) The frame-wise features are summarised into segment embeddings using

attention mechanism and refined using inter-segment relations, to regress the human subactivities and object affordances.

segment level. Furthermore, previous work has derived spatial fea-
tures not from the raw images, but from the ground-truth data like
depth of the objects, pose of the human and objects, etc. It is easy
to see that such a construction prohibits its use on any video for
which depth information is unavailable. Next, we now elaborate
on each step of the pipeline.

3.2 Spatial Subnet

As just discussed, the sole job of the spatial subnet is to learn fea-
tures relevant to the spatial ordering of the objects and the human.
We model this task in a Graph Convolutional Network (GCN) set-
ting which lends itself naturally to the task at hand. We define the
graph G = (V, E), where the nodes V = {1, 2, . . . , 𝑁 + 1} corre-
spond to 𝑁 objects and one human and E = (𝑝, 𝑞) ∈ V ×V .

We extract the node features 𝑥𝑣,𝑡 ∈ R𝐷𝑖𝑛 corresponding to the
𝑣𝑡ℎ node (human/object) of the 𝑡𝑡ℎ frame by feeding the correspond-
ing image crop 𝐼𝑣,𝑡 to an off-the-shelf feature extractor 𝐹 . Formally,

𝑥𝑣,𝑡 = 𝐹 (𝐼𝑣,𝑡 ). The edge weights are initialized to be 1 for human-
object edges and 0 for the rest. The adjacency matrix is dynamically
learnt while training the Spatial Subnet.

A major challenge in GCN based formulation is to account for
variability in the number of nodes across segments in a video. For
example, a video may include the following segments: picking a
bowl (1 object), moving the bowl (1 object), putting the bowl in
the microwave (2 objects). Typically, this number varies from two
nodes to six nodes.

A trivial solution would be to design the GCN with a maxi-
mum number of nodes (six, in this case), initialize the unused
nodes with zeros, and expect the network to learn to recognize
the dummy nodes. This, however, leads to inferior results. To alle-
viate this issue, the network is designed to inherently learn course-
corrections to the adjacency matrix. As depicted in Figure 3, every
graph-convolution layer is followed by an update of the adjacency
matrix which involves addition of the following two refinement



components to the base adjacency matrix A. The first component
is a learnable additive matrix, B that is learnt during the training
process. The second component is a data-driven additive matrix,
C that is estimated uniquely for every input. This formulation has
been inspired by the Adaptive Graph Convolution Network pro-
posed in [38]. However, unlike [38], we do not operate in the time
dimension at the level of the GCN.

Formally, the Spatial Subnet, 𝑆 transforms the features corre-
sponding to the 𝑡𝑡ℎ frame as 𝜙𝑡 = 𝑆 (𝑥𝑣,𝑡 ) if 𝑣 is a human node and
𝜃𝑡 = 𝑆 (𝑥𝑣,𝑡 ) if 𝑣 corresponds to an object node. At the end of the
Spatial Subnet, the network produces an intermediate feature set
in R𝑇×(𝑁+1)×𝐷𝑒𝑚𝑏 space.

Figure 3: Architecture of Spatial Subnet. Each block aug-

ments the adjacencymatrix by a learnable correction, 𝐵, and

a data-dependent course-correction, 𝐶. A residual connec-

tion is added to facilitate faster training of the model

3.3 Frame-level Temporal Subnet

Once the per-frame spatial features for the graph are extracted,
(in the case of video data such as CAD-120) we process the graph
features in time dimension, thus providing a feature-panorama of
the entire segment. As discussed earlier, temporal reasoning occurs
in two granularities - frame level and segment level. It is at this
stage that we dis-integrate the graph structure of the network and
construct individual feature sets for each node, aggregated over
time. These frame-level embeddings are subjected to a bidirectional
Recurrent Neural Network (RNN) which produces two outputs for
every frame:

