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Abstract

Multi-person 3D human pose estimation from a single
image is a challenging problem, especially for in-the-wild
settings due to the lack of 3D annotated data. We propose
HG-RCNN, a Mask-RCNN based network that also lever-
ages the benefits of the Hourglass architecture for multi-
person 3D Human Pose Estimation. A two-staged approach
is presented that first estimates the 2D keypoints in every
Region of Interest (Rol) and then lifts the estimated key-
points to 3D. Finally, the estimated 3D poses are placed in
camera-coordinates using weak-perspective projection as-
sumption and joint optimization of focal length and root
translations. The result is a simple and modular network
for multi-person 3D human pose estimation that does not
require any multi-person 3D pose dataset. Despite its sim-
ple formulation, HG-RCNN achieves the state-of-the-art re-
sults on MuPoTS-3D while also approximating the 3D pose
in the camera-coordinate system.

1. Introduction

3D human pose-estimation consists of inferring the 3D
joint-locations from an image or a sequence of images.
It is the key to unlocking a large number of applications
in AR/VR, Human-Computer-Interaction (HCI), Gaming,
Activity Recognition, Surveillance, efc.. Although, there
is a vast literature on single-person 3D pose estimation
[31,13,40,41,24,21,5,36,3, 16, 1,39, 6, 12], the space of
multi-person 3D pose estimation is mostly unexplored with
only a handful of prior work [27, 20, 37, 28, 38]. Ironically,
real-life human pose-estimation applications, most often,
require multi-person pose estimation. For example, surveil-
lance systems require real-time capturing of the poses for
every person in the scene. Similarly, sports-analytics de-
mands that all the players are simultaneously analyzed to
capture inter-player interactions. Consequently, there ex-
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ists a gap between existing research and real-world require-
ments.

A simple extension of the single-person pose estimation
systems to the multi-person setting involves separate detec-
tion of every person followed by single-person pose esti-
mation on person crop. Unfortunately, the run-time of this
approach is likely to increase linearly with the number of
people in the scene, making it inefficient for analysis in
crowded scenes. Additionally, most existing multi-person
pose estimation methods [27, 20, 28], with the exception
of [37] estimate 3D pose configuration only relative to the
root joint. However, relative spatial ordering of different
people in the scene is also needed to facilitate reasoning
about human interactions and provide a better understand-
ing of the scene. Relative spatial estimation has the po-
tential to unlock accurate tracking of multiple persons in a
scene video.

Moreover, most prior work on multi-person pose estima-
tion [27, 20, 38] relies on creating or simulating a multi-
person 3D human pose dataset as a necessity for training.
The pre-requisite is due to the end-to-end integrated per-
son detection and pose estimation pipeline. This limits
the variability presented to the system while training be-
cause obtaining real-world in-the-wild 3D annotations in
multi-person setting is challenging, expensive and a re-
search problem in itself.

In light of the aforementioned discussion of multi-person
3D pose estimation, we propose a quasi top-down architec-
ture that decouples the 2D key-point detection and 2D-to-
3D lifting tasks. The proposed architecture, HG-RCNN,
brings together the goodness of Mask-RCNN [9] and the
Hourglass [23] network for heatmap regression. The re-
gressed heatmaps are then fed to an independently trained
lifting module to regress the root-relative 3D poses. Conse-
quently, we completely avoid using any multi-person 3D
pose dataset in the pipeline since it leverages the exist-
ing multi-person 2D pose datasets and single-person 3D



Figure 1. Some results of our proposed 3D pose estimation pipeline on some challenging samples from MS COCO. Our approach is
resilient against occlusions and clutter. We also approximate the spatial ordering of people in the scene with respect to the camera. Further
in-the-wild results and a 3D rendered view of the above images can be found in the supplementary material.

