
Binary Search and Variants
• Applicable whenever it is possible to reduce the 

search space by half using one query

• Search space size N  
number of queries = O(log N)

• Ubiquitous in algorithm design. Almost every 
complex enough algorithm will have binary search 
somewhere.



Classic example
• Given a sorted array A of integers,  

find the location of a target number x 
(or say that it is not present)

Pseudocode:
Initialize start      0, end      n; 
Locate(x, start, end){

if (end < start) return not found;
mid     (start+end)/2;
if (A[mid] = x) return mid;
if (A[mid] < x) return Locate(x, mid+1, end);
if (A[mid] > x) return Locate(x, start, mid-1);

}

←

← ←



Other examples
• Looking for a word in the dictionary

• Debugging a linear piece of code

• Cooking rice

• Science/Engineering: Finding the right value of any resource

• length of youtube ads

• pricing of a service



Egg drop problem
• In a building with n floors,  

find the highest floor from where egg can be dropped without breaking.

• O(log n) egg drops are sufficient.

• Binary search for the answer.

• Drop an egg from floor x

• if the egg breaks, answer is less than x

• if the egg doesn’t break, the answer is at least x

• Using the standard binary search idea, start with x=n/2.  
If egg breaks, then go to x=n/4 and it doesn’t then go to x=3n/4.  
And so on



Egg drop: unknown range
• In a building with infinite floors,  

find the highest floor h from where egg can be dropped without 
breaking.

• O(log h) egg drops sufficient?

• Exponential search: Try floors, 1, 2, 4, …, till the egg breaks.

• The egg will beak at floor 2k+1, where  
2k ≤ h < 2k+1

• Then binary search in the range [2k , 2k+1]

• Total number of egg drops ≤ k+1+k = 2k+1 ≤ 2 log h +1. 

• Is there a better way?



Lower bound
• Search space size: N 

Are log N queries necessary?

• Yes. When each query is a yes/no type, then the search 
space gets divided into two parts with each query  
(some solutions correspond to yes and others to no).

• One of the parts will be at least N/2. 

• In worst case, with each query, we get the larger of the two 
parts.

• To reduce the search space size to 1, we need log N queries



Lower bound
• Search space size: N 

Are log N queries necessary?

• Another argument based on information theory.

• Each yes/no query gives us 1 bit of information.

• The final answer is a number between 1 and N, and thus, 
requires log N bits of information. 

• Hence, log N queries are necessary. 

• Ignore this argument if it is hard to digest.



Exercise: subarray sum
• Given an array with n positive integers,  

and a number S, 
find the minimum length subarray whose sum is at least S?

• Subarray is a contiguous subset, i.e.,  
A[i], A[i+1], A[i+2], …, A[j-1], A[j]

• [10, 12, 4, 9, 3, 7, 14, 8, 2, 11, 6]  
 
S = 27

• Can we do this in O(n log n) time?



Exercise: subarray sum
O(n2) algorithm:

for (l ← 1 to n){

T ← sum of first l numbers.

for (j ← 0 to n-l-1){

if T ≥ S return l and the subarray (j, j+l-1);

T ← T - A[j] + A[l+j];

}

}

• Two for loops one inside the other. Each makes at 
most n iterations. Hence, O(n2) time.



Exercise: subarray sum
O(n log n) algorithm. Approach 1: 

Binary search for the minimum length l.

For the current value of l:

check if there is a subarray of length l with sum at 
least S. 
This check can be done in O(n) time. See the inner 
loop on previous slide.



Exercise: subarray sum
• O(n log n) algorithm. Approach 2 (suggested by students): 

• First compute all the prefix sums and store in an array.  
O(n) time.

• prefix_sum[0] ← A[0];  
for (i ← 1 to n-1)  
        prefix_sum[i] = prefix_sum[i-1]+A[i];

• Any subarray sum from i to j can now be computed in O(1) time as  
prefix_sum[j] - prefix_sum[i-1]. 

• Now, for each choice of starting point, do a binary search for the minimum 
end point such that the subarray sum is at least S. 

• If sum of a subarray < S, then choose a larger end point, otherwise smaller. 



Exercises
• Given two sorted arrays of size n, find the median of 

the union of the two arrays.  
O(log n) time?

• Given a convex function f(x) oracle, find an integer x 
which minimizes f(x).