For human nodes, given the input embeddings 𝜙𝑡 ∈ R𝑇×𝑁×𝐷𝑒𝑚𝑏 ,
the frame-level bidirectional-RNN outputs the estimates of hu-
man subactivity, 𝐻𝑚,𝑡 , and updates the recurrent embedding, Φ𝑡 ∈
R𝐷𝑒𝑚𝑏 for frame 𝑡 in segment𝑚. Note, that while the learnt em-
beddings are further fed into the segment-level subnet, we also
use them to classify subactivities and affordances for each frame
to facilitate stronger supervision. For object nodes, we concate-
nate human node features along with the object node features and
feed it to the frame-level RNN which outputs the estimates of ob-
ject affordances 𝑂𝑛,𝑚,𝑡 and updates the corresponding recurrent
embeddings, Θ𝑛,𝑡 ∈ R𝐷𝑒𝑚𝑏

The aggregated activity and affordance classification scores at
frame level are computed by taking a summation of the sequential

frame-wise scores output by the RNN. Formally, the frame-level
subactivity prediction can be written as: 𝐻𝑚 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (∑𝑡 𝐻𝑚,𝑡 )

One key driver behind this form of segregated temporal aggrega-
tion for each object, as opposed to joint inference across all objects
and humans is the variability in the number of objects in the scene.
As such, we leave the job of inter-object relationship discovery to
the spatial subnet and only exploit human-object correlations while
making the temporal predictions.

Loss Functions: We subject both the classifiers to standard
Cross-Entropy losses Lℎ and L𝑜 , The overall loss is a weighted
sum of the two losses and can be written as:

L = Lℎ + 𝜆L𝑜

3.4 Segment-level Temporal Subnet

The previous subnet learns intra-segment temporal relations, but
does not utilize the temporal information from the previous seg-
ments of the video, thus lacking wider context. With the segment-
level subnet, we aim to learn inter-segment temporal cues by lever-
aging the context from previous segments of the video. We use
another RNN to model these relations.

Attention Mechanism: The input to the segment-level RNN
is a sequence of embeddings, 𝐴Φ

𝑚 , corresponding to each segment
for human nodes. We extract 𝐴Φ

𝑚 by subjecting the frame-level
embeddings, Φ𝑚,𝑡 to an attention network that produces a single
embedding for a segment. Formally, 𝐴Φ

𝑚 =
∑
𝑡 𝑎𝑡 ∗ Φ𝑚,𝑡 , where 𝑎𝑡

are the attention weights produced by a Multi-Layered Perceptron
(MLP). Similar construction follows for the derivation of 𝐴Θ

𝑚 .
An alternative to this approach could have been to use the em-

bedding corresponding to the last time step, Φ𝑚,𝑇 as the input to
the segment-level RNN. While it works well, we observed superior
performance with attention-guided mechanism.

The summarized sequence of segment embeddings is finally
processed by an RNN, to leverage temporal dependencies from the
previous segments for predicting human subactivity and object
affordances for the current segment.

We use the same loss functions for classifiers at both frame-level
and segment-level.

3.5 Implementation Details

We now discuss implementation details from two vantage points:
model and training.

Model: Since the number of frames in a video segment may
vary significantly, we uniformly sample a fixed number of frames,
T, from the segment (for our experiments on CAD-120 dataset, we
use T=20). We extract the RoI crops from each frame and reshape
them to a fixed size of 224×224×3 (input dimension for ResNet). For
our experiments, we explore the usage of ResNet-34, ResNet-50 [10]
as the feature extractors that produces 512-dimensional (2048 for
ResNet-50) features for every node of the graph. Since we have
limited data, we use the pre-trained ResNet features. In order to
incorporate the information on positioning of humans and objects,
we append normalized bounding box coordinates of human/objects
to their respective visual node features. We use a hidden, output
feature dimensions of 512 for the graph convolutional network of
Spatial Subnet.