pose datasets. Owing to its modular architecture, the first
step of obtaining 2D poses can be trained with publicly
available large-scale in-the-wild multi-person datasets, such
as COCO [15], LIP [7] and MPII 2D dataset [2]. This
allows HG-RCNN to cope with challenging variations in
view-point, lighting, apparel, occlusion and extreme poses
without the need of costly 3D annotations in-the-wild set-
ting. The keypoint heatmaps from the HG-RCNN are
passed through a soft-argmax module and fed to a 2D-3D
lifting module. Finally, our pipeline approximates pose-
configurations in camera coordinates without the need of
costly geometric optimization. The resulting system outper-
forms all previous approaches on the challenging MuPoTS-
3D [20] test-set that contains a majority of in-the-wild test
scenarios. The method generalizes well to in-the-wild im-
ages, even without exploiting any structural priors, while
running at 12-15fps on images of size 400 x 600 on a single
Nvidia 1080Ti graphics card.

In summary, we contribute a state-of-the-art model for
performing in-the-wild multi-person 3D pose estimation.
The model can be trained without using any multi-person
3D dataset and the system also estimates the relative order-
ing of the persons in the 3D space.

2. Related Works

Human Pose Estimation has been a widely studied prob-
lem. Here, we describe prior art relevant to this work from
three broad viewpoints: (a) 2D Pose estimation, (b) Single-
person 3D Pose estimation and (c) Multi-Person 3D Pose
estimation. A detailed survey of the area can be found in
[29].

2D Human Pose Estimation: Most 2D human pose es-
timation methods represent their joint outputs as heatmaps,
wherein a heatmap’s value at a point represents the pos-
sibility of the corresponding joint’s existence in that posi-
tion. [34] proposed Convolutional Pose Machines that iter-
atively refined the heatmap predictions at every stage. The
Stacked Hourglass network [23] was an encoder-decoder ar-
chitecture with skip connections to facilitate joint reasoning
of high level structural and low level textural features of
human pose. Mask-RCNN [9] proposed an extension of
Faster-RCNN [26] for simultaneously predicting the pose
and 2D keypoints and/or instance segmentation masks. In a
similar line of work, [8] predicted the u-v maps of the per-
sons which can then be used for dense reconstruction. [30]
proposed a variant to Mask-RCNN by defining joints as re-
gions instead of persons. In similar spirits, our proposed
pipeline attempts to synergise Mask-RCNN and Hourglass
networks for multi-person 3D pose estimation task.



Single-person 3D Pose Estimation: Single person 3D
pose estimation works can be broadly divided based on
whether they directly regress 3D joints [31, 13, 40, 41]
or use a pipelined approach of inferring 3D pose from 2D
pose [33,39,21,22, 14]. VNect [21] proposed the first real-
time approach and parameterized a 3D joint by a heatmap
and 3 location maps. Using a 2D-to-3D pipeline enables
the use of rich 2D pose datasets which, in turn, improves
in-the-wild generalizability. Many approaches perform a
direct 2D-to-3D lifting of poses [41, 17, 22, 5, 36] by ei-
ther learning the transformation or by a nearest-neighbour
lookup in a pose library. Furthermore, many pipelined
approaches [21, 27, 39, 31, 41, 24] have reported signif-
icant improvements in in-the-wild performances by using
the more diverse 2D pose datasets to pre-train or jointly
train their 2D prediction modules.

Several methods in the past have also reported significant
improvements by using temporal cues [25, 21,41, 6, 35, 37]
by either learning a motion/refinement model or by using
temporal constraints in a constrained optimization frame-
work.

Multi-Person 3D Pose Estimation: Broadly, multi-
person pose estimation approaches, 2D and 3D alike, can
be classified into top-down and bottom-up approaches.
Bottom-up approaches simultaneously predict all the key-
points followed by assembling them into full poses for all
persons. On the other hand, top-down approaches first de-
tect the human candidates and subsequently perform pose
estimation for each of them. While bottom-up methods are
lucrative in terms of efficiency, they tend to be less accu-
rate. For example, the top 5 entries in MS COCO key-points
challenge employ top-down approaches [15]. Intuitively,
it makes sense to solve for pose estimation on a person’s
crop, instead of solving a much more challenging problem
of grouping detected key-points into a full person. In re-
cent years, however, a middle ground has been found in
the form of quasi top-down architectures based on Mask-
RCNN [9, 8, 10, 30] that have been successful in simultane-
ously detecting the object Rols and performing downstream
tasks on the corresponding Rol feature-maps, without hav-
ing to crop the image back.

