
CS218 Design and analysis of algorithms Jan-Apr 2024

Midsem solutions
Total Marks: 50 Time: 120 minutes

Question 1. Consider the following algorithm for multiplying two n × n matrices. It first splits both
matrices into nine smaller matrices, each of size n/3 × n/3. Then it does a constant number of additions
and subtractions of these matrices. Then it recursively applies the same algorithm to multiply 23 pairs of
n/3 × n/3 matrices (no one knows if smaller than 23 is possible). Finally, there are a few more (constant
number) additions and subtractions of n/3×n/3 matrices. When the recursion reaches to multiplying 1× 1
matrices, it multiplies them trivially.

[4 marks] Do a runtime analysis and derive an upper bound on the running time of this algorithm. You
can write your answer in the form O(nloga b) or O(nlog b/ log a).

[2 marks] Compare your answer with O(nlog2 7). Which one is asymptotically smaller?
Here are approximate values of log2 x for x = 2 to x = 24.
1, 1.58496, 2, 2.32193, 2.58496, 2.80735, 3, 3.16993, 3.32193, 3.45943, 3.58496, 3.70044, 3.80735, 3.90689,

4, 4.08746, 4.16993, 4.24793, 4.32193, 4.39232, 4.45943, 4.52356, 4.58496,

Answer 1. Let T (n) be the time taken by this algorithm for multiplying n × n matrices. Note that an
addition/subtraction of n/3 × n/3 matrices will take O(n2) time, because each entry can be computed in
constant time. Then, as per the description, we can write the following recurrence, for some constant c

T (n) = cn2 + 23 T (n/3).

Solving this,

T (n) = cn2 + 23 T (n/3)

= cn2 + 23cn2/9 + 23× 23 T (n/9)

...

= cn2 + 23cn2/9 + (23/9)2cn2 + · · ·+ (23/9)k−1cn2 + (23)k T (n/3k)

= cn2
(23/9)k − 1

23/9− 1
+ (23)kT (n/3k)

= cn2
(23/9)k − 1

23/9− 1
+ (23)kT (1) (taking n = 3k)

≤ 23k(3c/20 + T (1)) (since n2 = 32k = 9k)

= O(23log3 n)

= O(nlog3 23)

= O(nlog 23/ log 3)

Answer in any of the last two forms acceptable. It is completely fine if the steps for solving recurrence
are not shown.

1



Comparing with O(nlog2 7).

nlog2 7
?
≥ nlog3 23

log2 7
?
≥ log3 23

log 7/ log 2
?
≥ log 23/ log 3

log 7× log 3
?
≥ log 23× log 2

log 7× log 3
?
≥ log 23

2.81× 1.59
?
≥ 4.52

4.46
?
≥ 4.52

Thus, O(nlog2 7) is asymptotically smaller (faster).

Question 2. In complexity analysis or even in the implementation of algorithms, often we assume that
the input size is a power of 2. Suppose the input size is n which is not necessarily a power of 2. Let n′ ≥ n
be the smallest integer that is a power of 2.

[2+2 marks] What can we say about n′? Is it O(n), O(n2), O(2n), or something in between? Explain
in a 1-2 line argument.

Answer 2. Let k be such that 2k−1 < n ≤ 2k = n′. Then, n′ = 2k = 2× 2k−1 < 2n. Hence, it’s O(n).

Figure 1: Keyboard with edges showing the adjacent characters.

Question 3. Consider an instance of the edit distance problem where strings are made of english alphabet
and the edit costs are as follows.

• inserting or deleting a character – cost 2

• substituting a character with a different character

– if the two characters are adjacent on the keyboard then – cost 1 (see Figure 1, where edges show
the pairs of characters which are adjacent)

– otherwise – cost 3

[7 marks] Find a way to modify string LINUX to DOUBT with cost at most 10. You should clearly
show the sequence of edit steps with their costs.

Only 4 marks for cost 11 and only 2 marks for any higher cost.

LINUX
cost 2−−−−−−→

Insert D
DLINUX

cost 1−−−−→
L →O

DOINUX
cost 1−−−−→
I →U

DOUNUX

2



a+ αb

a− αb

a

b

α

Figure 2: The operation that forms the building block of the FFT algorithm, represented as a gate labeled
with a root of unity α

DOUNUX
cost 1−−−−→
N →B

DOUBUX
cost 3−−−−→
U →T

DOUBTX
cost 2−−−−−−→

Delete X
DOUBT

The edits can be done in any order, not necessarily from left to right. There can be multiple different
solutions. There is also a solution with cost 9, which also gets full marks.