Table 1: A comparison of our approach with the existing

methods. Note that unlike ours, all themethods thatwe com-

pare with have been trained on hand-crafted features de-

rived from the ground-truth spatial attributes including 3D

human pose, object centroids.We obtain the state-of-the-art

results in both subactivity, affordance detection tasks while

learning the embeddings from RGB data. Seg-RNN corre-

sponds to segment-level RNN

F1 Score in %
Method Sub-

activity
Object Affor-
dance

ATCRF [16] 80.4 81.5
S-RNN [12] 83.2 88.7
S-RNN (multi-task) [12] 82.4 91.1
GPNN [32] 88.9 88.8
LIGHTEN w/o Seg-RNN 85.9 88.9

LIGHTEN (full model) 88.9 92.6

Training: We use the PyTorch deep learning framework for
implementing LIGHTEN. During training, we set 𝜆 = 2 for the
overall loss. We use the Adam [14] optimizer with initial learning
rate of 2 × 10−5, learning rate decay factor of 0.8, and decay step
size of 10 epochs. We train LIGHTEN for a total of 300 epochs on
Nvidia RTX 2080Ti GPU.We performed a hyper-parameter sweep to
empirically obtain these configurations. The entire model is trained
in two steps. Firstly, the model up to frame-level temporal subnet
is trained by aggregating classification scores from the 𝑇 frames of
the segment. Finally, the entire model including the segment-level
subnet, is trained in an end-to-end fashion, after initializing the
parameters from the pre-trained frame-level model.

4 EXPERIMENTS

4.1 Datasets

We evaluate LIGHTEN for the task of Human-Object Interaction
detection on two datasets, viz., i) CAD-120 [15] ,and ii) V-COCO [9].

CAD-120: The CAD-120 dataset is a video dataset with 120
RGB-D videos of 4 subjects performing 10 daily indoor activities
(e.g., making cereal, microwaving food). Each activity is a sequence
of video segments involving finer-level activities. In each video
segment, the human is annotated with an activity label from a set
of 10 sub-activity classes (e.g., reaching, pouring) and each object
is annotated with an affordance label from a set of 12 affordance
classes (e.g., pourable, movable). The frame-length of each segment
ranges from 22 to a little over 150 frames.

The metrics used for evaluating LIGHTEN on the human-object
interaction tasks of CAD-120 dataset are: i) sub-activity F1-score,
and ii) object affordance F1-score computed for human sub-activity
classification and object affordance classification. The dataset, in
addition to providing the images and HOI annotations, additionally
provides depth maps, 3D pose information and segment-level hand-
crafted spatial features. We do not make use of any additional data
except the 2D bounding box of the objects and humans, and aim to
learn the segment embeddings from RGB data only.

V-COCO: Crafted as a subset of the MS-COCO [22] dataset,

V-COCO is an image dataset that provides annotations of Action
labels for edges between human and object. There are 26 action
classes.

4.2 Quantitative Evaluation

4.2.1 Evaluation on the CAD-120 dataset: The performance of
LIGHTEN is evaluated in two experimental setups. i) In the first
setup, we pick the labels predicted directly from the output sequence
at the frame-level subnet. In the second setup, ii) the subactivity
and affordances are predicted after incorporating the segment-level
RNN. In each of these two experiments, we train LIGHTEN sepa-
rately for the tasks of HOI detection and HOI anticipation. In all the
experiments, the video data we provide as input to LIGHTEN is: i)
RGB frames of the video ii) bounding boxes of human and object
in the frames of video.

We tabulate the results of our approach in Table 1. As the num-
bers suggest, we achieve state-of-the-art performance with sub-
activity detection F1 score of 88.9 and affordance detection F1
score of 92.6. we also achieve an F1 score of 76.4 in human sub-
activity anticipation task, outperforming previous methods, and
an F1 score of 78.8 in affordance anticipation task. To the best of
our knowledge, all previous works on the task of human-object
interaction in CAD-120, use the hand-crafted features provided by
CAD-120 dataset. So we believe that this experiment is the only
one which bypasses the usage of the handcrafted features and relies
only on 2D video data, while achieving improved performance.
We compare our method against the existing works on CAD-120:
ATCRF [16], S-RNN [12], and GPNN [32].