• Land redistribution:  
given list of landholdings a1, a2, …, an,  
given a floor value f,  
find the right ceiling value c



Division algorithm

• As we find the next digit of the quotient,  
the search space of the quotient goes down by a factor 
of 10.

• This could be called a denary search.

• For binary representation of numbers, the division 
algorithm will be a binary search.



Finding square root
• Given an integer a, find 

• Start with a guess x 

• If x2 > a, then the answer is less than x

• Else the answer is at least x. 

• This way we can do binary search for 

a

• Additional exercise: find a division like algorithm.

a



Finding square root
• Given an integer a, find       up to l digits after 

decimal. 

• Can we compute it in O(l) iterations?

• Yes.

a



More applications

• Finding inverse of an increasing function?

• Finding root of polynomial?

• Finding the smallest prime dividing N ?

• Is sorting a kind of binary search?  
O(n log n) comparisons necessary?



More applications
• Finding inverse of an increasing function?

• For any given x, we have a method to compute f(x).  
For a given y, we want to compute f -1(y).

• Make a guess x and compare it f(x) with y

• If f(x) < y then the answer is larger than x

• Else the answer is at least x. 



More applications
• Finding a root of polynomial f(x)?

• Always maintain two points a and b such that  
f(a) > 0 and f(b) < 0.

• To find the starting points one can do exponential search.

• Check whether f((a+b)/2) > 0. 

• If yes, then there is a root between (a+b)/2 and b.

• Else, there is a root between (a+b)/2 and a. 



More applications

• Finding the smallest prime dividing N ?

• No. 

• We can make a guess x. If x does not divide N, then 
we cannot say anything about where should be the 
smallest prime dividing N.



More applications
• Is sorting a kind of binary search?  

n log n comparisons necessary?

• Yes. 

• When we have not made any comparisons, then any of the n! 
rearrangements is a possible answer. 

• So the search space size is n!.

• Each comparison will reduce the search space size by only 
1/2 (in worst case). 

• Hence, log (n!) ≥ n log n - n log e comparisons are necessary.



Analyzing algorithms
• Comparison between various candidate algorithms

• Why not implement and test?

• too many algorithms

• depends on input size, how inputs are chosen

• Will count the number of basic operations like addition, 
comparison etc. 

• And see how this number grows as a function of the input size. 
This measure is independent of the choice of the machine.



O(·) notation
• For input size n, running time f(n)  

• We say f(n) is O(T(n))  
if for all large enough n and some constant c,  
 f(n) ≤ c·T(n)



O(·) notation
• Why do we ignore constant factors?

• Because it’s not possible to find the precise constant 
factor. Various basic operations do not take the same 
amount of time. 

• Is O(n) always better than O(n log n)? 

• For large enough inputs, yes. But, depending on the 
hidden constant factors, it’s possible that O(n log n) 
algorithm is faster on reasonable size inputs.



Worst case analysis
• Worst case bound: running time guarantee for all possible 

inputs of a size.

• There could be algorithms which are slow on a few 
pathological instances, but otherwise quite fast. 

• Why not analyze only for “real world inputs”?

• It’s not clear how to model “real world inputs”.

• For many algorithms, we are able to give worst case 
bounds. 



Worst case analysis

Out of scope of this course



Describing algorithms

• Find the maximum sum subarray of length k

s = 0;
for (i=0, i < k, i++)  s=s+A[i];
m = s;
for (i=0, i < n-k, i++){

s = s - A[i] + A[k+i];
if (s > m) m = s;

}
return m;

Compute the sum of first k 
numbers. We will go over all 
length k subarrays from left to 
right. In an iteration, update 
the sum by subtracting the 
first number of the current 
array and adding the number 
following the last one. If the 
sum is larger than the 
maximum seen so far, we 
update the maximum.

s ← sum of first k numbers;
for (i ← 0 to n-k-1){

s ← s - A[i] + A[k+i];
m ← max(m, s);

}
return m;

Precise, but hard to 
understand. Error prone.

Not precise. Open to 
multiple interpretations.

Somewhere in the 
middle.



Describing algorithms
• Two sorted (increasing) arrays A and B of length n.  

Count pairs (a,b) such that a ∈A and b ∈B 
and a < b 

j=0; count = 0;
for (i=0, i < n, i++){

while (A[i] >= B[j]) j++;
count=count + n - j;

}
return count;

j ← 0; count ← 0;
for (i ← 0 to n-1){

keep increasing j till we get B[j] > A[i];
count ← count + n - j;

}
return count;



O(·) notation
• True or False?