Question 4. Suppose we want to evaluate a degree 7 polynomial P (x) = a0 + a1x + a2x
2 + · · · + a7x

7

at the eighth roots of unity 1, ω, ω2, . . . , ω7, where ω = e2πi/8. Consider an iterative implementation of the
FFT algorithm. We will represent the algorithm as a circuit, with the gate shown in Figure 2. The gate
labeled with α takes two numbers a and b (in that order) as inputs and outputs two numbers a + αb and
a− αb (in that order).

The FFT circuit shown in Figure 3 shows the computation for evaluations of P (x) at 8th roots of unity.
The input to the algorithm will be the values in the leftmost circles, which are the coefficients of P (x), in
some order. The output will be the values in the rightmost circles, which will be the evaluations of the
polynomial P (x).

[8× 1 marks ] Write what should be the values of j0, j1, j2, j3, j4, j5, j6, j7 in Figure 3.
j0 = 0,
j1 = 4,
j2 = 2,
j3 = 6,
j4 = 1,
j5 = 7,
j6 = 3,
j7 = 5,

Question 5. Suppose we want to create a visual representation of a certain district-wise statistics, say
number of healthcare workers (HW) per 10000 population. We want to color code districts according to this
number. Say, for example, all districts with HW number between 25-30 will be colored dark blue and all
districts with HW number between 31-33 will be colored light blue, and so on. The choice of these ranges will
depend the distribution of the data. Given the number of colors k, we would like to find a good arrangement
of data into k color classes. We will do it by ensuring that the variance in each color class is small.

Let a1, a2, . . . , an be the HW numbers for the n districts. Without loss of generality, let us assume
a1 ≤ a2 ≤ · · · ≤ an. Then naturally, we want each color class to be of the form {ai, ai+1, . . . , aj} for some
i, j. Let S1 ∪S2 ∪ · · · ∪Sk be such a partitioning of {a1, a2, . . . , an} into k color classes. Then, we define the
following objective function:

k∑
h=1

(∑
a∈Sh

(a− µh)2

)
,

where µh is the average of the numbers in Sh. We want to find the partition that minimizes the above ob-
jective function. Design an efficient algorithm that for given a1 ≤ a2 ≤ · · · ≤ an and k, outputs the optimal
partition, i.e., the ranges for color classes S1, S2, . . . , Sk. What is the running time of your algorithm?

3



aj0

aj1

aj2

aj3

aj4

aj5

aj6

aj7

P (ω0)

P (ω1)

P (ω2)

P (ω3)

P (ω4)

P (ω5)

P (ω6)

P (ω7)

1

ω1

ω2

ω3

1

ω2

1

ω2

1

1

1

1

Figure 3: The FFT algorithm for a degree 7 polynomial P (x) evaluated at 8th roots of unity. Here ω is the
primitive 8th root of unity.

Useful to note:
∑
a∈Sh

(a− µh)2 = (
∑
a∈Sh

a2)− (
∑
a∈Sh

a)2/|Sh|.

[10 Marks] for O(n2k) algorithm, only 8 marks for O(n3k), 6 marks for any larger polynomial time. If
complexity analysis is not done for some part of the algorithm, we will assume whatever is the trivial upper
bound.

Since it was not clarified in the question, there are two ways to interpret it: (1) the set Sjs are all
non-empty, i.e., we want exactly k colors and (2) the set Sjs can be empty, which means we want at most k
colors. Both interpretations are fine.

Let us first consider Sjs as all non-empty. We can categorize the possible solutions S1 ∪ S2 ∪ · · · ∪ Sk
based on the number of elements in the last color, i.e., Sk. Let C(n, k) be the optimal objective value for n
data points and k color classes. Let D(i, j) be the sum of squared deviations for the color class that contains

4



ai, ai+1, . . . , aj , that is,

D(i, j) = (

j∑
h=i

a2h)− (

j∑
h=i

ah)2/(j − i+ 1)

Then we can write
C(n, k) = min

`≥1
{C(n− `, k − 1) +D(n− `+ 1, n)}.

In the bottom up implementation, we can compute C(·, ·) values in increasing order of n and k.
Let us first pre-compute the D(i, j) values for all i ≤ j. To do this, we just need to compute two terms∑j
h=i a

2
h and (

∑j
h=i ah) for each i ≤ j. These can be computed in O(n2).

for i← 1 to n {
sum ← 0;
sum sq ← 0;
for j ← i to n {

sum ← sum +aj ;
sum sq ← sum sq +a2j ;

D[i,j] ← sum sq − sum2/(j − i+ 1);
}
}

Pseudocode is not expected here, but it should be clearly mentioned how all the sums can be computed
in O(n2) time. If not explained, O(n3) will be assumed.

