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Objectives
• How to design algorithms.

Try something

See if it works

Great!!
YesNo

Creative process

Requires diligence

When to stop 
this loop? 

 A toolbox to help

Correctly?  Efficiently?

check if it’s 
 NP-complete



History of P
• Notion of Efficient Algorithms there since ancient times

• Addition, Multiplication, GCD, Repeated squaring 
(Pingala), Astronomical calculations.

• [1950s] Dynamic Programming, Shortest Path, Simplex 
algorithm, Minimum spanning tree

• [1960s] FFT, Scheduling, Network flow, bipartite matching, 
and related combinatorial problems

• Doing better than brute force search



P (Polynomial time solvable)
• Edmonds [1965] proposed polynomial time as a 

characterization of efficient computation

• “It is by no means obvious whether or not there 
exists an algorithm whose difficulty increases only 
algebraically with the size of the graph”

• “For practical purposes the difference between 
algebraic and exponential is more crucial than 
between finite and non-finite.”



P (Polynomial time solvable)
• Why polynomial time?

• if a procedure is considered efficient, running it n 
times might also be considered efficient. 

• Polynomial time remains independent of computation 
model. 

• Another perspective: if you double the input size, the 
running time gets multiplied by a constant. 

• If the running time is n100, is it still efficient?

• In reality, we never get such running times.



Not in P

• [1960s] For many problems, people could not find 
better than exponential time algorithms.

• There was no clear explanation why some problems 
are in P, while others are not.

• Try to guess, whether a polynomial time algorithm 
is known or not.



In P or not in P ?
• Roommate Allocation:

•  n students, some like each other, some don’t.

• Allocate rooms s.t. roommates like each other.

• Polynomial time algorithm known or not?

• Yes [Edmonds 1965]



In P or not in P ?
• Triple Roommate Allocation:

•  n students, some like each other, some don’t.

• Allocate rooms s.t. all 3 roommates like each 
other.

• Polynomial time algorithm known or not?

• No



In P or not in P ?
• Given a graph and a number k, is there a path of length k?

• Not known to be in P
• Given a graph with s and t vertices,  

are there two edge disjoint paths from s to t ?
• In P

• Given a graph and four vertices s1 , s2, t1, t2,  

are there disjoint paths s1        t1 and s2        t2 ?
• In P

• Same problem in directed graphs?
• Not known to be in P
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In P or not in P ?

• Given a graph with edges colored red or blue, 
 is there an s-t path with alternating red and blue 
edges?

• In P

• Same problem in directed graphs?
• Not known to be in P



In P or not in P ?

• Given a number (in binary), is it factorizable?

• In P (only in 2002)

• Given a number (in binary), find its factors?

• Not known to be in P



In P or not in P ?
• Given a set of intervals, largest subset of disjoint intervals

• In P 

• Given a graph, find the largest independent set (vertices sharing 
no edges).

• Not known to be in P 

• Given a graph, find the largest set of edges not sharing any vertex

• In P

• Given a graph, find the largest set of triangles not sharing any 
vertex

• Not known to be in P 



In P or not in P ?
• Set of trains arriving/departing at a station, can we schedule 

using k platforms ?

• In P 

• Given a list of courses, and pairs which should avoid a clash, can 
we schedule using k time slots? 
• Not known to be in P 

• Also known as graph coloring (easy for 2 colors)

• n Jobs, m processors, not every processor can handle every job. 
Processors can work in parallel. Can we finish in k units of time?

• In P (via Network Flow)



In P or not in P ?
• Given a set of integers, is there a subset with sum equal to zero?

• Not known to be in P 

• Given a set of integers (loads), distribute them among m 
machines, so that maximum total load (makespan) is minimized.
• Not known to be in P 

• known as load balancing

• Given a set of integers, partition them into two groups with 
equal sum
• Not known to be in P
•  Known as Partitioning



In P or not in P ?
• Minimum weight spanning tree

• In P 

• Steiner Tree: Given a subset of vertices (terminals), find 
the minimum weight tree that connects the terminals
• Not known to be in P 

• Traveling Salesperson problem: given a list of cities, 
you have to visit every city and come back with 
minimum cost
• Not known to be in P 



In P or not in P ?

• Satisfiability: given a Boolean formula, is it 
satisfiable?
• Not known to be in P 

• Minimum circuit size: Given a Boolean function, is 
there a circuit for it with at most k Boolean 
operations?
• Not known to be in P 



Towards NP
• [1960s] For many problems, people could not find better than 

exponential time algorithms.

