NP, NP-completeness and
 a Million Dollar Question

March 7, 2024

Objectives

- How to design algorithms.

History of P

- Notion of Efficient Algorithms there since ancient times
- Addition, Multiplication, GCD, Repeated squaring (Pingala), Astronomical calculations.
- [1950s] Dynamic Programming, Shortest Path, Simplex algorithm, Minimum spanning tree
- [1960s] FFT, Scheduling, Network flow, bipartite matching, and related combinatorial problems
- Doing better than brute force search

P (Polynomial time solvable)

- Edmonds [1965] proposed polynomial time as a characterization of efficient computation
- "It is by no means obvious whether or not there exists an algorithm whose difficulty increases only algebraically with the size of the graph"
- "For practical purposes the difference between algebraic and exponential is more crucial than between finite and non-finite."

P (Polynomial time solvable)

- Why polynomial time?
- if a procedure is considered efficient, running it n times might also be considered efficient.
- Polynomial time remains independent of computation model.
- Another perspective: if you double the input size, the running time gets multiplied by a constant.
- If the running time is n^{100}, is it still efficient?
- In reality, we never get such running times.

Not in P

- [1960s] For many problems, people could not find better than exponential time algorithms.
- There was no clear explanation why some problems are in P , while others are not.
- Try to guess, whether a polynomial time algorithm is known or not.

In P or not in P ?

- Roommate Allocation:
- n students, some like each other, some don't.
- Allocate rooms s.t. roommates like each other.
- Polynomial time algorithm known or not?
- Yes [Edmonds 1965]

In P or not in P ?

- Triple Roommate Allocation:
- n students, some like each other, some don't.
- Allocate rooms s.t. all 3 roommates like each other.
- Polynomial time algorithm known or not?
- No

In P or not in P ?

- Given a graph and a number k, is there a path of length k ?
- Not known to be in P
- Given a graph with s and t vertices, are there two edge disjoint paths from s to t ?
- In P
- Given a graph and four vertices $\mathrm{s}_{1}, \mathrm{~s}_{2}, \mathrm{t}_{1}, \mathrm{t}_{2}$, are there disjoint paths $\mathrm{s}_{1} \rightsquigarrow \mathrm{t}_{1}$ and $\mathrm{s}_{2} \rightsquigarrow \mathrm{t}_{2}$?
- In P
- Same problem in directed graphs?
- Not known to be in P

In P or not in P ?

- Given a graph with edges colored red or blue, is there an s-t path with alternating red and blue edges?
- In P
- Same problem in directed graphs?
- Not known to be in P

In P or not in P ?

- Given a number (in binary), is it factorizable?
- In P (only in 2002)
- Given a number (in binary), find its factors?
- Not known to be in P

In P or not in P ?

- Given a set of intervals, largest subset of disjoint intervals
- In P
- Given a graph, find the largest independent set (vertices sharing no edges).
- Not known to be in P
- Given a graph, find the largest set of edges not sharing any vertex
- In P
- Given a graph, find the largest set of triangles not sharing any vertex
- Not known to be in P

In P or not in P ?

- Set of trains arriving / departing at a station, can we schedule using k platforms ?
- In P
- Given a list of courses, and pairs which should avoid a clash, can we schedule using k time slots?
- Not known to be in P
- Also known as graph coloring (easy for 2 colors)
- n Jobs, m processors, not every processor can handle every job. Processors can work in parallel. Can we finish in k units of time?
- In P (via Network Flow)

In P or not in P ?

- Given a set of integers, is there a subset with sum equal to zero?
- Not known to be in P
- Given a set of integers (loads), distribute them among m machines, so that maximum total load (makespan) is minimized.
- Not known to be in P
- known as load balancing
- Given a set of integers, partition them into two groups with equal sum
- Not known to be in P
- Known as Partitioning

In P or not in P ?

- Minimum weight spanning tree
- In P
- Steiner Tree: Given a subset of vertices (terminals), find the minimum weight tree that connects the terminals
- Not known to be in P
- Traveling Salesperson problem: given a list of cities, you have to visit every city and come back with minimum cost
- Not known to be in P

In P or not in P ?

- Satisfiability: given a Boolean formula, is it satisfiable?
- Not known to be in P
- Minimum circuit size: Given a Boolean function, is there a circuit for it with at most k Boolean operations?
- Not known to be in P

Towards NP

- [1960s] For many problems, people could not find better than exponential time algorithms.
- Subset sum, Load balancing, Traveling Salesperson, Graphs Isomorphism, Primality, Linear programming, Minimum Circuit Size, Satisfiability, 3-colorability
- People observed some of these can be reduced to others.
- For example, 3-colorability \leq SAT
- In fact, all of these problems reduce to SAT.
- The key common property of these problems was having "easily verifiable proofs" for the 'yes' instances.

