
CS218 Design and analysis of algorithms Jan-Apr 2024

Exercise sheet 1

Lecture 8, 9 (Jan 23, 25) Fibonacci, Integer Multiplication

1. Let us try to apply the divide and conquer approach on the integer multiplication problem. Suppose
we want to multiply two n-bit integers a and b. Write them as

a = a12n/2 + a0

b = b12n/2 + b0

The product of the two integers can be written as

ab = a1b12n + (a1b0 + a0b1)2n/2 + a0b0.

Can you compute these three terms a1b1, a1b0 + a0b1, a0b0, using only three multiplications of n/2
bit integers and a few additions/subtractions? If yes, then we will get an O(n1.58) time algorithm.

2. Can you find square of an n-bit integer a, using square subroutine on five n/3 bit integers and a few
additions/subtractions? You need to compute the following five terms using the square operation only
5 times.

P 2, PQ, 2PR+Q2, QR,R2.

3. Can you find multiplication of two n-bit integers, using the multiplication subroutine on six pairs of
n/3 bit integers and a few additions/subtractions? You need to compute the following five terms using
the multiplication operation only six times.

a0b0, a1b0 + a0b1, a0b2 + a1b1 + a2b0, a1b2 + a2b1, a2b2.

Now, do this with only five multiplications.

4. Solve the recurrences

• T (n) = 6T (n/3) +O(n).

• T (n) = 5T (n/3) +O(n).

• T (n) = 8T (n/4) +O(n).

• T (n) = 7T (n/4) +O(n).

Arrange the items in increasing order of complexity.

5. Can you find square of an n-bit integer a, using square subroutine on 2k-1 integers with n/k bits and
a some additions/subtractions? What’s the running time you get? What if you take k as something
like n/2? Does that give you a really fast algorithm?

6. Show that n2
√
logn is asymptotically smaller than n1.01. That is, show that there exists a number N ,

such that for all n > N ,

n2
√
logn < n1.01.

Do you think it works if we replace 1.01 with any constant greater than 1.

7. Write a program to compare different multiplication algorithms for multiplying 1024 bit integers. You
can try the school method, Karatsuba, Toom-cook, or any combination of these.

1



8. Matrix Multiplication. Let us say we have 8 numbers a1, a2, a3, a4, b1, b2, b3, b4 and we consider
these seven expressions.

p1 = (a1 + a4)(b1 + b4), p2 = (a3 + a4)b1, p3 = a1(b2 − b4), p4 = a4(b3 − b1)

p5 = (a1 + a2)b4, p6 = (a3 − a1)(b1 + b2), p7 = (a2 − a4)(b3 + b4)

(a) Compute the following four sums. This will be helpful later.

p1 + p4 − p5 + p7, p3 + p5, p2 + p4, p1 − p2 + p3 + p6

Now, we want to apply divide and conquer technique to matrix multiplication. Let A and B be two
n× n matrices, and we want to compute their product C = A× B. The naive algorithm for this will
take O(n3) arithmetic operations. We want to significantly improve this using divide and conquer.

A natural way to split any matrix can be this:

A =

(
A1 A2

A3 A4

)
,

where each Ai is an n/2 × n/2 matrix.

(b) Can you express the product matrix C, in terms of A1, A2, A3, A4 and B1, B2, B3, B4.

(c) Design an algorithm for matrix multiplication using divide and conquer which takes O(7log2 n) =
O(nlog2 7) = O(n2.81) time.

Polynomial mulitplication, convolution, Fast Fourier transform

9. Can you apply Karatsuba’s trick on polynomial multiplication and get a runtime bound better than
O(d2) for degree d polynomials.

10. Given probability distributions of two (discrete) random variables, we want to compute the probability
distribution for the sum of the two random variables. Do you see how convolution can be used to
compute this distribution.

11. Implementation of FFT. It is possible to do an iterative implementation of FFT, which is “in-place”.
That is, we can just work on the input array of length d and need only constant size extra memory.
Can you think about such an implementation?

12. Let P (x) = a0 + a1x + · · · + ad−1x
d−1 be a degree d − 1 polynomial. Let the dth roots of unity be

ω0, ω1, . . . , ωd−1. Let the evaluations of P (x) on the dth roots of unity be e0, e2, . . . , ed−1. That is, for
each 0 ≤ i ≤ d− 1

ei = P (ωi) = a0 + a1ω
i + · · · + ad−1ω

(d−1)i.

Define a new polynomial Q(y) as e0 + e1x+ · · · + ed−1x
d−1. Prove that for each 0 ≤ i ≤ d− 1

Q(ω−i) = e0 + e1ω
−i + · · · + ed−1ω

−(d−1)i = dai.

Hint: Useful facts to prove, ω−i = ωd−i, For any 1 ≤ i ≤ d− 1,
∑d−1

j=0 ω
ij = 0.

13. Suppose we want to evaluate P (x) = a0 + a1x + a2x
2 + a3x

3 at the fourth roots of unity 1,−1, i,−i.
Consider how FFT algorithm will compute these. We will represent the algorithm as a circuit, with
the a gate shown in figure 1. The gate labeled with α takes two numbers a and b (in that order) as
inputs and outputs two numbers a+ αb and a− αb (in that order).

2



a+ αb

a− αb

a

b

α

Figure 1: The operation that forms the building block of the FFT algorithm, represented as a gate labeled
with a root of unity α

The FFT circuit shown in Figure 2 shows the computation for evaluations of a degree 3 polynomial at
4th roots of unity. Fill in the empty circles with the appropriate input values and intermediate values.

P (i0)

P (i)

P (i2)

P (i3)

1

i

1

1

Figure 2: The FFT algorithm for a degree 3 polynomial P (x) evaluated at 4th roots of unity

The FFT circuit shown in Figure 3 shows the computation for evaluations of a degree 7 polynomial at
8th roots of unity. Fill in the empty circles with the appropriate input values and intermediate values.

3



P (ω0)

P (ω1)

P (ω2)

P (ω3)

P (ω4)

P (ω5)

P (ω6)

P (ω7)

1

ω1

ω2

ω3

1

ω2

1

ω2

1

1

1

1

Figure 3: The FFT algorithm for a degree 7 polynomial P (x) evaluated at 8th roots of unity. Here ω is the
primitive 8th root of unity.

4



Figure 4: Kleinberg Tardos: Divide and Conquer Chapter 5, Exercise 4.

5