LCRNet [27] was the first method to perform Multi-
Person 3D Pose Estimation. They propose an integrated
network based on Faster-RCNN [26] which first proposes
Regions of Interest (Rols) that are fed to a classifier and
a regressor. The classifier estimates the most probable an-
chor pose out of the K pre-defined anchor poses obtained
from a MoCap dataset. The regressor then refines the an-
chor poses towards an accurate pose prediction. Alternately,
[20] propose a bottom-up approach wherein they regress the
heatmaps along with X, Y, and Z location maps for every
image. The location maps provide the corresponding 3D
positions of joints in metric space. The estimated 3D joints

are then associated using Part Affinity fields [4] based on
the heatmaps. Both the approaches depend on the explicit
creation or simulation of multi-person 3D pose datasets for
training. Our method, on the other hand, avoids the use
of such datasets and relies on 3D data only for the single
person case. Further, Zanfir er al. [37] proposed a large-
scale human sensing system for multiple people that esti-
mates pose and shape using the top-down approach of per-
son detection followed by pose estimation for each person.
Recently, Zanfir et al. [38] proposed MubyNet, a bottom-up
approach that performs joint association by formulating it as
a binary integer programming problem. In contrast, Mask-
RCNN [9] based quasi top-down methods [8, 10, 27] have
proven to be effective for simultaneously locating objects at
a coarse level and detecting finer spatial layouts like seg-
mentation masks, key-point heatmaps, u-v maps, etc.. Our
proposed HG-RCNN exploits this setting and also regresses
for 3D key-points. However, unlike LCRNet [27] and LCR-
Net++ [28], our method does not require anchor-poses and
is relatively simpler.

3. Problem Formulation

Given an image [ containing N people, we estimate the
poses P = (Py, Py, ..., Py), wherein P, € R™*3 and n
is the number of joints. Every pose P; is a set of n joints
in 3D Euclidean space with the origin set to a root joint,
pelvis in this case. As an intermediate step, our method first
estimates the 2D key-points K = (K1, K>, ..., Ky ) with
K; € R™? in the image coordinate space. Finally, we
approximate the global poses P¢ = (PF, PS¢, ..., P§) in
camera coordinate space.

3.1. Multi-Person 3D Pose Estimation

We follow a generic, two-step pipeline for root-relative
3D pose estimation. First, we estimate per-frame 2D key-
points of all the people in an image and lift them to 3D pose
using a simple residual network. We use a Mask-RCNN
based architecture to estimate 2D key-points. However,
vanilla keypoint head of Mask-RCNN is not the most con-
ducive architecture for reasoning with structured/articulated
objects like human pose. Fortunately, the Hourglass [23]
family of networks have been found to be extremely effec-
tive in reasoning about a human pose in a structure-aware
way. Therefore, we propose to employ a tiny Hourglass
head as a surrogate to the key-point head. This simple patch
alone leads to noticeable improvements in the results and
will be discussed further in Section 5.2.

In the second step, the obtained keypoint heatmaps are
lifted to 3D joints using a network with two residual mod-
ules of size 2048. When deployed in wild settings, it is
trained with the heatmaps regressed on the MPI-INF-3DHP
training dataset [ | 8] which provides a wide variety of view-
points and poses activities, thereby adding to the general-
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Figure 2. Schematic of our Multi-Person 3D Pose Estimation approach. We augment the Faster-RCNN [26] architecture with a shallow
HourGlass Network [23]. The heatmaps generated by the hourglass are then input to a 3D Pose Module which regresses the root-relative
3D joint coordinates. The estimated 3D poses of all the Regions of Interests (Rol’s) are then collected and their global root positions are

approximated to ensure that relative spatial ordering is preserved.

ization capability of the network. It is worth noting that it
is this modular structure of the pipeline that allows us to
train the network without any multi-person 3D dataset. The
in-the-wild performance is guaranteed by two aspects: a)
The heatmaps are learnt on completely wild multi-person
2D keypoint datasets, and b) the lifting module is agnostic
to the image features and trained on a dataset consisting of
a wide variety of 2D-3D paired annotations.

