
CS218 Design and analysis of algorithms Jan-Apr 2025

Midsem solutions
Total Marks: 50 Time: 120 minutes

Instructions.

• Please write your answers clearly and concisely. Please read the questions carefully and answer precisely
what is asked.

Question 1 [6 marks]. Just like integer multiplication, we can apply divide and conquer approach for
matrix multiplication as well. The idea is as follows. To multiply two n × n matrices, we will do a certain
number of multiplications of smaller size matrices. In addition, we will need to do some matrix addi-
tions/subtractions, which will take O(n2) time. Consider the following variants, where to multiply n × n
matrices we will need

(a) 7 multiplications of n/2× n/2 matrices and a constant number of O(n2) time operations.

(b) 25 multiplications of n/3× n/3 matrices and a constant number of O(n2) time operations.

(c) 48 multiplications of n/4× n/4 matrices and a constant number of O(n2) time operations.

Write the recurrence relations for the time complexity of n × n matrix multiplication, in each of the above
variants. Arrange the solutions in increasing order of time complexity.

Answer 1. The recurrences are as follows.

(a) T (n) = 7 T (n/2) + O(n2).

(b) T (n) = 25 T (n/3) + O(n2).

(c) T (n) = 48 T (n/4) + O(n2).

The solutions for these are

(a) O(nlog2 7),

(b) O(nlog3 25),

(c) O(nlog4 48).

Increasing order of time complexity is (c) < (a) < (b).
4 marks for the recurrences and their solutions. 2 marks for the correct order. Below explanation was

not expected.
We can see the order as follows. To compare (c) and (a), observe that

log2 7 = log22 72 = log4 49 > log4 48.

To compare (a) and (b), observe that

log3 25 = log35 255 = log243 255 > log256 255 = log256(254×25) > log256(254×16) = log256(504) > log256(494) = log28(78).
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Question 2 [8 marks]. Two dimensional convolution can also be viewed as multiplying two bivariate
polynomials (polynomials in two variables x and y). We are given two d × d matrices M and N (indexed
from 0 to d− 1), which represent the coefficients of the following two polynomials.

d−1∑
i=0

d−1∑
j=0

M [i, j] xiyj and

d−1∑
i=0

d−1∑
j=0

N [i, j] xiyj .

Give an O(d2 log d) time algorithm to multiply these two polynomials. You can directly use the fact that
multiplication of two degree d polynomials (in one variable) can be done in O(d log d) time. Equivalently,
convolution of two d-length tuples can be done in O(d log d) time.

Note: log(d2) = 2 log d.
4 marks for a correct O(d3 log d) time algorithm.

Answer 2. The main idea is to convert the problem into multiplication of polynomials in one variable.
We can substitute x = t and y = tr, for some number r, and then do the usual multiplication of two
polynomials over variable t. There is a problem with this approach. When we do this substitution two
different monomials in x and y may get mapped to the same monomial in t. If that happens, then we will
not be able to separately get the two coefficients of the two mnomials. To avoid this, we will choose r to be
large enough. Note that the product of two polynomials can have degree at most 2d − 2 in each variable.
Let us choose r = 2d.

Claim 1. Any two different monomials xiyj and xky` for 0 ≤ i, j, k, ` < 2d, will get mapped to different
monomials under the substitution x 7→ t and y 7→ t2d.

Proof. Observe that the two monomials get mapped to t2dj+i and t2d`+k, repsectively. For the sake of
contradiction, assume that 2dj + i = 2d` + k. Then we have

2d(j − `) = k − i.

Note that k − i has an absolute value less than 2d. Hence, the above equation can hold only if both sides
are zero. That is, k − i = j − ` = 0. That means the two monomials are same. Contradiction.

After the mentioned substitution, we will get two polynomials in variable t. Their coeffients will be given
by the following tuples.

(M [0, 0], . . . ,M [d− 1, 0], 0, 0, . . . , 0, M [0, 1], . . . ,M [d− 1, 1], . . . , M [0, d− 1], . . . ,M [d− 1, d− 1]).

(N [0, 0], . . . , N [d− 1, 0], 0, 0, . . . , 0, N [0, 1], . . . , N [d− 1, 1], . . . , N [0, d− 1], . . . , N [d− 1, d− 1]).

We can easily compute these new polynoimals in O(d2) time, whose degrees are at most (2d+1)(d−1) = (d2).
This is simply a flattening of the two matrices, with zeros inserted in appropriate places.

We can multiply these two polynomials using the FFT method discussed in the class, which will take
O(d2 log d) time. From the obtained polynomial, we can recover the desired product polynomial in variables
x and y, as follows. Any monomial tq should be replaced by xq mod 2d yq/(2d).

