Simplex Algorithm Recall: One of the corners $\left\{2x+3y \leq 5\right\}$ ×+ y>1 $\chi > 0$ $\gamma > 0$ Convex set

lution Def

Def (corner): For a system of linear inequalit in n varibles, a corner is a feasible point which satisfies n linearly independent constraints with equality. A corner is a feasible point S.t. there exist a hyperplane fl s.t. H () polyhedron is a unique poin

ies Simplex · Start from a Corner in creases. +.

° Keep going to a heighboring corner Such that the objective function

· Stop when there is no heighbring Corner with higher objective value.

M-dim hypercube $0 \leq \chi_1 \leq 1 \left(\begin{array}{c} 0 \\ 0 \leq \chi_2 \leq 1 \end{array} \right)$ 2ⁿ Corners $\delta \leq \chi_{\eta} \leq 1$

Hirsch (onjectuse: In n-dimensional polytope with m constraints there is always a path of length Poly(n,m) between Gny two corners.

 X_{L} $X_{5:0}, X_{V}=0$ $X_{1}=0$ $X_{1}=0$ $X_{1}=0$ $X_{2},1$ Initial basic feasible Solution Corner $X_{1}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{1} \ge 0$ $X_{1} \ge 0$ $X_{1} \ge 0$ $X_{1} \ge 0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{2}=0$ $X_{1} \ge 0$ $X_{2} \ge 0$ $X_{2} \ge 0$ $X_{2} \ge 0$ $X_{1} \ge 0$ $X_{2} \ge 0$ $X_{3} \ge$ $X_1 = 2 - X_3 , X_3 \ge 0$ $X_1 \leq 2$ $X_2 = 2 - X_4, X_4 > 0$ $X_2 \leq 2$ $X_1 + X_2 \leq 3$ $X_1 + X_2 = 3 - X_5 \quad X_5 \gg 0$ $M_{\alpha X} = 2X_1 + X_2$

Start with

$$X_1=0, X_2=0$$
 $X_3=2$ $X_y=2$
 C $Obj = 2X_1+X_2$
 MS Allow one Variable
to increase
Let me choose to increa
 X_2 will remain zero.
 $X_3 \ge 0 \Rightarrow 2-X_1 \ge 0 \Rightarrow X_1 \le 2$
 $X_5 \ge 0 \Rightarrow 3-X_1-X_2 \ge 0 \Rightarrow X_1$

 $X_{5}=3$ $X_{1}=2$ $X_{3}=0$ $X_{2}=0$ $X_{4}=2$ X5= | Rewrite the obj I function in terms of X2, X3 $se x_{1} = Obj = 2(2-x_{3}) + X_{2}$ $= 4 - 2X_3 + X_2$ Should increase X2 2 1, \sim will remain Zevo Χz

2-X2 70 X2 < 2 $X_1 + X_2 \leq 3$ $2 - X_3 + X_2 \leq 3$ $X_2 \leq 1 + X_3$ change X2 <- 1 $X_1 = 2$ $X_1 = 1$ $\chi_2 = | \qquad \chi_5 = ()$ $X_3 = 0$

The algorithm stops here because both x3 and x5 have negative coefficients in the objective function Hence, we cannot increase any of the two. The optimal value is 5 (as x3=x5=0)

in teams X_3, X_5

Obj 4-2X3+ ___

rewrite obj

Obj = 4 - 2x3 + x2= 4 - 2x3 + (3 - x1 - x5)- X5 = 7 - 2x3 - x1 - x5= 7 - 2x3 - (2 - x3) - x5= 5 - x3 - x5