3-colorability

A 3-colorable graph

A graph not 3-colorable

Satisfiability

- $(x \vee y \vee z) \operatorname{AND}(\neg x \vee y) \operatorname{AND}(x \vee y) \operatorname{AND}(x \vee \neg y)$
- Satisfiable
- $(\neg x \vee y)$ AND $(\neg y \vee z) \operatorname{AND}(\neg z \vee \neg x) \operatorname{AND}(x)$
- Unsatisfiable

3-colorability reduces to SAT

- Given a graph, can we color vertices with 3 colors?
- create Boolean variables to represent the coloring
- 3 Boolean variables for each vertex $-x_{i}, y_{i}, z_{i}$
- encode the verification procedure as Boolean constraints
- each vertex has a color $-\left(x_{i} \vee y_{i} \vee z_{i}\right)$ for each i
- adjacent vertices have different colors
- for every edge $(i, j): \neg\left(x_{i} \wedge x_{j}\right), \neg\left(y_{i} \wedge y_{j}\right), \neg\left(z_{i} \wedge z_{j}\right)$
- Boolean formula $=$ AND of all the constraints.
- Graph is 3-colorable if and only if there is an satisfying assignment for the above Boolean formula
- An algorithm for SAT will give an algorithm for 3-colorability
- [Cook, Levin 1971] All of the problems mentioned reduce to SAT

Reductions

- Problem A reduces to problem $\mathrm{B}(\mathrm{A} \leq \mathrm{B})$
- if A can be solved in polynomial time using a given subroutine that solves B.
- task of solving A reduces to task of solving B
- Example: Taxi scheduling reduces to bipartite matching
- Example: Multiplication reduces to squaring
- Multiplication is as easy as squaring
- Squaring is as hard as Multiplication

Reductions

- Problem A reduces to Problem B:
- (1) convert input φ_{A} for A to input φ_{B} for B (or set of inputs $\varphi_{\mathrm{B} 1}, \varphi_{\mathrm{B} 2}, \varphi_{\mathrm{B} 3}$)
- (2) Solution $\left(\varphi_{\mathrm{B}}\right)$ should be converted to solution $\left(\varphi_{\mathrm{A}}\right)$.
- Conclusion:
- A is as easy as B.
- B is as hard as A.
- $\mathrm{A} \leq \mathrm{B}$ and $\mathrm{B} \leq \mathrm{C}$ implies $\mathrm{A} \leq \mathrm{C}$

NP or Easily Verifiable Proofs

- Many problem which seemed hard have easily verifiable proofs for 'yes' inputs.
- Load Balancing: is there a load allocation with makespan at most k ?
- Proof: an allocation with makespan $\mathrm{k}^{\prime} \leq \mathrm{k}$
- Verifier: check if the proposed allocation is valid and its makespan
- Factorize Numbers: is a given number factorizable?
- Proof: two factors
- Verifier: multiply the proposed two numbers and check if you get the input number.
- Not clear if 'no' inputs have easily verifiable proofs.

Easily Verifiable Proofs

- SAT: given a Boolean formula (CNF - AND of ORs), is there an assignment of variables, which makes it true?
Example. $(\neg x \vee y) \wedge(\neg y \vee x)$
- Proof: an satisfying assignment to the variables (example: True, False)
- Verifier: check if the proposed assignment makes the formula true.
- Graph Isomorphism: given two graphs, are they isomorphic?
- Proof: a mapping between two sets of vertices
- Verifier: check if the given mapping preserves edges and non-edges

image source: [1]

Easily Verifiable Proofs

- Subset Sum: given numbers $a_{1}, a_{2}, a_{3}, \ldots, a_{n}$ and a number b, is there a subset of a_{i} 's that sum up to b ?
- Proof: a subset of numbers
- Verifier: check if the proposed subset has sum equal to b
- Circuit Size: given a Boolean function f truth table, is there a circuit with at most s gates that computes f ?
- Proof: a circuit

$$
\begin{aligned}
& \mathrm{Z}=\overline{\mathrm{A} \cdot \mathrm{~B}}=\overline{\mathrm{A}}+\overline{\mathrm{B}} \\
& \hline \mathrm{~A} \\
& \mathrm{~B} \\
& \hline
\end{aligned}
$$

- Verifier: verify if the circuit output ${ }_{\text {m }}^{(b)}$ atches ${ }^{\circ}$ with ${ }^{0}{ }^{1}{ }^{1}$ truth table for every input