Further details on the architecture are discussed in Sec-
tion 4. At this stage, all the outputs (3D keypoints) are in
their individual root relative space. For placing the detected
poses in camera-relative space, we estimate the common fo-
cal length of the camera and the translation vectors from the
individuals’ roots to the camera center.

3.2. Global Pose Approximation

Our approach for camera-relative pose approximation is
based on jointly optimizing the root joints’ global positions
and the camera’s focal length for the projection error. We
initialize the root joint positions using a weak-perspective
projection assumption, thus, requiring us to estimate the
shrinking parameter o; for every pose Pi in the scene. To
this end, we compute the sum of bone lengths of the 2D
keypoints, Sap, followed by computing the sum of bone
lengths, S5p, of the 3D pose’s orthographic projection.

The ratio Sap/Ssp acts as a surrogate to the shrinking
factor ay. This finally leads to the following formulation for
estimating the global X (horizontal) and Z (depth) coordi-
nates of a joint:

S3p

Z = fx =
S2p

ey

5371) 2
2D
where, = corresponds to the 2D keypoint and o, is the =
co-ordinate of the image center. The focal length, f, is ini-
tialized by assuming a field-of-view of 60°. The same for-
mulation holds for the Y (vertical) coordinate as well.
Once the root translations are initialized and the full 3D
poses are placed in the respective root positions, we itera-
tively optimize the translation and focal length. The global
rotations are assumed to be identity. Thus, the objective
function can be written as:

X =(x—o0y)%

N

fot :argfminZHKi—Hf,tiPiHQ (3)
L

where t = {t1,t2,...tyN} with ¢; being the translation vec-
tor of i*" subject’s root joint and II being the projection op-
erator. This, finally, leads to the global pose, PZ.G =P+t

It is worth noting that the proposed global pose approxi-
mation method is just an approximation that can be quickly
implemented and run in real-time. The approximation is not
expected to work when the person is aligned with the opti-
cal axis. We discuss further limitations in section 6. It is not
intended to be highly accurate, but only expected to make
spatial ordering apparent to systems that need it, eg. action
recognition.

4. Network and Training Details

HG-RCNN: The HG-RCNN is constructed by append-
ing an hourglass on the keypoint head of Mask RCNN as
shown in Figure (2). Instead of upsampling once while de-
convolving and once at the final layer, we upsample (with



Table 1. Comparison of our method with prior work on MuPoTS-3D on Setting 1. The top half shows results on all annotated poses in the
test set. The bottom half shows results when only the detected poses are considered. The evaluation metric is 3D PCK and higher is better.
*Note, that the average PCK provided in LCRNet++ [28] is not weighed by the number of persons in each test sequence unlike [27, 20]
and ours.

Method|TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS12 TS13 TS14 TS15 TS16 TS17 TS18 TS19 TS20 Avg
[27]  167.749.853.459.167.522.843.749.931.1 78.1 50.2 51.0 51.6 49.3 56.2 66.5 652 62.9 66.1 59.1 53.8
[20]  [81.059.9 64.4 62.8 68.030.3 65.059.264.1 83.9 67.2 68.3 60.6 56.5 699 79.4 79.6 66.1 66.3 63.5 65.0
[28]* [87.361.967.974.678.848.958.359.778.1 89.5 69.2 73.8 66.2 56.0 74.1 82.1 78.1 72.6 73.1 61.0 70.6
[19] |88.465.168.272.576.246.265.864.175.1 82.4 74.1 724 64.4 58.8 73.7 80.4 84.3 67.2 743 67.8 70.4
Ours |85.167.973.576.274.9 52.5 65.7 63.6 56.3 77.8 76.4 70.1 65.3 51.7 69.5 87.0 82.1 80.3 78.5 70.7 71.3
[27]  ]69.1 67.354.661.774.525.248.463.369.0 78.1 53.8 52.2 60.5 60.9 59.1 70.5 76.0 70.0 77.1 81.4 62.4
[20]  [81.064.3 64.6 63.773.830.3 65.1 60.764.1 83.9 71.5 69.6 69.0 69.6 71.1 82.9 79.6 72.2 76.2 859 69.8
[28]* [88.073.367.974.6 81.8 50.1 60.6 60.8 78.2 89.5 70.8 74.4 72.8 64.5 74.2 84.9 852 78.4 758 74.4 74.0
[19] |88.470.4 68.373.682.446.466.183.475.1 82.4 76.5 73.0 72.4 73.8 74.0 83.6 84.3 73.9 85.7 90.6 75.8
Ours |85.873.661.155.777.953.375.165.5542 81.3 82.2 71.0 70.1 67.7 69.9 90.5 85.7 86.3 85.0 91.4 74.2

