CS218 Design and analysis of algorithms Jan-Apr 2025

Programming Assignment 2
Total Marks: 5

Note: You are not supposed to directly use any linear programming (LP) or integer linear
programming solver.

You can directly use any code solving network flow. Edmonds-Karp algorithm will be faster than Ford-
Fulkerson. See for example this code https://www.w3schools.com/dsa/dsa_algo_graphs_edmondskarp.
php. Please give reference for whichever code you use (in the pdf you submit).

There is am FMCG company, which produces multiple products. It needs to decide its sales budget for
various products across various cities. For each pair of a product and a city, they are given a range (a lower
bound and an upper bound) on the budget. They are also given a ranges for the total budget of any city
and also for the total budget of any product. We need to figure out if there is a budget allocation which
respects all the ranges.

Abstractly, you have to fill in an m x n matrix X with integers, while satisfying the below constraints.
Let z; ; be the (4, 7) entry of the matrix.

o l;i<zijluforevery1<i<m,1<j<n.
o i <zi1+Tio+ -+ x, <R forevery 1 <i<m.
o c;<xyj+x2;+ F+Ty,; <C;forevery 1 <j<n.
Here {¢; j,u; j},{ri, Ri},{cj, C;} are given as input. You have to output
e whether it is possible to fill in the matrix (output 1 if possible otherwise 0).

e if possible what is the maximum possible total budget Zz T

e if possible what is the minimum possible total budget ZZ i Tig-

Example input: m = 3,n = 3.
1800 1000 500
[¢; ;) = [1500 700 500
1400 800 600

1900 1100 600
[wi;] = | 1600 700 600
1500 900 700

(r1, R1, 72, Ry, 73, Rs) = (3480, 3490, 2835, 2840, 2960, 3000)
(c1,Ch, 2, Ca, c3,C3) = (4870, 4895, 2600, 2605, 1805, 1815)

Output:
1

9315
9275

In the above example, we can fill in the matrix as follows to maximize the total budget (not expected in
the output).
1900 1020 570
1595 700 545
1400 885 700

https://www.w3schools.com/dsa/dsa_algo_graphs_edmondskarp.php
https://www.w3schools.com/dsa/dsa_algo_graphs_edmondskarp.php

We can fill in the matrix as follows to minimize the total budget.

1900 1040 540
1570 700 565
1400 860 700

Instructions

No. of the lines in the Input = 3 + number of edges. The (i 4 3)-th line gives the endpoints of i-th edge u;,
v;, its weight w; and its color r; (1 if red, 0 otherwise).

Line 1: m (the number of rows)
Line 2: n (the number of columns)
Line 3: 6171 5172 fl,n

LZ"I’LC 2—/—m: Em,l Zm,2 e Em;n
Line 8+m: w11 1,2 -+ Uip

Line 24+2m: um,1 Um,2 - Um,n

Line 3+2m: r1 Ry -+ rp R

Line 4+2m: ¢ C1 --- ¢, Cp

Output :

Line 1: 1 or 0 (1 if it is possible to fill in the matrix)
Line 2: minimum possible total budget

Line 3: maximum possible total budget

Programming Language: C+-+. We will compile your code with g++. Make sure that it works.

Submission: put your code in a file named XXX.cpp where XXX is your roll number. Also, write a
short explanation (a paragraph) of what your algorithm does, put this in XXX.pdf. Also mention in
the pdf compilation options that need to be used. The two files should be uploaded on Moodle (do not
zip/compress).

Given files: In the fillMatrix folder, you will find: (i) helper.cpp (a c++ code showing expected
input/output, feel free to use) (ii) Few sample input and output files. (iii) LP.cpp which solves the
same problem using a linear programming solver.

Running time: we will test your code on some similar size instances as given in the sample input files
(few of small size, few of large size).

Academic integrity: Mention all references if you have referred to any resources while working on this
assignment in the pdf. You are supposed to do the assignment on your own and not discuss with
anyone else. We will do a plagiarism check on your submission using MOSS. It’s fairly sophisticated
and can detect even when you have made modifications in someone else’s code. Any cases found with
significant overlap will be sent to DADAC. If DADAC finds it to be a case of plagiarism, then the
penalty is zero in the assignment and final course grade reduced by 1 point.

Grading: We will use mars.cse for testing, with a timeout of 5 seconds for each input. The test inputs
will be of varying sizes. Total marks will be equally distributed for the test inputs.

https://theory.stanford.edu/~aiken/moss/