The Class NP

- Definition: a 'yes or no' decision problem is in NP if there is an easily verifiable proof for each 'yes' input.
- a 'yes or no' decision problem is in NP if there is a polynomial time Algorithm V (verifier), such that for any input x,
- if x is a 'yes' input then there exists c s.t. $\operatorname{size}(c) \leq \operatorname{poly}(\operatorname{size}(x))$ and $\mathrm{V}(x, c)=$ True.
- if x is a 'no' input then for any $\mathrm{c}, \mathrm{V}(x, c)=$ False

The Class NP

- P - can find the solution in polynomial time NP - can verify a proposed solution in polynomial time

$$
P \subseteq N P
$$

- if a problem is in P , it is also in NP.
- A problem falling into NP is a positive thing.
- NP does not mean Non-Polynomial time.
- NP stands for Non-deterministic polynomial time.

Problems in NP?

- Given an integer n, are there integers x, y, z such that

$$
x^{3}+y^{3}+z^{3}=n ?
$$

e.g. for $n=39: 134476^{3}-159380^{3}+1173673=39$.

- Not clear, because x, y, z can be much larger than n. Efficient verification may not be possible.
- Given a flow network, is there a flow with fout $(s)=k$?
- Yes.
- Proof: for every edge a flow value.
- Verifier checks flow conservation, capacity constraints, and computes fout(s)
- Proof: 0
- Verifier runs the max flow algorithm and checks whether max flow $\geq k$

Problems in NP?

- Given two Polynomial expressions, are they equal?
- e.g., $\left(a^{2}+n b^{2}\right)\left(c^{2}+n d^{2}\right)=(a c-n b d)^{2}+n(a d+b c)^{2}$
- Not clear if it is in NP
- Given two Polynomial expressions, are they different?
- It is in NP
- Proof: a substitution of variables with numbers
- Verifier: evaluates both the expressions on this substitution and verifies if evaluations are different.

NP-completeness

- Cook-Levin [1971]: If we have a subroutine for SAT problem, we can design a polynomial time algorithm for every problem in NP
- for any problem A in NP, $A \leq$ SAT
- SAT is 'NP-complete'.
- Karp [1972]: 21 other problems are NP-complete.
- TSP, Subset Sum, Integer Programming, Graph Coloring, Job Sequencing, Independent Set, 3D-matching etc.
- They are all equivalent and are hardest problems in NP

The tree of Reductions

P vs NP

- Thousands of problems have been shown to be NPcomplete.
- If you solve any of them, all of them get solved.
- People have not been able to give an efficient algorithm in last 50 years, for any of these.
- One can say, there is just one NP-complete problem.
- $\mathrm{P}=\mathrm{NP} \Longleftrightarrow$

SAT (and every other problem in NP) has a polynomial time algorithm

Philosophically...

- Problems intuitively / philosophically in class NP
- is a given mathematical statement (provably) true? (a proposed proof can be verified)
- is there a cure for a mentioned disease?
(a proposed cure can be verified)
- given the public key, can you find the private key? (a private-public key pair can be verified)
- is there a great film?
(given a film, you can critic it)

Philosophically...

- P vs NP = Mechanical vs Creativity
- $\mathrm{P}=\mathrm{NP}$ would mean
- all diseases can be cured,
- all mathematical conjectures can be resolved,
- crypto systems can broken
- All film critics can make great films

How is it useful?

- Widely believed $\mathrm{P} \neq \mathrm{NP}$, but no proof for it. Million Dollars for a proof either way.
- You encounter a new problem X and can't find a Polynomial time algorithm for it try to prove that it is NP-hard.
- Choose a suitable NP-complete/NP-hard problem H and reduce H to your problem X.
- I.e., H can be solved using a subroutine for X.
- "I am not able to design an algorithm for it, but nobody could in last 50 years
- Amazingly, most problems turn out to be either in P or NP-complete.
- Exceptions: Graph Isomorphism, Minimum circuit Size, Factoring

NP-complete and NP-hard

- Problem X is said to be NP-complete if

1. X is in NP
2. Every problem in NP reduces to X

- Problem Y is said to be NP-hard if
- Every problem in NP reduces to Y

Any problem in NP reduces to SAT [Section 8.4 in Kleinberg Tardos]

- There is a verifier algorithm V such that for any input x,
- if x is a 'yes' input then there exists y s.t. $V(x, y)=$ True .
- if x is a 'no' input then for all $y, V(x, y)=$ False
- Reduction: Given x, output a boolean formula $f(x)$ such that
- if x is a 'yes' input then $f(x)$ has a satisfying assignment
- if x in a 'no' input then $f(x)$ does not have a satisfying assignment
- Proof y encoded as Boolean variables.
- Each step of algorithm V will be converted to a Boolean constraint.