Table 2. Performance of our method on MuPoTS using the Setting 2. The top half shows results on all annotated poses in the test set.
The bottom half shows results when only the detected poses are considered. ’all’ corresponds to evaluation on all eligible persons and
“occ’ corresponds to the results on occluded persons. The evaluation metric is 3D PCK and higher is better. Notice that compared to 1, the
improvement is mostly observed on sequences with significant occlusion, eg. TS18 and TS19.

Method |TS1 TS2 TS3 TS4 TS5 TS6 TS7 TS8 TS9 TS10TS11 TS12TS13TS14TS15TS16 TS17 TS18 TS19 TS20 Avg

Ours (occ)|82.061.162.370.262.753.367.863.159.8 39.1 73.1 69.3 67.4 33.7 59.0 79.1 79.0 82.5 79.7 36.2 64.0
Ours (all) |85.269.273.175.677.752.1 65.166.057.7 77.6 76.6 69.0 71.6 53.4 70.3 86.0 84.3 84.7 83.7 72.8 72.6

Ours (0cc)|82.061.162.371.062.753.869.063.259.8 39.1 78.0 69.8 67.4 47.4 59.0 79.2 79.5 82.5 79.7 76.6 67.1
Ours (all) [85.269.273.176.177.752.765.966.057.7 77.6 80.5 69.1 71.6 60.6 70.3 87.1 85.1 84.7 83.7 92.1 74.3

4x) the feature maps all at once before passing the feature mocap system which leads to the same joint name pointing
values on to the hourglass. The number of feature-maps to different physical locations on the body.

is brought down from 512 to 128 using a 1 x 1 convolu-

tion layer. The original hourglass is modified to have three 5. Experiments

nested residuals (instead of 4) and has a feature-map of

size 7 x 7 at the bottle-neck layer. The hourglass output

is then fed to a final classification layer which predicts the [
heatmaps for every joint.

This section describes our experiments on MuPoTS-3D
], MS COCO [15] and Human3.6M [11] datasets.

5.1. Evaluation Datasets

MuPoTS-3D Test Set: Multi-Person Test Set 3D [20]
is a recently released multi-person 3D human pose test
dataset. It consists of 20 test sequences shot with a marker-
less mocap system - 5 indoor and 15 outdoor. Every se-
quence contains 2-3 persons in a variety of activities. The
evaluation metric used is 3D PCK - percentage of correct
keypoints within a radius of 15cm - on all the annotated
persons. In case of a missed detection, all the joints of
the missed person are considered erroneous. An alterna-
tive evaluation mode is the one in which the evaluations are
performed only on the detected joints.

The official evaluation code performs a greedy matching
of detections and ground truth based on the number of 2D
keypoints within a proximity of 40pz. We call this method

We train the network described above with the Cross-
Entropy Loss. While finetuning, we train on top 500 Rols
and use a batch size of 16. The network is trained with a
base learning rate of 0.02 on a single Nvidia P6000 Quadro
graphics card.