Confusion Matrix: The confusion matrices for both detection
and anticipation tasks are displayed at Figure 4. Every row of a
confusion matrix indicates the prediction distribution of various
node samples of that ground truth class. From the confusion ma-
trix for affordance detection, it is evident that most of the false
predictions of object nodes are due to misinterpretation of object
as stationary. This is especially prevalent in the affordance class
reachable, because the human is usually far from the object during
the sub-activity reaching.

Table 2: A comparison of LIGHTEN on image-based HOI de-

tection on V-COCO dataset

Method Role mAP score
Gupta et al. [9] 31.8
InteractNet [7] 40.0
GPNN [32] 44.0
Li et al. [21] 48.6
PMFNet [42] 52.0
LIGHTEN for image HOI 38.28

4.2.2 Evaluation on V-COCO dataset. Although our method is de-
signed to leverage temporal cues within a video setting, we test our
method on V-COCO dataset by setting T = 1. We observe the role
mAP score of 38.28 which, although not close to the state-of-the-art
method, achieves well reasonable performance without bells and
whistles. We believe that an explanation for the sub-parity of our
results is that in the absence of temporal cues, the spatial GCN



is significantly shallower than other works and leads to inferior
results. We provide a detailed comparison with other methods in
Table 2.

Figure 4: Confusion matrices for human-object interaction

detection setting – (i), (ii) – and anticipation setting – (iii),

(iv) – on CAD120 dataset. It is worth noting that most of the

confusion occurs in visually similar categories, e.g. closing

vs. reaching and opening vs. moving

4.3 Qualitative Evaluation

We provide some qualitative evaluation of LIGHTEN on CAD-120
dataset in Figure 5. We see that while the HOI detections have been
achieved accurately, there remains ambiguity among some classes
during the anticipation task.

Figure 6 demonstrates some positive and negative cases of detec-
tion of edge action labels of human-object pairs for test images on
V-COCO. In the absence of temporal context, the method resorts
to associating visual cues to spatial cues, thus not being able to
disambiguate whether a person is sitting on a car or looking at the
same car.

4.4 Ablation Study

We now discuss the contributions of various components to the
final performance and their relevance to Human-Object Interaction
detection.

4.4.1 Role of Graph Convolutions in Spatial Subnet: Firstly, to
verify the effectiveness of spatial graph convolution module, we
designed an experiment where the image features from the back-
bone are directly passed to the frame-level model. We observed a
significant degradation in performance in the absence of spatial
GCN. While exploring variants of Graph Convolutional Networks,

Table 3: A comparison of LIGHTEN on anticipation task.

Our approach achieves state-of-the-art results on human

subactivity anticipationwhereas performs competitively on

object affordance anticipation.

F1 Score in %

Method
Sub-

activity
Object

Affordance
ATCRF [16] 37.9 36.7
S-RNN [12] 62.3 80.7
S-RNN (multi-task) [12] 65.6 80.9
GPNN [32] 75.6 81.9
LIGHTEN w/o Segment-level subnet 73.2 77.6

LIGHTEN (full model) 76.4 78.8

Figure 5: Human Object Interaction Detection and Anticipa-

tion results on a video of activity "Making cereal" from the

CAD-120 dataset.The nodes here are the human and three

objects: i) bowl ii) milk iii) box. The object affordance pre-

dictions in the figure are for the objects in this order from

top to bottom. Predictions are highlighted a border of same

color (red for human, green for bowl, blue for milk, and yel-

low for box) as the human/object’s bounding box in image.

We show predictions for 8 segments of the video. The antici-

pation labels shown along with each segment are the labels

anticipated for the upcoming segment.

we also explored using a vanilla GCN network with basic graph
convolution (GCN) layers as a baseline. As an extension to the basic
GCN, we add a residual connection, similar to [10], which allows
the input features to retain their initial behaviour. Using a residual
connection brings an improvement in performance of GCN, as il-
lustrated in Table 4. Further adding adaptive and data-dependent
components to adjacency matrix, in a fashion similar to [38], also
improves subactivity and affordance prediction, largely due to the
ability to learn the inter-node edge weights.

