CS218 Design and analysis of algorithms Jan-Apr 2024

Exercise sheet 1

Lecture 8, 9 (Jan 23, 25) Fibonacci, Integer Multiplication

1.

Let us try to apply the divide and conquer approach on the integer multiplication problem. Suppose
we want to multiply two n-bit integers a and b. Write them as

a=a2"? + a
b=10b,2""? 4 b,
The product of the two integers can be written as
ab = a1b12" + (a1by + a0b1)2"/2 + agbo.

Can you compute these three terms a;by, ai1bg + agbi, agbg, using only three multiplications of n/2
bit integers and a few additions/subtractions? If yes, then we will get an O(n'-5®) time algorithm.

. Can you find square of an n-bit integer a, using square subroutine on five n/3 bit integers and a few

additions/subtractions? You need to compute the following five terms using the square operation only
5 times.
P2, PQ,2PR+ Q% QR, R

Can you find multiplication of two n-bit integers, using the multiplication subroutine on six pairs of
n/3 bit integers and a few additions/subtractions? You need to compute the following five terms using
the multiplication operation only six times.

agbg, a1bg + agb1, agbs + a1b1 + asbg, a1bs + asby, asbs.

Now, do this with only five multiplications.

. Solve the recurrences

e T'(n)=6T(n/3) + O(n).
e T(n)=5T(n/3) + O(n).
e T'(n) =8T(n/4) + O(n).
e T'(n) =7T(n/4) + O(n).

Arrange the items in increasing order of complexity.

Can you find square of an n-bit integer a, using square subroutine on 2k-1 integers with n/k bits and
a some additions/subtractions? What’s the running time you get? What if you take k as something
like n/2? Does that give you a really fast algorithm?

Show that n2Vv!°9" is asymptotically smaller than n'°'. That is, show that there exists a number N,

such that for all n > N,
n2\/logn < nl.Ol-

Do you think it works if we replace 1.01 with any constant greater than 1.

Write a program to compare different multiplication algorithms for multiplying 1024 bit integers. You
can try the school method, Karatsuba, Toom-cook, or any combination of these.

8.

10.

11.

12.

13.

Matrix Multiplication. Let us say we have 8 numbers a1, as,as, a4, b1, b2, b3, by and we consider
these seven expressions.

p1 = (a1 +aq)(by +bs), p2 = (az+as)bi, p3=ai(ba —bs), ps= as(bs—b1)
ps = (a1 + ag)by, pe = (a3 — ay)(b1 + ba), p7 = (a2 — aq)(bs + bs)

(a) Compute the following four sums. This will be helpful later.

pP1+ps—ps+pr, p3+Dps, Dp2+ps, P1—Dp2+p3+Ds

Now, we want to apply divide and conquer technique to matrix multiplication. Let A and B be two
n X n matrices, and we want to compute their product C' = A x B. The naive algorithm for this will
take O(n3) arithmetic operations. We want to significantly improve this using divide and conquer.

A natural way to split any matrix can be this:
(A A
= x)

(b) Can you express the product matrix C, in terms of Ay, Ay, A3, Ay and By, Ba, Bs, By.

where each A; is an n/2 x n/2 matrix.

(c) Design an algorithm for matrix multiplication using divide and conquer which takes O(7'°82") =
O(n'°827) = O(n*®!) time.

Polynomial mulitplication, convolution, Fast Fourier transform

Can you apply Karatsuba’s trick on polynomial multiplication and get a runtime bound better than
O(d?) for degree d polynomials.

Given probability distributions of two (discrete) random variables, we want to compute the probability
distribution for the sum of the two random variables. Do you see how convolution can be used to
compute this distribution.

Implementation of FFT. It is possible to do an iterative implementation of FF'T, which is “in-place”.
That is, we can just work on the input array of length d and need only constant size extra memory.
Can you think about such an implementation?

Let P(z) = ag + a1z + --- + aq_129"! be a degree d — 1 polynomial. Let the dth roots of unity be
Wl wh ... wd L. Let the evaluations of P(x) on the dth roots of unity be eg, es,...,eq_1. That is, for
each0<i<d-1

ei=PWw') =ag+aiw’ + -+ ag_w V0

Define a new polynomial Q(y) as eg + eyz + - -+ + eg_1297 1. Prove that for each 0 <i <d — 1
Qw ™) =eg+ew + -+ eg_1w 4TV = da,.
Hint: Useful facts to prove, w™* = w9 % Forany 1 <i<d—1, Z;l;é Wi = 0.

Suppose we want to evaluate P(x) = ag + a1z + asz? + a3z at the fourth roots of unity 1, —1,4, —i.
Consider how FFT algorithm will compute these. We will represent the algorithm as a circuit, with
the a gate shown in figure 1. The gate labeled with « takes two numbers a and b (in that order) as
inputs and outputs two numbers a + ab and a — ab (in that order).

Figure 1: The operation that forms the building block of the FFT algorithm, represented as a gate labeled
with a root of unity «

The FFT circuit shown in Figure 2 shows the computation for evaluations of a degree 3 polynomial at
4th roots of unity. Fill in the empty circles with the appropriate input values and intermediate values.

R
/

Figure 2: The FFT algorithm for a degree 3 polynomial P(z) evaluated at 4th roots of unity

The FFT circuit shown in Figure 3 shows the computation for evaluations of a degree 7 polynomial at
8th roots of unity. Fill in the empty circles with the appropriate input values and intermediate values.

Figure 3: The FFT algorithm for a degree 7 polynomial P(z) evaluated at 8th roots of unity. Here w is the
primitive 8th root of unity.

R
/
R
/

R R RS

4. You've been working with some physicists who need to study, as part of
their experimental design, the interactions among large numbers of very
small charged particles. Basically, their setup works as follows. They have
an inert lattice structure, and they use this for placing charged particles
at regular spacing along a straight line. Thus we can model their structure
as consisting of the points {1,2,3,...,n} on the real line; and at each of
these points j, they have a particle with charge g;. (Each charge can be
either positive or negative.)

They want to study the total force on each particle, by measuring it
and then comparing it to a computational prediction. This computational
part is where they need your help. The total net force on particle j, by
Coulomb’s Law, is equal to

- Caq; Cq.q;
F}_Z(}'—i)z EU‘_I'):!

i<f i>]

They've written the following simple program to compute F; for all j:

For:j = 4y ez n
Initialize P} to 0
Earil = il 25 Jois @i

If i = j then
Cq g :
Add 7= 12 to F
Else if { > j then
C g; g :
Endif
Endfor
Output F
Endfor

It's not hard to analyze the running time of this program: each
invocation of the inner loop, over i, takes O(n) time, and this inner loop
is invoked O(n) times total, so the overall running time is O(n?).

The trouble is, for the large values of n they're working with, the pro-
gram takes several minutes to run. On the other hand, their experimental
setup is optimized so that they can throw down n particles, perform the
measurements, and be ready to handle n more particles within a few sec-
onds. So they'd really like it if there were a way to compute all the forces
F; much more quickly, so as to keep up with the rate of the experiment.

Help them out by designing an algorithm that computes all the forces
F; in O(n log n) time.

Figure 4: Kleinberg Tardos: Divide and Conquer Chapter 5, Exercise 4.