• Subset sum, Load balancing, Traveling Salesperson, Graphs 
Isomorphism, Primality,  
Linear programming, Minimum Circuit Size, Satisfiability,  
3-colorability

• People observed some of these can be reduced to others. 

• For example, 3-colorability ≤ SAT

• In fact, all of these problems reduce to SAT.

• The key common property of these problems was having “easily 
verifiable proofs” for the ‘yes’ instances. 



3-colorability

A 3-colorable graph A graph  
not 3-colorable



Satisfiability

• (x ! y ! z) AND ("x !#y ) AND (x !#y) AND (x !#"y )

• Satisfiable

• ("x !#y ) AND ("y !#z#) AND ("z !#"x#) AND (x)

• Unsatisfiable



3-colorability reduces to SAT
• Given a graph, can we color vertices with 3 colors?

• create Boolean variables to represent the coloring

• 3 Boolean variables for each vertex - xi, yi, zi

• encode the verification procedure as Boolean constraints

• each vertex has a color — (xi ! yi ! zi) for each i

• adjacent vertices have different colors 


• for every edge (i,j) :  "$xi ⌃ xj %&#"$yi ⌃ yj %&#"$zi ⌃ zj %

• Boolean formula = AND of all the constraints.

• Graph is 3-colorable if and only if there is an satisfying assignment for the above 
Boolean formula

• An algorithm for SAT will give an algorithm for 3-colorability

• [Cook, Levin 1971] All of the problems mentioned reduce to SAT 



Reductions
• Problem A reduces to problem B  (A ≤ B)

• if A can be solved in polynomial time using a given 
subroutine that solves B.

• task of solving A reduces to task of solving B

• Example: Taxi scheduling reduces to bipartite matching

• Example: Multiplication reduces to squaring

• Multiplication is as easy as squaring

• Squaring is as hard as Multiplication



Reductions
• Problem A reduces to Problem B: 

• (1) convert input ϕA for A to input ϕB for B 

 (or set of inputs ϕB1 , ϕB2 , ϕB3)  

• (2) Solution(ϕB) should be converted to solution(ϕA). 

• Conclusion: 

• A is as easy as B. 

• B is as hard as A. 

• A ≤ B and B ≤ C  implies  A ≤ C



NP or Easily Verifiable Proofs
• Many problem which seemed hard have easily verifiable proofs for `yes’ 

inputs.

• Load Balancing: is there a load allocation with makespan at most k?

• Proof: an allocation with makespan k’ ≤ k

• Verifier: check if the proposed allocation is valid and its makespan

• Factorize Numbers: is a given number factorizable?

• Proof: two factors 

• Verifier: multiply the proposed two numbers and check if you get the 
input number.

• Not clear if ‘no’ inputs have easily verifiable proofs. 



Easily Verifiable Proofs
• SAT: given a Boolean formula (CNF - AND of ORs), is there an 

assignment of variables, which makes it true?   
Example. (¬x ∨ y ) ∧ (¬y ∨ x)

• Proof: an satisfying assignment to the variables (example: True, 
False)

• Verifier: check if the proposed assignment makes the formula true.

• Graph Isomorphism: given two graphs, are they isomorphic?

• Proof: a mapping between two sets of vertices

• Verifier: check if the given mapping preserves 
edges and non-edges

image source: [1]



Easily Verifiable Proofs
• Subset Sum: given numbers a1, a2, a3, …, an and a number b, is 

there a subset of ai’s that sum up to b ? 

• Proof: a subset of numbers

• Verifier: check if the proposed subset has sum equal to b

• Circuit Size: given a Boolean function f truth table, is there a 
circuit with at most s gates that computes f  ?

• Proof: a circuit

• Verifier: verify if the circuit output matches with the truth 
table for every input



The Class NP
• Definition: a ‘yes or no’ decision problem is in NP if 

there is an easily verifiable proof for each ‘yes’ input. 

• a ‘yes or no’ decision problem is in NP if there is a 
polynomial time Algorithm V (verifier), such that for 
any input x, 

• if x is a ‘yes’ input then there exists c s.t.  
size(c) ≤ poly(size(x)) and V(x, c) = True. 

• if x is a ‘no’ input then for any c,  V(x, c) = False



The Class NP
• P - can find the solution in polynomial time 

NP - can verify a proposed solution in polynomial 
time

• if a problem is in P,  it is also in  NP. 

• A problem falling into NP is a positive thing.

• NP does not mean Non-Polynomial time.

• NP stands for Non-deterministic polynomial time.

P ⊆ NP



Problems in NP?
• Given an integer n, are there integers x, y, z such that 

                                                         x3 + y3 + z3 = n ?   
e.g. for n = 39:  1344763 −1593803+ 1173673 = 39. 

• Not clear, because x, y, z can be much larger than n. Efficient verification 
may not be possible. 

• Given a flow network, is there a flow with fout(s) = k?

• Yes.

• Proof: for every edge a flow value. 

• Verifier checks flow conservation, capacity constraints, and computes 
fout(s)

• Proof: 0

• Verifier runs the max flow algorithm and checks whether max flow ≥ k



Problems in NP?
• Given two Polynomial expressions, are they equal?

• e.g., (a2 + n b2) (c2 + n d2) = (ac - n bd)2 + n(ad + bc)2

• Not clear if it is in NP

• Given two Polynomial expressions, are they different?

• It is in NP

• Proof:  a substitution of variables with numbers

• Verifier: evaluates both the expressions on this 
substitution and verifies if evaluations are different. 



NP-completeness
• Cook-Levin [1971]: If we have a subroutine for SAT problem, we 

can design a polynomial time algorithm for every problem in NP

• for any problem A in NP,  A ≤ SAT

• SAT is ‘NP-complete’.

• Karp [1972]: 21 other problems are NP-complete. 

• TSP, Subset Sum, Integer Programming,  
Graph Coloring, Job Sequencing, Independent Set,  
3D-matching etc.

• They are all equivalent and are hardest problems in NP

NP

P

NP-Complete



The tree of Reductions
Any problem in NP



P vs NP
• Thousands of problems have been shown to be NP-

complete.

• If you solve any of them, all of them get solved. 

• People have not been able to give an efficient 
algorithm in last 50 years, for any of these.

• One can say, there is just one NP-complete problem.

• P= NP  
SAT (and every other problem in NP) has a 
polynomial time algorithm
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Philosophically…
• Problems intuitively/philosophically in class NP

• is a given mathematical statement (provably) true? 
(a proposed proof can be verified)

• is there a cure for a mentioned disease? 
(a proposed cure can be verified)

• given the public key, can you find the private key? 
(a private-public key pair can be verified)

• is there a great film? 
(given a film, you can critic it)



Philosophically…

• P vs NP = Mechanical vs Creativity

• P = NP would mean

• all diseases can be cured,

•  all mathematical conjectures can be resolved, 

• crypto systems can broken 

• All film critics can make great films



How is it useful?
• Widely believed P ≠ NP , but no proof for it. 

Million Dollars for a proof either way. 
• You encounter a new problem X  

and can’t find a Polynomial time algorithm for it 
 try to prove that it is NP-hard. 
• Choose a suitable NP-complete/NP-hard problem H and  

reduce H to your problem X. 
• I.e., H can be solved using a subroutine for X. 
• “I am not able to design an algorithm for it, but nobody could in last 

50 years 😊”
• Amazingly, most problems turn out to be either in P or NP-complete. 

• Exceptions: Graph Isomorphism, Minimum circuit Size, Factoring
Babai 2015,  
quasi-poly



NP-complete and NP-hard

• Problem X is said to be NP-complete if

1. X is in NP

2. Every problem in NP reduces to X

• Problem Y is said to be NP-hard if

• Every problem in NP reduces to Y

NP-Complete

NP

P

NP-hard



Any problem in NP reduces to 
SAT [Section 8.4 in Kleinberg Tardos]

• There is a verifier algorithm V such that for any input x,
• if x is a ‘yes’ input then there exists y s.t.  

V(x,y) = True. 

• if x is a ‘no’ input then for all y,  V(x,y) = False

• Reduction: Given x, output a boolean formula f(x) such that 

• if x is a ‘yes’ input then f(x) has a satisfying assignment

• if x in a ‘no’ input then f(x) does not have a satisfying assignment

• Proof y encoded as Boolean variables. 

• Each step of algorithm V will be converted to a Boolean constraint.



Any problem Q in NP reduces 
to SAT

• Algorithm V: Input (1,0,1,0,0,.., y1, y2, …, ym) 
• Say it uses p bits memory and time T.
• Create another pT Boolean variables.
• At time t, an instruction will apply AND/OR/NOT on some 

memory locations and store it in another location
• zt+1,5 = zt,3 ∨ zt,9

• f(x) =  AND of all such Boolean constraints. 
• f(x) has a satisfying assignment (y,z)  

if and only if algorithm V outputs True on input (x, y1, y2, …, ym)  
if and only if x is a yes input.



  IND-SET decision
• IND-SET (OPT): given a graph G, find the largest 

independent set of vertices.
• IND-SET (decision): given a graph G, and a number k, 

is there an independent set of size k?
• Reduction from IND-SET (OPT) to IND-SET (decision)

• first find the largest size of an independent set
• start with k ← n
• keep decreasing k till G has no independent set of 

size k-1



  IND-SET optimization and 
decision

• Reduction from IND-SET (OPT) to IND-SET (decision)
• first find the largest size of an independent set, say it 

is k
• check whether G − v1 has an independent set of size k

• if yes, recursively find an independent set of size k 
in G − v1

• if no, then recursively find an independent set of 
size k-1 in (G − neighbors(v1))  
and include v1 with it.



  IND-SET is NP-complete
• (1) IND-SET is in NP

• the proof will be an independent set of size k
• the verifier will check if it is indeed an independent set and has size 

k
• (2) IND-SET is in NP-hard

• That is, any problem in NP reduces to IND-SET
• We already know that any problem in NP reduces to SAT
• We will show that SAT reduces to IND-SET
• From transitivity of reductions, it will follow that IND-SET is NP-

hard
• Step 1 (homework): SAT reduces to 3-SAT (given formula is 3-CNF)



3-SAT to IND-SET Reduction
• IND-SET: given a graph G and a number k, is there an independent set of size k?
• Reduction: Given a 3-CNF formula φ, we want to construct a graph G(φ) and a 

number k(φ) such that 
- if φ has a satisfying assignment, then G(φ) has an independent set of size 

k(φ)
- if φ does not have a satisfying assignment, then G(φ) does not have any 

independent set of size k(φ)
- Construction of G(φ):

- for every clause, introduce a triangle with one vertex corresponding to 
each literal in the clause

- add an edge between two vertices across triangles if one corresponds to 
xi and the other corresponds to ¬xi

- k(φ) = number of clauses = number of triangles



- Example:
- φ = (x1 ∨ ¬x2 ∨ x3)  ∧   (¬x1 ∨ x2 ∨ x4)  

 
 
G(φ) =   

- k(φ) =  2

SAT to IND-SET Reduction



Proof of correctness (⟹)
• Suppose φ is satisfiable, choose one satisfying assignment.
• From each clause, pick an arbitrary literal which is set to true.
• Pick vertices corresponding to the picked literals. 
• The number of vertices picked is equal to the number of 

clauses.
• The picked vertices form an independent set because

• 1) we pick one vertex from each triangle
• 2) if vertex corresponding to literal xi  is picked then its 

neighbors correspond to ¬xi , and hence will not be picked. 



Proof of correctness (⟸)
• Suppose G(φ) has an independent set of size k(φ).
• Since k(φ) = number of triangles, the independent set must 

have one vertex from each triangle.
• For each vertex in the independent set, set corresponding 

literal true.
• This is possible because the independent set cannot have 

vertices corresponding to both xi and ¬xi

• Set the remaining variables (if any) arbitrarily.
• This is a satisfying assignment φ for because for every 

clause at least one literal is set true.



Homework
• Easy reductions:

• IND-SET reduces to VERTEX-COVER
• IND-SET reduces to CLIQUE
• VERTEX-COVER reduces to SET-COVER
• SAT reduces to INTEGER LINEAR PROG

• Not so easy: 
• k-CLIQUE reduces to k-COLORING
• SAT reduces to DIRECTED HAMILTONIAN CYCLE



Thank you



References

• [1] https://math.stackexchange.com/questions/
3141500/are-these-two-graphs-isomorphic-why-
why-not

• [2] http://electronics-course.com/logic-gates

https://math.stackexchange.com/questions/3141500/are-these-two-graphs-isomorphic-why-why-not
https://math.stackexchange.com/questions/3141500/are-these-two-graphs-isomorphic-why-why-not
https://math.stackexchange.com/questions/3141500/are-these-two-graphs-isomorphic-why-why-not
https://math.stackexchange.com/questions/3141500/are-these-two-graphs-isomorphic-why-why-not
http://electronics-course.com/logic-gates