3D Pose Module: Our 2D-to-3D pose module converts
the heatmap activations to 3D pose using a residual architec-
ture and is in line with the 2D-3D lifting pipelines proposed
in [17, 32, 22]. We input the 2D poses in heatmap space
after passing the heatmaps through a softargmax layer. This
has two benefits: a) it makes learning possible from images
of any given size and scale, and b) it facilitates end-to-end
training of the network architecture. The network is trained
using RMSProp optimizer and a learning rate of 2.5 exp —4

which is reduced by 10 times after 40 epochs. Setting I for MuPoTS.

While testing on MuPoTS (multi-person) dataset, we use We also evaluate our model in the setting wherein the
the 3D pose module trained only on MPI-INF-3DHP dataset greedy matching is done based on 3D distances instead of
because both the training and the test sets had the same mo- 2D distances. We call this Setting 2. This joint matching

tion capture system. Human3.6 was captured by a different strategy is, arguably, less sensitive to cases of heavy oc-



Figure 3. Visualization of our results on MuPoTS-3D Test Set from different viewpoints. Notice that the model is fairly robust to occlusions.

The spatial alignment is not derived from ground truth.

clusion which would, otherwise, confuse a keypoint based
matching detector. This, as discussed in Section 5.2, leads
to missed detections even when the model actually detects
the appropriate person. Note, that the two settings differ
only in the way the predicted poses are matched with the
ground truth poses. All the other details of evaluation, like
3D PCK threshold, joints used for matching, etc remains the
same.

Human3.6: Human 3.6M [11] is a single-person 3D
human pose dataset captured with marker-based motion
capture system. It consists of 11 subjects performing 15
actions. We evaluate our model on the commonly fol-
lowed protocol [21, 31, 39, 27, 18, 6, 22] that uses subjects
1,5,6, 7 and 8 for training, The evaluations are done on sub-
jects 9 and 11. All the videos are downsampled from 50 fps
to 10 fps. The evaluation metric used is Mean Per Joint Po-
sition Error (MPJPE) which is calculated after aligning only
the roots of the predicted and ground truth 3D poses.

MSCOCO Keypoints: MSCOCO Keypoints is a large
scale dataset for 2D multi-person keypoint detection task
with roughly 110k training images. It also provides the
person bounding boxes and segmentation masks. The 2D
keypoint detection task is evaluated on the commonly used
Average Precision (AP) metric at different threshold levels.
Similarly, the quality of bounding box detections are evalu-
ated using AP.

5.2. Quantitative Evaluation

We now discuss the numerical results achieved on the
datasets mentioned above.

MuPoTS-3D Test Set: Table 1 compares the perfor-
mance of our simple yet effective method with the existing
multi-person 3D pose results. On Setting I, we improve
the state-of-the art significantly with a 3DPCK of 71.25%
as against 65% in [20] and 53.8% in [27]. For LCRNet
[27], the reported results are evaluated by [20]. We report an
improved performance on several test sequences. We also
significantly improve the performance of occluded joints
(61% vs 48.7%) as well as the non-occluded joints (75.6%
vs 70%) when compared with [20]. Our method also per-
forms significantly well when only detected persons are
compared. In this setting, we observe 75% 3DPCK while
the state-of-the-art being 69.8%. We also compare our per-
formance with the recently released XNect [19] and demon-
strate competitive results on all annotated poses (71.3% vs
70.4%) as well as the detected poses (74.2% vs 75.8%).

We also evaluate our method on the proposed Setting 2.
We observed an improved 3DPCK of 72.6% when com-
pared with Setting 1. This improvement is facilitated by a
simple tweak in the greedy matching algorithm of ground-
truth and predicted persons. On deeper inspection, we see
sharp improvements in sequences with heavy occlusions,
like TS18 and TS19. Further, the overall improvement is
significant when comparing the performance of occluded
joints (64% vs 61% of [20]). This observation can be at-
tributed to the fact that matching predictions with ground-
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Figure 4. MPJPE based Percentile Analysis on MuPoTS-3D test set. The lower percentile is better. An important inference from the
analysis is that the method is sensitive to lighting and low contrast setting.