Now, we describe how to compute the C(·, ·) values. C[i, j] will store the optimal objective value dividing
first ipoints into j color classes. We will also store L[i, j] for each i, j, the optimal choice of the number of
words in the last cluster.

Initialization: C[0, 0] ← 0; C[0, j] ←∞ for j > 0;
for i← 1 to n {

for j ← 1 to k {
C[i, j]← min`≥1{C[n− `, k − 1] +D[n− `+ 1, n]}.
L[i, j]← the optimal choice of ` in the above line.
}
}

Once we have compute the L[i, j] values, we can compute the optimal partition as follows.

i← n;
for j ← k to 1 {

The jth color class Sj has L[i, j] data points, that is, the points from i− L[i, j] + 1 to i.
i← i− L[i, j]
}

2 marks for O(n2) time computation of D[i, j]. 4 marks for writing the correct recurrence. 2 marks
for correct implementation for computing C[i, j], including initialization. 2 marks for reconstructing the
partition, using L[i, j] values.

Here the implementation was from right to left. Alternatively, an implementation can be done from left
to right. That is, categorization based on the number of points in the first color class.

Now, let’s see an implementation for the second interpretation: the number of colors should be at most
k.

Initialization: C[0, 0] ← 0; C[0, j] ← 0 for j > 0;
for i← 1 to n {

for j ← 1 to k {

5



C[i, j]← min`≥0{C[n− `, k − 1] +D[n− `+ 1, n]}.
// minimization over ` ≥ 1 is also correct here.
L[i, j]← the optimal choice of ` in the above line.
}
}

Once we have compute the L[i, j] values, we can compute the optimal partition as follows.

i← n;
for j ← k to 1 {

The jth color class Sj has L[i, j] data points, that is, the points from i− L[i, j] + 1 to i.
i← i− L[i, j]
}

Wrong algorithm: Many students have used the following idea, which is wrong. Below we show an
example, where it doesn’t give the optimal coloring.

For putting i data points in j color classes, we can consider two cases: (i) when the jth data points forms
its own color class and (ii) when jth data point falls into the color class of the j − 1th data point. We take
the minimum of the two. Let L[i, j] be the number of points in the last color, when compute the optimal
coloring for first i points with j color classes.

C(i, j) = min{C(i− 1, j − 1), C(i− 1, j) +D(i− L(i− 1, j) + 1, i)−D(i− L(i− 1, j) + 1, i− 1)}.

The problem with this update rule is that when we extend the optimal coloring for (i − 1, j) by just
inserting the ith data point in the last color, it need not be optimal for first i points.

Example: 0, 2, 4, 6, 7, 10.
Observe that the optimal coloring for the six points is (0, 2, 4), (6, 7, 10). But, the optimal coloring for

the first 5 points is (0, 2), (4, 6, 7). Hence, the optimal coloring for the six points is not covered in either of
the two cases.

no marks for this solution.

Question 6. Suppose you own a function hall for which you have received several booking requests in
advance. Each request is asking for a one day booking and comes with an interval (i, j), which means, they
need the hall for one of the days among day i, day i + 1, . . . , day j. Naturally, the hall can cater to only
one of the requests on any particular day. You want to accept the maximum possible number of booking
requests.

You want to design an O(n log n) time algorithm for this, where n is the number of requests. The input is
(s1, f1), (s2, f2), . . . , (sn, fn). The output should say which requests are accepted and which day is assigned
to an accepted request.

Example 1. (1, 4), (1, 2), (1, 2). Here all requests can be accepted and days assigned can be 3, 1, 2.
Example 2. (1, 3), (2, 3), (1, 2), (2, 2). Here, for example, first three requests can be accepted and days

assigned can be 1, 3, 2.
Example 3. (1, 4), (2, 3), (1, 3), (2, 2). Here, all requests can be accepted and days assigned can be

4, 3, 1, 2.
Consider the following greedy ideas:

(i) Process the requests in increasing order of their starting days si (for tie breaks, use increasing order
of interval lengths). If any day in the interval is available then assign the first available day for the
request, otherwise reject this request.

(ii) Process the requests in increasing order of their ending days fi (for tie breaks, use increasing order
of interval lengths). If any day in the interval is available then assign the first available day for the
request, otherwise reject this request.

6



(iii) Process the requests in increasing order of their interval lengths (fi − si + 1) (for tie breaks, use
increasing order of si). If any day in the interval is available then assign the first available day for the
request, otherwise reject this request.