• 2n+3 is O(n2) 
• True

•  12 +22 +….+(n-1)2 +n2 is O(n2) 
• False (it is Θ (n3))

• 1 + 1/2 + 1/3 + … + 1/n  is O(log n) 
• True

• nn is O(2n) 
• False



O(·) notation
• True or False?
• 23n is O(2n) 

• False
•  (n+1)3 is O(n3) 

• True  
• (n+ √n)2  is O(n2) 

• True
• log(n3) is O(log n) 

• True



Principles of algorithm design



First principle: reducing to a 
subproblem

• Subproblem: same problem on a smaller input

• Assume that you have already built the solution for 
the subproblem and using that try to build the 
solution for the original problem.

• Subproblem will be solved using the same strategy.

• Implementation: recursive or iterative



First principle: reducing to a 
subproblem

• Example 1: finding minimum value in an array.

• Suppose we have already found minimum among 
first n-1 numbers, say minn-1

• minn = minimum( minn-1, A[n] )

• Iterative implementation:  
Go over the array from 1 to n and maintain a variable min 

• Invariant: after seeing i numbers, min will be the 
minimum among first i numbers.

• mini = minimum( mini-1, A[i] )



First principle: reducing to a 
subproblem

• mini = minimum( mini-1, A[i] )

• Iterative implementation

min ← A[1];

for (i ← 2 to n)

min ← minimum(min, A[i])

• Recursive implementation

f(A, i):

if i=1 return A[1];

else return minimum( f(A, i-1), A[i]);

Compute f(A, n);



Maximum subarray sum
• Given an integer array with positive/negative numbers.  

Find the subarray with maximum possible sum.

• 1, 2, -5, 4, -6, 8, 7, -3, 2, 10, 3, -7, 4, 2

• O(n2) algorithm

• For every choice of starting point,  
go over all choices of end points and maintain the sum 
between starting and end points.

• Maintain the max_sum value by comparing with the current 
sum 



Maximum subarray sum
O(n2) algorithm:

max_sum ← 0;  

for (start ← 1 to n){

curr_sum ← 0;  

for (end ← start to n){

curr_sum ← curr_sum + A[end];  // update the current sum

max_sum ← maximum(curr_sum, max_sum);

}

}



Max subarray sum: subproblem
• Suppose we have already found the maximum subarray sum 

for A[1…n-1], say max_sumn-1

• How do we compute max_sumn

• Two kinds of subarrays of A: 
1. subarrays of A[1…n-1]  
2. subarrays of A which end at n

• max_sumn = Maximum( max_sumn-1 ,  

                                                               Sum(1 … n), 
                                                                Sum(2 … n), 
                                                                             ⋮ 
                                                               Sum(n … n), )

} O(n)
T(n) = T(n-1) + O(n) ⇒ T(n) = O(n2)



Max subarray sum: subproblem
• Improvement ?

• Observation: 
                Sum(1 … n) = Sum(1 … n-1) +A[n], 
                        Sum(2 … n) = Sum(2 … n-1) +A[n], 
                                                            ⋮ 
                   Sum(n-1 … n) = Sum(n-1 … n-1) +A[n],

• Maximum( Sum(1 … n), Sum(2 … n), …, Sum(n-1 … n) )  
                                               =  
Maximum( Sum(1 … n-1), Sum(2 … n-1), …, Sum(n-1 … n-1)) + A[n]

• We have converted it to another problem on first n-1 numbers



Max subarray sum: subproblem
• Improvement ?

• Observation: 
                Sum(1 … n) = Sum(1 … n-1) +A[n], 
                        Sum(2 … n) = Sum(2 … n-1) +A[n], 
                                                            ⋮ 
                   Sum(n-1 … n) = Sum(n-1 … n-1) +A[n],

• Maximum( Sum(1 … n), Sum(2 … n), …, Sum(n-1 … n) )  
                                               =  
Maximum( Sum(1 … n-1), Sum(2 … n-1), …, Sum(n-1 … n-1)) + A[n]

• We have converted it to another problem on first n-1 numbers



Max subarray sum: subproblem
• Improvement ?