Table 3. Comparative evaluation of our model on Human 3.6 using Absolute MPJPE. The evaluations were performed on subjects 9 and 11.
The papers above the horizontal line are single-person pose estimation papers and the ones below the line are multi-person pose estimation

papers.
Method Direction  Discuss Eat Greet Phone Pose Purchase Sit
Martinez [17] 51.8 56.2 58.1 59.0 69.5 55.2 58.1 74.0
Zhou [39] 54.8 60.7 58.2 71.4 62.0 53.8 55.6 75.2
Sun [31] 52.8 54.8 54.2 54.3 61.8 53.1 53.6 71.7
Dabral [6] 44.8 50.4 44.7 49.0 52.9 43.5 45.5 63.1
Hossain [25] 44.2 46.7 52.3 49.3 59.9 47.5 46.2 59.9
Sun [32] 47.5 47.7 49.5 50.2 514 43.8 46.4 58.9
Rogez [27] 76.2 80.2 75.8 83.3 92.2 79.0 71.7 105.9
Mehta [20] 58.2 67.3 61.2 65.7 75.8 62.2 64.6 82.0
Rogez [28] 50.9 55.9 63.3 56.0 65.1 52.1 51.9 81.1
Ours (Baseline) 60.2 64.5 66.2 70.1 75.6 65.4 69.4 83.7
Ours (Fine-Tuned) 52.6 61.0 58.8 61.0 69.5 58.8 57.2 76.0
Method SitDown Smoke Photo Wait Walk WalkDog WalkPair Avg
Martinez [17] 94.6 62.3 78.4 59.1 65.1 49.5 52.4 62.9
Zhou [39] 111.6 64.1 65.5 66.0 514 63.2 55.3 64.9
Sun [31] 86.7 61.5 67.2 53.4 47.1 61.6 534 59.1
Dabral [6] 87.3 51.7 61.4 48.5 37.6 52.2 41.9 52.1
Hossain [25] 65.6 55.8 59.4 50.4 52.3 43.5 45.1 51.9
Sun [32] 65.7 494 55.8 47.8 38.9 49.0 43.8 49.6
Rogez [27] 127.1 88.0 105.7  83.7 64.9 86.6 84.0 87.7
Mehta [20] 93.0 68.8 84.5 65.1 57.6 72.0 63.6 69.9
Rogez [28] 91.7 64.7 70.7 54.6 44.7 61.1 53.7 61.2
Ours (Baseline) 105.7 70.2 89.6 69.1 61.7 80.6 66.9 73.0
Ours (Fine-Tuned) 93.6 63.1 79.3 63.9 51.5 71.4 53.5 65.2

truths based on 2D keypoints leads to matching errors and
missed detections when two or more persons occlude each
other. Indeed, we observe that the algorithm’s detection per-
centage rose from 93% to 96%, thus improving the over-
all 3DPCK. Interestingly, we observe that TS10 suffers un-
der this protocol because all the three subjects bear similar
poses for many frames. Thus, we believe the two settings
are complimentary. Another evaluation metric used in
MuPots Test Set is the Area Under Curve (AUC) of PCK
values. We report an AUC of 35.5 which is better than 30.1
reported by [20] and 27.6 in [21] using groud truth detec-
tions. Our detection rate is 93.5% which is comparable to
the 93% detection rate of [20] under Setting 1.

The above mentioned results reveal a significant incre-
ment in the state-of-the-art. It is worth noting that all the re-
sults are comparable to performance of single-person pose
estimation methods.

Table 4. Performance comparison of various training/testing set-
tings on Human3.6M Protocol 1. The first column indicates the
data used as the 2D input to the 3D pose module while training.
The second column, likewise, indicates which datasets were used
for training the HG-RCNN based 2D input.

2D-3D Training HG-RCNN Training | MPJPE
H36M GT MS-COCO 135.5
H36M GT + noise MS-COCO 119.7
H36M pred MS-COCO 73.0
H36M pred MS-COCO + H36M 65.2
MPI-INF GT MS-COCO 118.3
MPI-INF GT + noise MS-COCO 118.16

Human 3.6M: The results on Human 3.6M dataset are
detailed in Table 3. We achieve an MPJPE of 65.2mm after
fine-tuning HG-RCNN on Human3.6M and 74.3mm with-
out fine-tuning. It may be noted that Zanfir et al. [38] report
their results on the official Human3.6 test set and achieve



60mm MPIJPE. Since the test circumstances are different,
the comparison may not be fair. The combined results on
MuPoTS-3D and Human3.6M also corroborate the claims
in [12] that a good performance in Human3.6M does not
necessarily indicate better generalization in wild settings.
We also evaluate our method under various test-train set-
tings in Table. 4 and observe that MPI-INF-3DHP [1&] of-
fers a wider range of poses to train from, thus leading to
better results with ground-truth detections.

