
CS218 Design and analysis of algorithms Jan-Apr 2024

Quiz 2 solutions
Total Marks: 20 Time: 55 minutes

Instructions.

• Please write your answers concisely.

Que 1. Consider the flow network in Figure (1a) with a source s and a sink t. The edge capacities are
shown on the edges. Figure (1b) shows an s-t flow in the same network with flow values indicated on the
edges.

s v1 v2

v3 v4 v6

t

20 20

10

15

20

30 10

10

25

(a) A flow network with capacities on the edges

s v1 v2

v3 v4 v6

t

10 20

10

10

10

20 0

10

20

(b) A flow network, with current flow values
shown on the edges.

Figure 1: Network Flow

(a) [2 mark]. Construct the residual graph with respect to the flow shown in Figure (1b) and capacities
shown in Figure (1a). Recall that any forward/backward edges with zero capacity are not kept in the residual
graph.

(b) [1 mark]. Give a short argument to prove that maximum s-t flow value of this network (capacities
in Figure (1a)) is 30.

(c) [1 marks]. You are allowed to increase capacity of any one edge by 1 unit. Which edge will you
choose so that the maximum flow value will increase by 1 unit.

Ans 1. (a)

s v1 v2

v3 v4 v6

t

10

10

1020 5
10

20

10 10

10

5

10

10

10

5
20

Figure 2: Residual network with residual capacities on the edges

If one has shown only forward edges, 0.5 out of 2 marks.

1



(b). In the given flow assignment (Figure 1b), the outgoing flow from s is indeed 30. And we see that
in the residual network with respect to this flow (Figure 2), there is no path from s to t. Hence, there is no
way to increase the flow further.

Alternate argument. In the given flow assignment (Figure 1b), the outgoing flow from s is indeed 30.
In the capacity network (Figure 1a), we see an s-t cut, {s, v1, v3} whose total outgoing capacity is 30. Hence,
30 is the maximum s-t flow.

Alternatively, one can give the cut {s, v1, v3, v4, v6} as a cut with outgoing capacity 30.
(c) [1 marks]. (v1, v2)

Que 2 [3 marks]. SAT stands for the satisfiability problem. Suppose a problem X is in NP. Then say
True or False for each of the below.

(a) X certainly cannot be solved in polynomial time.

(b) If X can be solved in polynomial time then SAT can be solved in polynomial time.

(c) X may or may not be NP-complete.

(d) If SAT can be solved in polynomial time then X can be solved in polynomial time.

(e) To show that X is NP-complete, it is sufficient to show that X reduces to SAT.

(f) If X is NP-complete then SAT reduces to X.

Ans 2. No explanation was required.

(a) False

We know that every problem in P is also in NP.

(b) False

For example, X can be adding two numbers. How can that help with solving SAT.

(c) True

Some problems in NP are NP-complete, while some others are not (known to be)

(d) True

Since SAT is NP-complete, every problem in NP can be converted to SAT, and hence can be solved if
there is an algorithm for SAT.

(e) False

To show NP-completeness, we should show that SAT (or any other NP-complete problem) reduces to
X.

(f) True

By definition of NP-complete, every problem in NP, including SAT, reduces to X.

Que 3. You have collected some statistics about populations in different districts and in different age
groups. These numbers are recorded in multiples of one lakh and they are written in a matrix. See the below
table, for example.

Age group 1 Age group 2 Age group 3 Sum
District 1 18.74 10.38 5.88 35.00
District 2 15.29 7.00 5.71 28.00
District 3 14.97 8.62 6.41 30.00

Sum 49.00 26.00 18.00 93.00

2



For simplicity, assume that the row sums and the column sums are all integers. The census rounding
problem is to round all the entries without changing the row sums and column sums. Each fractional number
can be rounded up or down. Integers must remain as it is. A good rounding scheme for above example is as
follows.

Age group 1 Age group 2 Age group 3 Sum
District 1 18 11 6 35.00
District 2 16 7 5 28.00
District 3 15 8 7 30.00

Sum 49.00 26.00 18.00 93.00

The goal is to prove that this is always possible. We will do this in two steps.
(a) [4 marks]. First assume that each matrix entry xi,j satisfies 0 ≤ xi,j < 1, and row sums and column

sums are integers. We want to round each nonzero entry to either 0 or 1, without changing the row sums
and columns sums. Can you check whether this is possible, using a max flow computation in some network?
Recall that when the capacities are integral then the max flow algorithm outputs an integer flow (each edge
has a flow with integer value). Can you argue that the desired rounding is always possible?