[2+2 marks] Two of these ideas don’t work. For each of the two, give one example and show that the
optimal solution is larger than what the greedy gives.

[2+4 marks] Which one is the correct idea? Prove its correctness.
You can prove correctness as follows: consider an optimal assignment of days to requests, say O∗. Modify

the optimal solution so that it agrees with the first greedy step and remains optimal. You will need to consider
two cases, the case when the first request is not assigned, and the case when it is assigned to a different day.

Rest of the proof is by induction, which is not expected here.
[5 marks] Now, consider another version of this problem. Each request also comes with an offer price

pi, that they are willing to pay for the booking. You want to maximize the total price you can get. Design a
polynomial time algorithm (proof of correctness not required, but marks will be given only if the algorithm
is correct).

Ideas (i) and (iii) don’t work. Here are the respective counter examples.

• Example 3 from the question is a counter example for strategy (i).

• For strategy (iii), the counter example is (3, 4), (1, 3), (1, 3), (1, 3).

The correct strategy is (ii). Correctness: let the optimal assignment of days to requests be O∗. The
greedy algorithm first takes earliest ending request I1 and assigns it the first available day, say d1. Case
one, when I1 is not assigned any day in O∗. Then in O∗, the day d1 must have been assigned to some other
request ending after I1, say I2. We can remove d1 from I2 and assign it for I1. Total number of assigned
requests remain same.

Case two, when the request I1 is assigned to a day d2, which comes after d1. Suppose there is another
request I2 assigned to day d1. We know that ending day of I2 is after I1, and hence after d2. Hence, it is
possible to move request I2 to day d2 and move request I1 to day d1.

In both cases, the number of assigned requests remain same. And the modified solution agrees with the
greedy first step. As mentioned in the question, the rest of the proof works by induction.

Part (b).
Algorithm 1: Greedy with greedy. Process the requests in decreasing order of prices. Let S be set of

requests selected so far, which is initially empty. When we are at ith request, test whether it is possible to
assign a day to each of the requests in S ∪ {i}. If possible, the put request i in S, otherwise discard it.

How do we test if it is possible to assign a day to each of the requests in a given set. This can be done
with the algorithm described in part (a), i.e., by sorting with respect to ending day.

Note that in this algorithm, we are not maintaining a list of assigned days to requests. We are just
maintaining a list of requests, such that it is possible to assign days to all of them.
Pseudocode with two functions isSchedulable() and MaxPrice().

isSchedulable (list of requests S)
// takes a list of requests with intervals as input. It outputs yes if and only if it is possible to assign a

distinct day to each request in S

• Sort the requests in S in increasing order of ending days (break ties arbitrarily).

• Process the requests in this order. For each request, assign it the first available day in its interval. If
no day is available for a request, then return False;

• return True.

7



MaxPrice (list of requests L with prices)
// takes a list of requests with intervals and prices as input. It outputs the maximum possible total price

that can be obtained by assigning distinct days to the requests.

• Sort the requests in L in decreasing order of prices (break ties arbitrarily).

• Initialize S as an empty set.

• for r in L

if isSchedulable({r} ∪ S) then S ← S ∪ {r}

• return the total price of S.

Proof of correctness is left as an exercise.

Algorithm 2: augmentation
This algorithm is similar to the max flow algorithm (or the bipartite matching algorithm). This solution

was not really expected.
Go over the requests in decreasing order of prices and maintain an assignment of days to requests. For

a request r, assign an arbitrary day available in its interval. If no day is available then we can look for
another request r′ such that r′ is currently assigned to a day d from the interval of r and moreover, r′ has
an unassigned day d′ in its interval. If we are able to find such r′ then we can re-assign day d to request r
and assign day d′ to request r′.

We need to generalize this idea and look for a possibly longer sequence of swaps to reach to an available
day. This is called augmentation, which is formally defined as follows. We want to find a sequence of requests
(r = r0, r1, r2, . . . , rk) and a sequence of days (d1, d2, . . . , dk+1) such that

• Day di is currently assigned to request ri for 1 ≤ i ≤ k.

• Day dk+1 is currently unassigned.

• Day di lies in the interval of request ri−1 for 1 ≤ i ≤ k + 1.

If we find this sequence then we can do a reassignment of days as follows: assign di to ri−1 for 1 ≤ i ≤ k+ 1.
How do we find such an augmenting sequence? You can model this problem as finding a path (from r to

an unassigned day) in a directed graph, and then, you can use any algorithm like DFS. If there is no such
augmenting sequence, then we reject the current request.

The proof of correctness of this algorithm is similar (actually simpler) to the correctness of max flow
algorithm.

8