Question 3 [8 marks]. In bioinformatics, one measure of similarity between two strings is how many
times one occur as a subsequence of another. For example, consider two strings S1 = a b a c b a c b a c
and S2 = a a b c. Here, string S2 appears as a subsequence of S1 five times. Here are the indices of these 5
subsequences in S1: (1, 3, 5, 7), (1, 3, 5, 10), (1, 3, 8, 10), (1, 6, 8, 10), (3, 6, 8, 10).

For two given strings, give a polynomial time algorithm to find the number of occurrences of the second
string as a subsequence of the first string.

Hint: you can partition the set of occurrences of S2 in a natural way and then for each part, compute the
count recursively and add (keep storing what you already computed).

2 marks for a naive exponential time algorithm. If memoization is not done properly, -2 marks. If Base
case is not done then -1.
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Answer 3. Let the string S1 be s1s2 · · · sn. Let the string S2 be t1t2 · · · tm. Let us partition the set of
occurrences of S2 based on the position of the last character tm. The number of choices of this position
is the number of times the last character appears in S1. For every such choice, we will count the number
of occurrences recursively, and then add all the counts. Let the j-th character in S1, i.e., sj be same as
tm. Then the number of occurences where tm appears at the j-th position in S1 is same as the number of
occurences of the remaining string t1t2 · · · tm−1 in the prefix s1s2 · · · sj−1 of string S1.

Note that all the subproblems in the recursion will be of the following kind. For some k ≤ n and some
` ≤ m, count the number of occurences of t1t2 · · · t` in s1s2 · · · sk. We will maintain a 2D array OCCUR
where [k, `] entry will denote the above count. Out final answer will be [n,m] entry of this array.

We can compute the entries in this array by the following algorithm.
For any k ≤ n and any ` ≤ m:

• if ` > k then OCCUR[k, `]= 0. This is because a longer string cannot appear as a subsequence of a
smaller string.

• if ` ≤ k then

Initialize OCCUR[k, `]= 0.

For j = 1, 2, . . . , k:

if sj = t` then OCCUR[k, `] = OCCUR[k, `] + OCCUR[j − 1, `− 1].

We will run the above procedure for for every 1 ≤ k ≤ n and every 1 ≤ ` ≤ m. Note that to compute
any entry of the array, we need the entries with smaller indices. Hence, we should go in increasing order of
both k and `. That is, we will have two outer for loops, one for k = 1, 2, . . . , n and one for ` = 1, 2, . . . ,m.

Total running time of this algorithm is O(mn2).

Question 4 [5 marks]. Suppose you are trading a particular commodity whose price fluctuates every day.
For some reason, you cannot wait long to sell it after buying. Once you buy it, you have to sell it whenever
the first time price becomes higher than your purchase price. If it never becomes higher, then you cannot
sell it. You are given the prices for next n days, say p1, p2, . . . , pn (assume all are distinct). You want to
purchase on the day which will give the maximum profit.

For any j, let f(j) be the first index greater than j such that pf(j) > pj . If no such index exists then
take pf(j) = 0. You have to find maxj(pf(j) − pj).

Design an O(n) algorithm. You should argue the correctness and the runtime bound of your algorithm.
No marks for O(n2) time. Partial marks for something in between.

Example input: Prices: 70, 100, 90, 95, 140, 40, 60, 90, 120, 30, 60.
For example, if you buy at 100, you have to sell at 140, and you will get a profit of 40.
Here, the optimal choice is to buy at 95, sell at 140, giving profit of 45.
3 marks for the correct algorithm, 2 marks for the argument showing correctness. 2 marks for O(n log n).

Answer 4. There is an O(n) algorithm to compute f(j) for every j. But, we will not need that.
There is one case when all prices are in decreasing order. In this case, no profit can be made. This can

be simply checked in O(n) time. In all other cases, a profit can be made.

Claim 2. To get the maximum profit, there is a choice i, where you purchase on day i and sell on day i+ 1.

Proof. Suppose the maximum profit is achieved by purchasing on day j and selling on day k with k > j. By
the given condition in the problem, k must be the first index greater than j such that pk > pj . That means
every price in between pj+1, . . . , pk−1 is at most pj . Hence, we can buy on day k − 1 and sell on day k and
get profit pk − pk−1 which is at least pk − pj .

Knowing the above claim, computing the maximum profit is simple. Compute maxk(pk − pk−1). This
can be done in O(n) time.

3



Question 5 [5 marks]. You have to meet n people, each of whom has given you an interval of dates in
which they are available. It is possible to meet any subset of people on a particular day, if that day is present
in each of their intervals. You want to select the minimum number of days, on which you can set up the
meetings, so that you cover all n people.

Example input: (1,5), (3, 10), (4, 9), (6, 8). Here is a possible schedule. Meet first three persons on day
4. Meet the last person on day 7.