• Observation: 
                Sum(1 … n) = Sum(1 … n-1) +A[n], 
                        Sum(2 … n) = Sum(2 … n-1) +A[n], 
                                                            ⋮ 
                   Sum(n-1 … n) = Sum(n-1 … n-1) +A[n],

• Maximum( Sum(1 … n), Sum(2 … n), …, Sum(n-1 … n) )  
                                               =  
Maximum( Sum(1 … n-1), Sum(2 … n-1), …, Sum(n-1 … n-1)) + A[n]

• We have converted it to another problem on first n-1 numbers

Push it to the
 subproblem



Asking subproblem to do more
• Subproblem: max_sumn-1 and max_suffix_sumn-1

• max_suffix_sumn-1 is defined as 
 Maximum(Sum(1 … n-1), Sum(2 … n-1), … Sum(n-1 … n-1))

• max_sumn = Maximum( max_sumn-1 ,  

                                                               Sum(1 … n-1) + A[n], 
                                                                Sum(2 … n-1) + A[n], 
                                                                             ⋮ 
                                                               Sum(n-1 … n-1) + A[n], 
                                                               A[n] )                                                                        

•                 = Maximum( max_sumn-1 ,  

                                                               max_suffix_sumn-1 + A[n], 
                                                                A[n] )                                                                        



Asking subproblem to do more
• Subproblem: max_sumn-1 and max_suffix_sumn-1

• max_sumn = Maximum( max_sumn-1 ,  

                                                               max_suffix_sumn-1 + A[n], 
                                                                A[n] )     

• We are asking the subproblem to compute max_suffix_sum 
for size n-1 
So, we also need to compute max_suffix_sum for size n

• max_suffix_sumn = ?

• max_suffix_sumn = Maximum( max_suffix_sumn-1 + A[n], 
                                                                              A[n] )                                                                                                                                          

T(n) = T(n-1) + O(1) ⇒ T(n) = O(n)



Maximum subarray sum
O(n) algorithm:

max_sum ← 0;  max_suffix_sum ← 0;  

for (i ← 1 to n){

max_sum ← maximum( max_sum,  
                                          max_suffix_sum+A[i], 

                                         A[i] );

max_suffix_sum ← maximum(max_suffix_sum+A[i], A[i]);

}



Alternate implementation
max_sum ← 0;   max_suffix_sum ← 0;  

for (i ← 1 to n){

max_suffix_sum ← maximum(A[i], max_suffix_sum +A[i]);

max_sum ← maximum(max_suffix_sum, max_sum);

}

• Here we are updating the two variables in a 
different order.  



Reducing to a subproblem

• When solving a problem recursively/inductively, it 
is sometimes useful to solve a more general 
problem

• Stronger induction hypothesis



Exercises
• Given share prices for n days 

p1, p2, …, pn

• You have to buy it on one of the days and sell it on a 
later day. 

• Maximum profit possible in O(n)?

• max{j > i} (pj - pi) 



Exercises
• There is a party with n people, among them there is 

1 celebrity.

•  A celebrity is someone who is known to everyone, 
but she does not know anyone. 

•  you ask the any person i if they know person j. 

•  Can you do find the celebrity in O(n) queries?



Sign up on Piazza
• https://piazza.com/iit_bombay/spring2024/cs218

• access code: cs218

https://piazza.com/iit_bombay/spring2024/cs218


Interval containment
• Given a set of intervals  

count the number of intervals which are not contained in any other 
interval.

• (5, 12), (3, 8), (8, 12), (11, 16), (9, 20), (15, 17), (7, 15), (2, 13)

• (9, 20), (7, 15), (2, 13) 

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Interval containment
• Given a set of intervals  

count the number of intervals which are not contained in any other 
interval.

• Naive solution: for every interval, check every other interval

• O(n2)

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Subproblem
• Suppose we have a solution for first n-1 intervals.  
 

• (5, 12), (3, 8), (8, 12), (11, 16), (9, 20), (15, 17), (7, 15), (2, 13)

• (3,8), (5, 12), (9, 20), (7, 15)

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Interval containment
• When we introduce the nth interval  

need to check if it is contained in any other interval  
or if it contains other intervals. Seems to take O(n) time.

• (5, 12), (3, 8), (8, 12), (11, 16), (9, 20), (15, 17), (7, 15), (2, 13)

• (3,8), (5, 12), (9, 20), (7, 15), (2, 13) 

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Reordering input
• Can we reorder the intervals so that the work at the last step reduces?

• Two possible orders: increasing start time, increasing finish time

• (2, 13), (3, 8), (5, 12), (7, 15), (8, 12), (9, 20), (11, 16), (15, 17),

• (3, 8), (5, 12), (8, 12), (2, 13), (7, 15), (11, 16), (15, 17), (9, 20), 

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Increasing finish time
• Can we reorder the intervals so that the work at the last step reduces?

