CS218 Design and analysis of algorithms Jan-Apr 2024

Quiz 1 solutions
Total Marks: 20 Time: 55 minutes

Instructions.

e Please write your answers clearly and concisely.

Question 1 [5 marks]. There are n students in a class, with roll numbers from 1 to n. There was a quiz
which exactly n — 1 students attended. We have a spreadsheet where these n — 1 roll numbers are written
in a column in increasing order (from row 1 to row n — 1). You need to find the roll number of the absent
student. How will you do this by reading only O(logn) rows in the spreadsheet?

Answer 1 . Check the n/2th row. If the roll number is greater than n/2 then the missing roll number is
between 1 and n/2. Otherwise it’s between n/2 4+ 1 and n. We can use this idea to do a binary search for
the missing roll number. When our search range for the missing roll number is between [i, j], then check the
row number mid = | (i + j)/2], if the roll number present is greater than [(i 4+ j)/2|, then the new search
range is the left half [¢, mid], otherwise it’s the right half [mid + 1, j]. Since, search range reduces by a factor
of 1/2 with every query, we will have to read only O(logn) rows.

Full marks if the criterion for choosing the left or right half is correctly described. If the condition is
correctly checked but the half is incorrectly chosen, then 3 marks.

Pseudocode (not expected in the solution)

Intialize start < 1; end < n;
while(start < end){
mid + |(start + end)/2];
Check the row number mid.
If the roll number present is more than mid then end < mid.
else start < mid + 1.

}

return start;

Question 2 [5 marks]|. Suppose there is a trader for a particular commodity, whose license allows them
to buy it only once and sell it only once during a season. Naturally, the commodity can be sold only after
it is bought. The price of the commodity fluctuates every day. There is also a rule that one cannot sell the
commodity for more than twice the purchase price. So, if they buy it on day ¢ and sell it on j, then the
profit they make is min{p;, 2p;} — p;, where p; and p; are the prices for the i-th and j-th days, respectively.
The trader wants to compute the maximum profit they could have made in the last season.

Design an O(n)-time algorithm, where the input is the list of prices {p1,pa2,...,pn} for the n days in the
last season, and the output is the maximum possible profit.

Sample input: Prices: 70, 100, 140, 40, 60, 90, 120, 30, 60.

Output: Max profit: 70

Answer 2. In this problem, the choice of the order (left to right, or right to left) seems to be quite
important.

Idea. Suppose we already have the solution for last n — 1 days. That is, we know the maximum profit
when buying and selling both happen in last n — 1 days, say profit,,_;. To find the solution for n days, we
now need to consider the case that the trader buys on day 1 (definitely cannot sell on day 1). If they buy
on day 1, the purchase price will be p;. Then to get the maximum profit, they should sell it on a day which
has the maximum price among the last n — 1 day, say it is p;. We can also assume that this maximum price
is already computed by the subproblem. Then, as mentioned in the problem, the profit will be

min{p;, 2p;} — pi.

We can compare this with profit,_; and give the maximum of the two as the final answer.
The time complexity recurrence seems to be T'(n) = T'(n — 1) + O(1), which gives O(n).

Implementation: We go over the list from right to left and maintain the following: (i) max-profit (ii)
max-price. When we are at the i-th day, the two variables are updated as follows:
selling-price <— min{max-price, 2p; }
max-profit < max{max-profit, selling-price — p;}
max-price < max{max-price, p; }.

In each iteration the update is in constant time. Hence, the running time is O(n).

Pseudocode

Initialize max-profit <— 0; max-price < py;

for (i < n—1to 1){
selling-price +— min{max-price, 2 X p;};
max-profit «+ max{max-profit, selling-price — p; };
max-price < max{max-price, p; }.
}

return max-profit;

Solutions in any of the above three ways are acceptable.
If you go over the array from left to right, the update will more complicated. Possibly you can get
O(nlogn) time. Divide and conquer will also give O(nlogn).

Question 3 [74+3 marks|. A subsequence of a given sequence is obtained by deleting some elements from
the sequence, without changing the order of the remaining elements. For example, (6, 1, 8) is a subsequence
of (3, 6, 1, 5, 8, 2). An increasing subsequence is one where the elements are in increasing order. For
example, the (6, 8) is an increasing subsequence of (3, 6, 1, 5, 8, 2).
For a given length-n array of distinct integers, for any 1 < i < n, let S; be the number of increasing
subsequences ending at the i-th element.
For example, in the sequence (3, 6, 1, 5, 8, 2), there are 8 increasing subsequences ending at the 5-th
element.
(8) (3, 8)
(6, 8) (1, 8)
(5, 8) (3, 6, 8)
(3,5,8) (1,5,8)
Given the sequence (aq,as,...,a,) in an array, we want to design an algorithm to compute the number
S; for every i € {1,2,...,n}, using a balanced binary search tree (BST). As we go over the given array, we
will keep inserting the new elements in the BST (with array element as the key value).
(i) What all information should we store at the nodes of the BST, so that when we insert a; in the BST,
we are able to compute S; in O(h) time, where h is the height of the tree. How will you compute S;?
(i1) When we insert a; in the BST, how should we update the information in the nodes of BST. Argue
that it is doable in O(h) time, where h is the height of the tree.

Answer 3. (i) We assume that each node has a pointer to its parent, left child, and right child in the BST
(it is fine if this is not written explicitly). For the node X with value a;, we store the following information:

e X.subseq < the number of increasing subsequences ending at a;, the key value of node X.
e X.subtree-sum « the sum of Y.subseq for all nodes Y in the subtree rooted at X (including X itself).

Actually subseq is not essential, as it can be obtained from subtree-sum of the two children and the node
itself.

2 marks if the subtree-sum is mentioned clearly.

When we insert a;, we can compute .S; with the following formula.

S; =1+ Z Sj
J<i,
a;j<a;
Here, 1 is for the subsequence with single element a;. Then we count all increasing subsequences which can
be appended before a;.

2 marks for the above formula, even if it’s not written explicitly.

To compute this sum, Instead of going over all such j, we will make use of subtree sum information.

Initialize S; < 1.

Follow the path from the a; node to the root. For all nodes Z which are on this path, and whose key
value is smaller than a;, we add Z.subseq and (Z.left).subtree-sum to S;, where Z.left is the left child of Z.
This is because all the nodes in the subtree rooted at Z.left have smaller key value than a;.

3 marks for this update.

Clearly, the computation is in O(h) time.

(ii) When we insert a;, the subseq field for this node is set to be S; computed in the first part. Also the
subtree-sum at this node will be S;, as there are no children yet.

Now, the subseq field at any node does not need to updated. We only need to update the subtree-sum
field. Follow the path from the a; node to the root. For all nodes Z on this path, we add S; to Z.subtree-sum.

Clearly, the update can be done in O(h) time.

3 marks for this update.