Here is a proposed algorithm. Find the day which is present in maximum number of intervals (break
ties arbitrarily). Schedule a meeting on this day with all the people available on that day. Remove these
intervals and repeat this process with the remaining.

Find an example where this algorithm does not give an optimal solution. For your example, clearly show
what is the optimal solution and what is the algorithm’s solution.

Note: correct algorithm is not required.

Answer 5. We are following the convention that (i, j) includes day i and day j both. It is ok to follow a
different convention.

Consider the following example: (1,4), (3,6), (5, 8), (7, 10). Note that there is no day which is present in
three of these intervals. Hence, maximum number of intervals which have a common day is 2. For example,
day 3 is present in first two intervals. Day 5 is present in second and third intervals. Day 7 is present in
second and third intervals. As mentioned in the problem, ties are broken arbitrarily. So, the algorithm could
choose Day 5 in the first step, covering second and third interval. After removing them, we are left with first
and fourth interval. The algorithm will choose one day from the first interval, then one day from the fourth
interval (or vice versa). Here, the algorithm has selected 3 days.

However, there is a better solution. Select days 3 and 7. Day 3 will cover first two intervals. Day 7 will
cover last two intervals.

One can construct a more interesting example, where there are no ties. This is not expected in the
solution.

Consider (1,4), (3,6), (3,7), (5,9), (6, 9), (8, 10). Here the algorithm will first choose day 5 (or day 6)
which covers four middle intervals. Then one day each for first and last intervals. In total, it will select three
days.

However, an optimal solution is just two days, say day 3 and day 8. Day 3 will cover first three and day
8 will cover last three intervals.

Question 6 [10 marks]. In a variant of the above problem, suppose each day has an associated cost. We
want to minimize the total cost of selected days, such that for every person, at least one of the selected days
lies in their interval. We only care about the cost, and not about the number of days. Give a polynomial
time algorithm. Your algorithm should output the optimal cost as well as the optimal set of days.

Answer 6. Note that the input size can be taken as the total number of days in the union of given intervals
plus the number of intervals. This is because are given the cost of each day and the list of intervals. Our
running time will be polnomial in these two parameters.

Let us sort the intervals in increasing order of finish times. Let the interval in this order be I1, I2, . . . , In.
Without loss of generality, let us assume that the starting day of earliest starting interval is day 1. And the
last interval finishes at day t.

We will partition the set of possible solutions, based on whether a particular day is selected or not. We
will start with the last day.

• If the last day is selected then, all intervals containing that day are covered. Then the subproblem to
solve will be remaining intervals and all days except the last one.

• If the last day is not selected then, the subproblem to solve will be the same set of intervals, and all
days excpet the last one.

Observe that our subproblems are parameterized by two parameters, the remaining set of intervals and the
remaining set of days. Let us denote by OPT [i, j] the optimal cost of the subproblem where given intervals
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are I1, I2, . . . , Ii and we are trying to cover them using days 1, 2, . . . , j. Clearly, if any interval among first i
intervals starts after day j, then it cannot be covered and hence, we will take OPT [i, j] as ∞.

Otherwise, we can compute OPT [i, j] recursively, as follows. Let f(j) be the last index h such that
I1, I2, . . . , Ih have their finish times strictly before j. Let cj be the cost of day j.

OPT [i, j] = min

{
OPT [i, j − 1] (that is, we have not selected day j)

OPT [f(j), j − 1] + cj (i.e., we have selected day j and removed intervals covered by day j)

Here, OPT [i, j] is computed using OPT values for smaller indices. Hence, we should fill up this 2D array
in increasing order of i and j. The final optimal cost is OPT [n, t].

Initialization: For any i > 0, put OPT [i, 0] as infinity. Put OPT [0, j] as zero for any j ≥ 0.
Computing the optimal set: If OPT [n, t] =∞ then say that there is no such set. Otherwise, we will go

backwards over the OPT array and compute the optimal set as follows.
Initialize i = n, j = t. Initialize optimal set as empty.

While(i ≥ 1 or j ≥ 1):

• if OPT [i, j − 1] > OPT [f(j), j − 1] + cj then include j in the optimal set. And set i ← f(j) and
j ← j − 1.

• otherwise do not include j in the optimal set. And set i← i and j ← j − 1.

Output the optimal set.
6 marks for the correct recursive equation. 1 mark for base case. 3 marks for the backtracking idea to

compute optimal set.

Question 7 [8 marks]. You have a large number of assignments in this semester, each of which takes one
full day to finish (if you are not doing any other assignment on that day). The i-th assignment is released
on a particular day, say ri and has a deadline di. That means you can schedule the i-th assignment on any
day t such that ri ≤ t ≤ di. Given r1, r2, . . . , rn, d1, d2, . . . , dn, you want to find out whether it is possible
make a schedule to finish all the assignments on time. Give a polynomial time algorithm for this. Prove the
correctness of your algorithm.