Table 5. Comparison of HG-RCNN and Mask-RCNN based mod-
els on MuPoTS 3D. The evaluation metric is 3DPCK.

Mask-RCNN | HG-RCNN
all annotated joints 70.1 72.4
all occluded joints 61.0 64.1

Mask-RCNN vs. HG-RCNN: Table 6 details the per-
formance of HG-RCNN on MSCOCO Keypoints dataset.
Our results are comparable to Mask-RCNN’s reported re-
sults. We observe a slightly reduced mAP which can be
attributed to the fact that Hourglass architecture is better
suited for cases when the larger structure is to be consid-
ered. MS-COCO keypoints validation dataset contains mul-
tiple cases of isolated/truncated body parts. While evaluat-
ing on MuPoTS-3D, we observe improved 3DPCK using
HG-RCNN on all annotated (70.1% vs 72.4%) and all oc-
cluded (61% vs 64%) joints alike. We also achieve com-
parable results on the person bounding box detections over
Mask-RCNN as shown in Table 7.

Table 6. HG-RCNN results on MS-COCO 2017 val-set for key-
points using a ResNeXt-101 backbone.
AP | AP50 | AP75 |AP.M| AP_L

HG-RCNN|0.6348]0.86200.6905|0.5840|0.7204

Table 7. Results on MS-COCO 2017 val-set for person boxes.

AP | AP50 | AP75| AP.S |AP.M | AP_.L

HG-RCNN|0.5536(0.8381|0.6076(0.3743|0.6320|0.7235
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Figure 5. Two images summing up the sources of failure in our
approach.

6. Limitations

While our method attempts to account for structural in-
formation during inter-personal occlusions, we believe it
can be explicitly taken care of with better structural con-
straints and bounding box consistencies.

Sources of Error: Figure 5 shows interesting examples
of failure cases and exposes three sources of error in our
pipeline. The first source is poor 2D keypoint estimation,
which is apparent in the occluding persons of Figure 5 (b).
The second source of error is an unseen activity/pose which
leads to erroneous prediction. This can be seen in squat-
ting players of both the figures, wherein the data-induced
model bias leads to incorrectly predicting a person sitting
on a chair instead.

Finally, our camera-coordinate 3D pose prediction is
sensitive to 2D keypoint detections and can wrongly reason
about the person depth. This effect is observable in Fig-
ure 5(a) in which the sitting people have been pushed back,
in addition to the two outliers standing behind the player.
It may also be noted that this approximation also assumes
the individuals to be of roughly the same size. We observe
incorrect relative positioning when the height difference is
high. Finally, while we compute the sums of bone lengths
only on the torso joints to avoid the adverse effects of fore-
shortening, the effects can not be completely alleviated.

7. Conclusion

This paper presents a simple extension of Faster-RCNN
framework to yield a near-real-time multi-person 3D hu-
man pose estimation network HG-RCNN that can be trained
without a multi-person 3D pose dataset. Our proposed
framework is extremely simple to implement and outper-
forms previous state-of-the-art results by convincing mar-
gins. We also show that we can approximate the spatial
layout of the scene. These claims are substantiated both
quantitatively through experimental evaluation as well as
through qualitative assessments on COCO and MuPoTS-
3D datasets. The paper also proposes an improvement to
the greedy-matching strategy for multi-person 3D pose es-
timation evaluation and show results on it. In the future,
we plan to deploy this pipeline to a broader human-parsing
pipeline while also seeking real-life applications such as ac-
tivity detection and construct a better scene understanding
system related to humans.
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