Exercises: NP, NP-completeness

Independent set: given a graph and a number k, is there a set of k vertices such that there is no edge between them?

Vertex Cover: given a graph and a number k, is there a set S of k vertices which covers all edges (i.e., every edge in the graph has at least one end point in S).

Set Cover: Suppose we are given a collection of subsets of a set U, say $S_{1}, S_{2}, \ldots, S_{r} \subseteq U$. Can we select k of these subsets such that their union is U ?

Directed Hamiltonian cycle: Given a directed graph with n vertices, is there a (directed) cycle of length n ? By definition, a cycle cannot have repeated vertices.

1. Which of the following decision problems do you think are in NP?

- Given a graph G and a number k, is the minimum vertex cover size in G equal to k ?
- We are given a directed graph, a source vertex, a destination vertex, and a number k. Is k the minimum number vertices required to be deleted to disconnect source from destination?
- Given two C++ programs, are they equivalent (do they have same input output behavior)?
- Given two C++ programs, are they different (is there an input where they give different outputs)?
- Given a fully quantified Boolean formula (every variable is quantified with either \exists or \forall in some order), is it true?

2. Reduce the independent set problem to the vertex cover problem.
3. Reduce vertex cover problem to the set cover problem.
4. Suppose the following version of knapsack problem is NP-complete. Given a set of integer weights $w_{1}, w_{2}, \ldots, w_{n}$ and target weights W_{1}, W_{2}, is there a subset S of the weights whose sum is between W_{1} and W_{2}, i.e., $W_{1} \leq \sum_{i \in S} w_{i} \leq W_{2}$?
Using this fact, prove that the following load balancing problem is NP-complete. Given a set of integer loads $t_{1}, t_{2}, \ldots, t_{n}$ and a target makespan T, is there a way to distribute all the loads to two machines so that the maximum load on any machine is at most T ?
5. Integer programming: Given a set of linear inequalities in variables $x_{1}, x_{2},, x_{n}$, decide if there is an integer solution satisfying all of them simultaneously. For example the set

$$
\begin{array}{r}
0 \leq x_{1}, x_{2} \leq 1 \\
x_{1}-x_{2} \geq 0
\end{array}
$$

has an integer solution (1,0) (and also (1, 1$),(0,0)$).
Show that Integer Programming is NP-hard. You can try a reduction from SAT to this problem. Given a CNF Booelan formula ϕ, you need to generate a set S of linear inequalities and prove that ϕ is satisfiable if and only if the set S has an integer solution.
6. Reduce SAT problem to Directed Hamiltonian cycle problem.