Ans 3(a). Construct a flow network where we have one vertex for each row, say ri and one vertex for
each column, say cj . Additionally, we have a source vertex s and a sink vertex t. From s we have an edge to
each ri, whose capacity is the row sum of the ith row. Similarly, we have an edge from each cj to t, whose
capacity is the column sum of the jth column. From ri to cj , add an edge with capacity 1, if and only if the
(i, j) matrix entry is nonzero.

-1 for not taking care of the zero entries.
Note that given matrix entries give us a valid flow in the network (the edge (ri, cj) has flow of xi,j units).

Here total outgoing flow from s is equal to
∑

i(ith row sum) =
∑

j(jth column sum). This is actually the
maximum flow, because total outgoing capacity of s is the same.

If we run the maximum flow algorithm on this network, we will get an integral flow because capacities
are integral. Thus, each each (ri, cj) will have a flow of 0 or 1 units, let us denote it by x′i,j . By flow
conservation, we see that x′i,j values will satisfy row sums and column sums (originally zero entries will
remain zero because we did not have edges for them). Thus, we have the desired rounding.

(b) [2 marks]. Now coming to the general case when there is no bound on the matrix entries (some of
the entries may be integers) and row sums and column sums are integers. Show that it is possible to round
each entry α to either dαe or bαc, without changing the row sums and column sums.

Ans 3(b). In this case, from each entry α, we subtract bαc. In particular integral entries will become
zero and non-integral entries will fall between 0 and 1. The row sums and column sums are appropriately
adjusted. Now, we run the rounding from part (a). And then whatever we had subtracted from matrix
entries, we add them back. Recall from part (a) that zero remains zero and any nonzero entry becomes 0 or
1. Hence, finally in our matrix, α will be rounded to either dαe or bαc. The row sums and column sums are
preserved as in part (a).

Further extension: It was not asked in the question but you can try to solve the case when row sums
and columns sums are not necessarily integral. Now, we want to round the entries so that any entry α will
be rounded to either dαe or bαc and any sum s becomes either dse or bsc. Is this possible?

Fun fact: this kind of rounding is not always possible if we have data along 3 or more axes, and to check
whether it is possible is NP-hard.

Que 4. Consider a generalization of the interval scheduling problem. You have a resource and there are
multiple requests to use that resource. Each request comes with a set of intervals. For example, first request
wants to use the resource from 10 am to 11 am, and then from 2 pm to 3 pm. If you accept a request, then
you will have to provide the resource for all the desired intervals by that request. Naturally, you can accept
any two requests only if none of their intervals have any overlap.

Example:
Request 1: 10-11, 14-16
Request 2: 8-9, 15-18

3



Request 3: 11-12, 17-18
Here, you can accept Request 1 and Request 3.
Decision problem: given a set of requests with corresponding sets of intervals, and a number k, is it

possible to accept at least k requests?
(a) [1 marks]. Show that the above problem is in NP.
(b) [6 marks]. Prove that the above problem is NP-hard. For example, you can reduce the independent

set problem to the above problem.
(a). The problem is in NP as follows. For the yes inputs, the proof can be a list of k requests. The

verifier can verify in polynomial time that no two requests have any overlaps in their intervals.
(b). Reduction from independent set problem to the given problem. We will start with a given graph G

and compute a set of requests RG, each with its set of intervals, such that

• if G has an independent set of size k then it is possible to accept k requests from RG

• and if it is possible to accept k requests from RG then G has an independent set of size k.

Let us create one request rv for each vertex v in G. Suppose the graph has m edges. Divide the day into
m disjoint intervals. For each 1 ≤ j ≤ m, if the jth edge is between vertex u and v, then we insert the jth
interval in the list of request ru and also in the list of request rv.

From the construction it is clear that there is an edge between u and v in G if and only if some interval
from ru overlaps with (is equal to) some interval from rv (in fact, the two intervals are equal).

Suppose G has an independent set of size k. Consider the corresponding set of k requests. Since there is
no edge in these k vertices, no two requests among these k will have any intervals in common (and hence,
no overlaps). Thus, these k requests can be accepted together.

Suppose there are k requests which can be accepted. Then no two of these requests have any intervals
overlapping. Hence, the corresponding k vertices in G have no edges among them, which gives us an
independent set.

This finishes the proof of correctness.

4