4.4.2 Role of human node features in affordance prediction: In
the temporal subnet, we concatenate human node features along
with object node features for the frame and segment level RNNs.
We observed significant improvement in performance on object
affordance detection (88.6% vs 84.6%) due to human node features.
This improvement can be attributed to the high correlation between
the human sub-activity and affordances of active objects (objects
which are not stationary).



Table 4: Ablation experiments of the impact of design choices on subactivity and object affordance detection. Seg-RNN refers

to segment-level RNN and vanilla GCN refers to GCN without adjacency matrix refinement.

Experiment Human Subactivity Object Affordance
LIGHTEN w/o seg-RNN w/o spatial GCN 61.5 78.6
LIGHTEN w/o seg-RNN with vanilla GCN block w/o residual connections 70.3 61.3
LIGHTEN w/o seg-RNN with vanilla GCN block with residual connections 79.3 83.1
LIGHTEN w/o seg-RNN with MLP for frame-level temporal learning 84.1 85.0
LIGHTEN w/o seg-RNN w/o appending human node features to object nodes 85.2 84.6
LIGHTEN w/o seg-RNN 85.9 88.6
LIGHTEN w/o attention 83.5 86.1
LIGHTEN w/o seg-RNN with MLP for segment level temporal function 89.7 90.5
Seg-RNN on hand-crafted features 85.3 91.6
LIGHTEN 88.9 92.6

Figure 6: Detections of human-object action labels in test im-

ages of VCOCO. We report our failure cases on the last two

images (bottom right). The rest are correct predictions.

4.4.3 Role of RNN in frame-level temporal subnet: As a baseline
for classification at frame-level subnet, we experimented with alter-
native temporal aggregation models. Specifically, we built an MLP
network to obtain classification scores from spatial features concate-
nated across temporal dimension for each node separately. However,
due to higher parameter count in MLP network, the model is prone
to over-fitting, and therefore has a lower performance, which is
evident from Table 4.

4.4.4 Role of segment-level temporal learning: Even though subac-
tivity and affordance labels are predicted for every single segment,
there are significant inter-dependencies between the activity in
a segment and activities in previous segments. As an illustrative
example, in the following sequence of three segments in a video:
reaching for a jar, moving the jar, and placing the jar back, knowl-
edge on the activities in first two segments can greatly improve
the prediction of activity in the third segment. Using a temporal
sequence processing network like an RNN after the frame-level
aggregation step leverages these inter-segment dependencies and
achieves a significant improvement in performance as compared to
prediction at frame-level temporal subnet.

4.4.5 Role of attention-mechanism in computing segment embed-
ding: We implemented two simpler baseline approaches to evaluate

the use of attention weighting for frames. These approaches include
i) using features corresponding to last frame in the output sequence
of RNN ii) stitching the features across frames and regressing a seg-
ment embedding usingMLP. Using the embedding corresponding to
the last frame limits the representation power of the segment-level
embedding Φ𝑚 . Using an MLP has the disadvantage of over-fitting
and has an impact on object affordance detection as evident from
the Table 4.

4.4.6 Evaluating the feature learning process: To measure the ef-
fectiveness of the hierarchical learning mechanism, we design an
experiment where we feed the hand-crafted, segment-level features
to segment-level RNN, instead of the visual embeddings learnt by
the attention mechanism. The learnt visual features achieve a bet-
ter performance than the hand crafted features, particularly for
the more difficult case of human subactivity detection (85.3% vs
88.9%), thereby justifying the effectiveness of the proposed method
in capturing the spatio-temporal relations from RGB video data.

5 CONCLUSION

In this paper, we proposed a two-step hierarchical approach for
identifying Human-Object Interaction in videos. In the first step,
we model the local interactions between humans and objects at a
frame-level, while in the second step, we generate a segment-level
embedding using the frame-level embeddings, and then refine them
using the embeddings from previous segments. The embeddings
are modelled through a graph structure, where the subject and
object serve as nodes in a scene. Our approach is easily extendable
to other videos for the task of HOI, where depth information and
3D pose information is not available. Our approach sets a new
benchmark for Human-Object Interaction detection in videos with
visual information.
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