Any problem Q in NP reduces to SAT

- Algorithm V : Input ($1,0,1,0,0, . ., y_{1}, y_{2}, \ldots, y_{m}$)
- Say it uses p bits memory and time T.
- Create another $p T$ Boolean variables.
- At time t, an instruction will apply AND/OR/NOT on some memory locations and store it in another location
-

$$
z_{t+1,5}=z_{t, 3} \vee z_{t, 9}
$$

- $f(x)=$ AND of all such Boolean constraints.
- $f(x)$ has a satisfying assignment (y, z)
if and only if algorithm V outputs True on input $\left(x, y_{1}, y_{2}, \ldots, y_{m}\right)$ if and only if x is a yes input.

IND-SET decision

- IND-SET (OPT): given a graph G, find the largest independent set of vertices.
- IND-SET (decision): given a graph G, and a number k, is there an independent set of size k ?
- Reduction from IND-SET (OPT) to IND-SET (decision)
- first find the largest size of an independent set
- start with $k \leftarrow n$
- keep decreasing k till G has no independent set of size $k-1$

IND-SET optimization and decision

- Reduction from IND-SET (OPT) to IND-SET (decision)
- first find the largest size of an independent set, say it is k
- check whether $G-v_{1}$ has an independent set of size k
- if yes, recursively find an independent set of size k in $G-v_{1}$
- if no, then recursively find an independent set of size $k-1$ in ($G-\operatorname{neighbors}\left(v_{1}\right)$) and include v_{1} with it.

IND-SET is NP-complete

- (1) IND-SET is in NP
- the proof will be an independent set of size k
- the verifier will check if it is indeed an independent set and has size k
- (2) IND-SET is in NP-hard
- That is, any problem in NP reduces to IND-SET
- We already know that any problem in NP reduces to SAT
- We will show that SAT reduces to IND-SET
- From transitivity of reductions, it will follow that IND-SET is NPhard
- Step 1 (homework): SAT reduces to 3-SAT (given formula is 3-CNF)

3-SAT to IND-SET Reduction

- IND-SET: given a graph G and a number k, is there an independent set of size k ?
- Reduction: Given a 3-CNF formula ϕ, we want to construct a graph $G(\phi)$ and a number $k(\phi)$ such that
- if ϕ has a satisfying assignment, then $G(\phi)$ has an independent set of size $k(\phi)$
- if ϕ does not have a satisfying assignment, then $G(\phi)$ does not have any independent set of size $k(\phi)$
- Construction of $G(\phi)$:
- for every clause, introduce a triangle with one vertex corresponding to each literal in the clause
- add an edge between two vertices across triangles if one corresponds to x_{i} and the other corresponds to $\neg x_{i}$
- $k(\phi)=$ number of clauses $=$ number of triangles

SAT to IND-SET Reduction

- Example:
- $\phi=\left(x_{1} \vee \neg x_{2} \vee x_{3}\right) \wedge\left(\neg x_{1} \vee x_{2} \vee x_{4}\right)$

- $k(\phi)=2$

Proof of correctness (\Longrightarrow)

- Suppose ϕ is satisfiable, choose one satisfying assignment.
- From each clause, pick an arbitrary literal which is set to true.
- Pick vertices corresponding to the picked literals.
- The number of vertices picked is equal to the number of clauses.
- The picked vertices form an independent set because
- 1) we pick one vertex from each triangle
- 2) if vertex corresponding to literal x_{i} is picked then its neighbors correspond to $\neg x_{i}$, and hence will not be picked.

Proof of correctness (\Longleftarrow)

- Suppose $G(\phi)$ has an independent set of size $k(\phi)$.
- Since $k(\phi)=$ number of triangles, the independent set must have one vertex from each triangle.
- For each vertex in the independent set, set corresponding literal true.
- This is possible because the independent set cannot have vertices corresponding to both x_{i} and $\neg x_{i}$
- Set the remaining variables (if any) arbitrarily.
- This is a satisfying assignment ϕ for because for every clause at least one literal is set true.

Homework

- Easy reductions:
- IND-SET reduces to VERTEX-COVER
- IND-SET reduces to CLIQUE
- VERTEX-COVER reduces to SET-COVER
- SAT reduces to INTEGER LINEAR PROG
- Not so easy:
- k-CLIQUE reduces to k-COLORING
- SAT reduces to DIRECTED HAMILTONIAN CYCLE

Thank you

References

- [1] https:/ / math.stackexchange.com/questions/ 3141500/are-these-two-graphs-isomorphic-why-why-not
- [2] http:/ / electronics-course.com/logic-gates

