
CS218 Design and analysis of algorithms Jan-Apr 2025

Quiz 1
Total Marks: 20 Time: 55 minutes

Instructions.

• Please write your answers clearly and concisely.

Question 1 [3 marks]. For any given number a, we want to compute a27. Show that you can do it in at
most seven multiplications.

Answer 1. Here is one way. Compute a, a2, a4, a8, a16, each by squaring the previous term. We have done
4 multiplications so far. Now, we will directly use these powers. Note that a27 = a16 × a8 × a2 × a, which
needs 3 more multiplications.

Question 2 [3 marks]. We want to find an approximate value of log2 3 (that is, x such that 2x = 3)
using binary search. To begin with, we know that 1 < log2 3 < 2. So, our initial search range is
(start = 1, end = 2). Show the steps of binary search till the size of the search range becomes at most 1/8.
In each step, clearly show what is the search range and how you decide whether to go in the left half or right
half.

Hint: you may need to compare 2
α
β with 3; instead, you can compare 2α with 3β .

Answer 2.

• start = 1, end = 2.

• mid = (1 + 2)/2 = 3/2.

• Compare 23/2 with 3. 23 < 32, hence, 23/2 < 3.

• