Algebra in Computer Science: QR codes

Algebra

- Addition, multiplication, division
- Polynomials, roots, evaluations
- Modular arithmetic
- $9+4 \times 7 \equiv 13($ mod 24$)$
- $5 \times 4 \equiv-1(\bmod 7)$
- Algebra has wide range of applications in computer science
- Data compression
- Reliable and secure communication
- Efficient verification of computation
- Software verification

Basic fact from Algebra

- A polynomial $f(x)$ of degree d has at most d roots.
- Equivalently,
- Given $d+1$ points in the plane, there is a unique degree d curve passing through them.

QR codes

- Can be read, even when partially occluded/erased

Redundancy in QR codes

- Can be read, even when partially erased or modified
- Guess: the information is copied multiple times
- Possibly, the same bit gets erased from each copy

Redundancy in QR codes

- Can be read, even when 30% portion from anywhere is erased or modified (Level H)

Redundancy in QR codes

- Can be read, even when 30% portion from anywhere is erased or modified (Level H)

Redundancy in QR codes

- Can be read, even when 30% portion from anywhere is erased or modified (Level H)

Redundancy in QR codes

- Too much erased, cannot be read

Pixel pattern

- 33×33 grid of pixels
- 1089 bits or ~ 136 bytes
- Some pixel patterns are used for position and alignment detection
- Some pixels encode format information, like error correction level
- 100 bytes of data can be stored.

Information redundancy

- 100 bytes of data can be stored.
- www.cse.iitb.ac.in/~risc2024/

29 characters

- Could have stored at most 3 copies
- Level H error correction: guaranteed to work even if any 32 bytes are deleted or modified

Challenge

- 36 bytes of information.
- Store it using 100 bytes.
- Recover after any 32 bytes are deleted or modified.
- Simply duplicating the data will not work
- Coding theory: algebra and geometry

Main idea

- Message $y_{0} y_{1}$
- Encoding $y_{0} y_{1} y_{2}$
- Suppose y_{1} gets deleted

- Split the message into two parts
- Represent each part as a number, say y_{0} and y_{1}

Main idea

- Message $y_{0} y_{1}$
- Encoding $y_{0} y_{1} y_{2}$
- Suppose y_{1} gets deleted

- Split the message into two parts
- Represent each part as a number, say y_{0} and y_{1}

Main idea

Error correction

- Message $y_{0} y_{1}$
- Encoding $y_{0} y_{1} y_{2} y_{3} y_{4}$

- Split the message into two parts
- Represent each part as a number, say y_{0} and y_{1}

Error correction

- Message $y_{0} y_{1}$
- Encoding $y_{0} y_{1} y_{2} y_{3} y_{4}$

- What if y_{1} and y_{3} get modified?
- We know three points are correct, but don't know which three.

Error correction

- Message $y_{0} y_{1}$
- Encoding $y_{0} y_{1} y_{2} y_{3} y_{4} y_{5}$

- No other 4 points are collinear

1	2	3	4	5	x

- What if y_{1} and y_{3} get modified?
- We know four points are correct, but don't know which four.

Challenge solved

- Message split into 2 blocks.
- converted into 6 blocks.
- Can recover after any 2 blocks are deleted or modified.
- We can handle 33\% errors in our data.
- Does it solve what we wanted?
- Not really.

What if a small portion from every block is modified?

Towards challenge

- Split the 36 byte message into many blocks, say 36 blocks
- Each block is one byte
- Visualize them as 36 points in the plane.
- Pass a unique degree 35 curve through them
- Take 64 other points on the curve (total 100 points)
- Homework: Even if any 32 points are modified, there is only one set of 68 points which have a degree 35 curve through them

Coding theory

- This construction is called
- Reed Solomon (RS) codes [1960]
- Bose-Chaudhuri-Hocquenghem (BCH) codes [1959/60]
- Need modular arithmetic, so that numbers don't blow up.
- Used in all kinds of communications, data storage
- wired, wireless, satellite, CD, hard disks, servers
- Other questions people study:
- Fast error correction / Local error correction