Hint: a greedy approach may work. A typical approach to prove correctness of a greedy algorithm is as
follows. You want to prove that if there is a feasible schedule then the greedy algorithm will give a feasible
schedule. Consider a feasible schedule that agrees with first i− 1 choices of your greedy schedule. Modify the
feasile schedule to make it agree on first i choices, while maintaining feasibility. Then argue inductively.

Answer 7. There are two approaches. First let us see a greedy algorithm to schedule all the assignments,
if it is possible.

Sort the assignments in increasing order of deadlines. Say the assignments in this order are A1, A2, . . . , An.
For j = 1, 2, . . . , n:

Schedule Aj on the earliest available day between rj and dj . If there is no day available in this
interval then output that it is not possible to schedule all assignments.

Claim 3. If it is possible to finish all assignments in time, then the above greedy algorithm will find a day
for every assignment.

Proof. The proof will be based on induction.
Induction hypothesis: the greedy algorithm succeeds in finding a day for first i−1 assignments and there

is a feasible schedule for all assignments which assigns the same days for the first i − 1 assignments as the
greedy algorithm.

Base case: the above statement is trivially true for i = 1.
Induction step: Let the feasible schedule from the induction hypothesis be S. We will show that the

greedy algorithm will find a day for the ith assignment and moreover, S can be modified so that it assigns
the same days for the first i assignments as the greedy algorithm.
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• Note that S has assigned the same days for first i− 1 assignments as the greedy algorithm, and it also
has scheduled a day for the i-th assignment. That means, after scheduling first i− 1 assignments, the
greedy algorithm will surely find an available day for the ith assignment.

• Let the first available day for the ith assignment be t. Greedy will schedule ith assignment on day
t. If S also assigns the same day t for assignment i, then we are done. Otherwise, suppose S assigns
another day t′ for assignment i, which can only be later than t. Now, we would like to modify S as
follows: move assignment i to day t. If S had scheduled another assignment Aj on day t, then move
that to day t′. Note that Aj must be a later assignment (i.e., j > i), because the earlier assignments
are scheduled as in the greedy algorithm. In particular, Aj has a deadline greater than (or equal to)
di. Hence, there is no problem in moving Aj to day t′, because we know that t′ ≤ di.

The induction hypothesis for first n assignments follows by induction.

Second approach is based on the Hall’s marriage theorem (on bipartite matching). Consider a bipartite
graph, where assignments form one side of vertices and days form another side of vertices. There is an edge
between an assignment and a day if and only if the day is between the assignment’s release time and deadline.
Clearly, it is possible to schedule all assignments, if and only if there is a matching in the above graph which
matches all assignment vertices. Hall’s theorem states that in a bipartite graph all the vertices on the left
side can be matched if and only if for every subset T of left side vertices, we have

|N(T )| ≥ |T |,

where N(T ) is the set of vertices neighboring to vertices in T . Applying Hall’s theorem in our setting, we
get that all the assignments can be matched if and only if for any subset T of assignments, the total number
of days in the union of their intervals (N(T ) := ∪Ai∈T (ri, di)) is at least |T |.

Now, there are exponentially many possible subsets of assignments, so we cannot check the above con-
dition for all the subsets. The following observation implies that we only need to check polynomially many
subsets.

Claim 4. Suppose there is a subset T of assignments, such that |N(T )| < |T |. Then there are two indices
j, k such that the following subset Tj,k of assignments has |N(Tj,k)| < |Tj,k|

Tj,k = {Ai : ri ≥ rj and di ≤ dk}.

That is, the set of assignments released on rj or later and having deadline dk or earlier.

Proof. Any union of intervals can be viewed as a disjoint union of intervals. For example, union of
(1, 3), (2, 6), (7, 9), (8, 12) is simply (1, 6) ∪ (7, 12). Hence, the subset T can be naturally partitioned into
subsets T1, T2, . . . , Th, such that for each N(T`) is a single interval and N(T1), N(T2), . . . , N(Th) are disjoint.
Clearly, |T | = |T1|+ |T2|+ · · ·+ |Th| and also|N(T )| = |N(T1)|+ |N(T2)|+ · · ·+ |N(Th)|.

If |N(T )| < |T |, then there must be one subset T` such that |N(T`)| < |T`|. Since N(T`) is a single
interval which is a union of given intervals, its starting point must be rj for some j and ending point must
be dk for some k. Hence, we get that |N(Tj,k)| < |Tj,k|.

The above claim means we only need to check the following: for any j, k, whether |N(Tj,k)| < |Tj,k|?
This can be easily checked in polynomial time.

In either approach, 4 marks for the algorithm, 4 marks for the correctness.
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