Simplex Algorithm (not known to be in P)
Recall: one of the corners is an optimal so

$$
\begin{cases}2 x+3 y \leqslant 5 \\ x+y \geqslant 1 \\ x \geqslant 0 \\ y \geqslant 0 & \text { convex set } \\ \text { Polyhedron Poly tope }\end{cases}
$$

Def (corner): For a system of linear inequalit in n varibles, a corner is a feasible point which satisfies n linearly independent constraints with equality.
Def A corner is a feasible point
S.t. there exist a hyperplane H
sit. $H \cap$ polyhedron is a unique poin

Simplex

- Start from a corner
- Keep going to a neighboring corner such that the objective function increases.
- Stop when there is no neighoring corner with higher objective value.
n-dim hypercube
$\left.\begin{array}{c}0 \leq x_{1} \leq 1 \\ 0 \leq x_{2} \leq 1 \\ \vdots \\ 0 \leq x_{n} \leq 1\end{array}\right\} 2^{n}$ corners

Hirsch conjecture:
In n-dimensional polytope with m constraints there is always a path of length poly (n, m) between any two corners.

Initial $\underbrace{\text { basic feasible solution }}_{\text {corner }}$
Assume: we have an initial BF
$\left\{\begin{array}{l}x_{1} \geqslant 0 \\ x_{2} \geq 0\end{array}\right\} \begin{aligned} & \text { Non } \\ & \text { Non ne ngatainuty }\end{aligned}$

$$
x_{1} \leqslant 2
$$

$$
x_{2} \leq 2
$$

$$
x_{1}+x_{2} \leqslant 3
$$

$$
\begin{gathered}
\text { Standard Forms of linear Progra } \\
x_{1} \geqslant 0, x_{2} \geqslant 0 \\
x_{1}=2-x_{3}, x_{3} \geqslant 0 \\
x_{2}=2-x_{4}, x_{4} \geqslant 0 \\
x_{1}+x_{2}=3-x_{5} \quad x_{5} \geqslant 0
\end{gathered}
$$

$\operatorname{Max} 2 x_{1}+x_{2}$

Start with

$$
\begin{aligned}
& x_{1}=0, x_{2}=0 \quad x_{3}=2 \quad x_{4}=2 \quad x_{5}=3 \\
& O b j=2 x_{1}+x_{2}
\end{aligned}
$$

ans Allow one variable to increase
Let me choose to increase x_{1} x_{2} will remain zero.

$$
x_{3} \geqslant 0 \Rightarrow 2-x_{1} \geqslant 0 \Rightarrow x_{1} \leqslant 2
$$

$$
x_{5} \geqslant 0 \Rightarrow 3-x_{1}-x_{2} \geqslant 0 \Rightarrow x_{1} \leqslant 3
$$

$$
\begin{array}{ll}
x_{1}=2 & x_{3}=0 \\
x_{2}=0 & x_{4}=2 \\
& x_{5}=1
\end{array}
$$

Rewrite the obj function in terms of x_{2}, x_{3}

$$
\begin{aligned}
o b j & =2\left(2-x_{3}\right)+x_{2} \\
& =4-2 x_{3}+x_{2}
\end{aligned}
$$

Should increase x_{2}
x_{3} will remain zero

$$
\begin{gathered}
2-x_{2} \geqslant 0 \\
x_{2} \leq 2 \\
x_{1}+x_{2} \leq 3 \\
2-x_{3}+x_{2} \leq 3 \\
x_{2} \leq 1+x_{3}
\end{gathered}
$$

$$
\text { Change } x_{2} \leftarrow 1
$$

$$
\begin{array}{ll}
x_{1}=2 & x_{4}=1 \\
x_{2}=1 & x_{5}=0 \\
x_{3}=0 &
\end{array}
$$

rewrite obj
in terms

$$
x_{3}, x_{5}
$$

$$
\text { Obj } 4-2 x_{3}+\frac{}{x_{5}}
$$

$$
\begin{aligned}
\text { Obj } & =4-2 \times 3+\times 2 \\
& =4-2 \times 3+(3-x 1-\times 5) \\
& =7-2 \times 3-\times 1-\times 5 \\
& =7-2 \times 3-(2-x 3)-\times 5 \\
& =5-x 3-\times 5
\end{aligned}
$$

The algorithm stops here because
both $\times 3$ and $\times 5$ have negative coefficients in the objective function
Hence, we cannot increase any of the two.
The optimal value is 5 (as $\times 3=\times 5=0$)