• Consider increasing finish time

• (3, 8), (5, 12), (8, 12), (2, 13), (7, 15), (11, 16), (15, 17), (9, 20), 

• (2, 13), (7, 15), (11, 16), (15, 17),

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Increasing finish time
• Can we reorder the intervals so that the work at the last step reduces?

• Consider increasing finish time. Same O(n).

• (3, 8), (5, 12), (8, 12), (2, 13), (7, 15), (11, 16), (15, 17), (9, 20), 

• (2, 13), (7, 15), (11, 16), (15, 17), (9, 20), 

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Increasing start time
• Consider increasing start time

• (2, 13), (3, 8), (5, 12), (7, 15), (8, 12), (9, 20), (11, 16), (15, 17),

• The last interval cannot contain any other

• Need to check whether the last interval is contained in any other

• Same as whether any previous interval finishes after the last one.

0       1       2       3       4       5       6      7        8      9      10     11     12     13     14     15     16     17     18     19    20



Algorithm
• Maintain the highest finish time among interval seen so far

• Go over all intervals in increasing order of start times.

• For an interval (si, fi):

• if fi > largest_finish_time then

• number_of_maximal_intervals ++ ;

• largest_finish_time ← fi 

• O(n log n) time



Ideas so far

• Reducing to a subproblem

• Stronger induction hypothesis: Sometimes may 
need to solve more than what is asked for

• Reordering the input can be helpful. 



Divide and Conquer
• Classic example: merge sort

• Divide the problem into two (or more) subproblems of size 
n/2

• Combine the solutions of the subproblems and build a 
solution for the original problem

• T(n) = a T(n/2) + f(n)

• Divide and conquer might give a running time improvement  
e.g., from O(n2) to O(n log n).



Area coverage

• Find the total area covered



Simpler version

• Also known as skyline problem

• Input: For each rectangle (li , ri , di ). 

• Compute outline: (x1, h1), (x2, h2), (x3, h3), (x4, h4), (x5, h5), (x6, h6), (x7, h7), (x8, h8), (x9, 0),

x1    x2               x3                     x4            x5 x6      x7             x8                                x9 

h3 h4
h2



O(n2) algorithm

• First solution: introduce rectangles one by one, and update 
the outline.

• Time: O(n) per update.

x1    x2               x3                     x4            x5 x6      x7             x8                                x9 



O(n2) algorithm

• First solution: introduce rectangles one by one, and update 
the outline.

• Time: O(n) per update.

x1    x2               x3       x4         x5            x6 x6      x7     x7   x8                                x9 



Update example
• Current outline: (0, 5), (3, 3), (5, 7), (6, 9), (8, 4), (9, 0)

•  Incoming rectangle: (2, 7, 6)

• Updated outline: (0, 5), (2, 6), (3, 3), (5, 7), (6, 9), (8, 4), (9, 0)

• Update can be done in O(n) time?

        0     1     2     3     4     5      6     7    8    9



Divide and conquer approach
• Divide the set of rectangles into two parts with n/2 

rectangles each. 

• Suppose we have computed the outline for each set of 
n/2 rectangles.

• Outline 1: (x1, h1), (x2, h2), (x3, h3), …, (xm, 0)

• Outline 2: (a1, p1), (a2, p2), (a3, p3), …, (ak, 0)

• “merge” the two outlines to compute a new outline.



Merge two outlines
x1    x2               x3                     x4            x5 x6      x7             x8                                x9 

h3 h4

h2

`



Merge two outlines
• Outline 1: (0, 2), (4, 6), (6, 3), (7, 2), (11, 0)

• Outline 2:  (2, 4), (8, 1), (10, 0)

• Merged: (0, 2), (2, 4), (4, 6), (6, 4), (8, 2), (11, 0)

        0     1     2     3     4     5      6     7    8    9    10    11



Merge two outlines
• Outline 1: (x1, y1), (x2, y2), (x3, y3), …, (xm, 0)

• Outline 2: (a1, b1), (a2, b2), (a3, b3), …, (ak, 0) 
• Pointers for two queues i and j. 
• Maintain the current height in each outline  

height_1, height_2
• If xi < aj then

• height_1  ← yi

• Push (xi , max ( height_1, height_2 ) )
• i ← i + 1

• Else is similar
• Final clean up: remove consecutively repeating heights in the merged 

outline



Alternative implementation
• Maintain the current height in each outline  

height_1, height_2

• If xi < aj then

• height_1  ← yi 

• height_to_push ← max ( height_1, height_2 )

• If (last_pushed_height ≠ height_to_push )

• Push (xi , height_to_push )

• last_pushed_height ← height_to_push

• i ← i + 1

• Else is similar



Other approaches
• Divide and conquer with respect to heights?

• Approaches without divide and conquer

• Reordering the input

• Increasing order of left end points: O(n log n) time 
implementation possible using a data structure like 
balanced binary tree.

• Decreasing order of heights: O(n log n) time 
implementation possible using a data structure like 
balanced binary tree or heap.

• O(n log n) necessary ?



Significant inversion
• Given an array A of integers

•  a pair (i, j) is called a significant inversion  
if i < j and A[i] > 2A[j]. 

• O(n log n) time algorithm to find the number of 
significant inversions.

• Divide and conquer will work.

• Alternate approach.



Significant inversion
• a pair (i, j) is called a significant inversion  

if i < j and A[i] > 2A[j]. 

• For any j, count how many are > 2A[j] among first j-1 
numbers.

• Easy to count if first j-1 numbers are in a sorted array

• But to maintain sorted array we will need O(n) per 
insertion.

• What other data structure can be used?



Binary search tree
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Counting in BST
• Counting number of nodes > x seems to take O(n) 

time in the standard BST.

• What if store for each node, the number of nodes 
greater than itself ?

• Too much time to update these numbers on 
insertion of a new element.

• Correct idea: Store for each node x, the size of the 
subtree rooted at x



Binary search tree with count
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Counting in BST
• Store for each node x, the size of the subtree rooted at x

• Can we maintain this information on insertion of a new 
element?

• Need to update the counts for all nodes on the path from 
the root to the new node.

• O(log n) for balanced binary tree.

• Can counts be maintained in the re-balance step?

• Can you do range count:  #nodes in range l to r

• Other data structures?



Algorithm: Significant 
inversion

• Maintain a balanced BST. Initially empty.  
For each node x, we need to store size of the subtree rooted at x.

• no_of_pairs ← 0;

• For  j ← 1 to n

• Look for the right position p for 2A[j] in the BST (no insertion).  

• For every node x on the path from p to the root:

• If (x > 2A[j]) then  
Add (1+ size of the subtree rooted at right child of x) to no_of_pairs

• Insert A[j] in the BST and increase the size count for every node on the 
path from root to A[j] by 1



Exponentiation
• Given a and n, compute an.

• a × a × … × a     n times

• n-1 multiplications

• a16  = ((((a2)2)2)2    only 4 multiplications

• a11  = (((a2)2)2 × a2 × a  only 5 multiplications

• Repeated squaring technique



Repeated Squaring
• Exp(a, n) : 

• If n is even 

• return ( Exp(a, n/2) )2

• If n is odd 

• return ( Exp(a, (n-1)/2) )2 × a 

• If n is 1 

• return a 

Number of multiplications

T(n) ≤ T(n/2)  + 2

T(n) ≤ 2 log n



Another implementation
• Exp(a, n) : 

• If n is even 

• return ( Exp(a2, n/2) )

• If n is odd 

• return ( Exp(a2, (n-1)/2) ) × a 

• If n is 1 

• return a 



Iterative implementation
• Input: a, n

• Initialize  
 a_power_n ← 1;      // this will be an at the end  
 a_two_power ← a;          // this will be a2^i after i iterations

• while (n > 0)

• If (n is odd) then a_power_n ← a_two_power × a_power_n; 

• a_two_power ← a_two_power × a_two_power;

• n ← n/2   //integer part after division by 2 //or right-shift by 1 bit



Repeated squaring
• Does it give the minimum number of multiplications?

• What about a15 ?

• can be done in 5 multiplications

• Given n, what the minimum number of multiplications 
required for an ? No easy answer.

• Can apply repeated squaring for other operations like 
Matrix powering.

• Apparently proposed by Pingala (200 BC ?).



Fibonacci numbers

• F(n) = F(n-1) + F(n-2)

• Used by Pingala to count the number of patterns of 
short and long vowels.

• Here again we are repeating the same operation n 
times.

• Can repeated squaring be used?



Integer Multiplication




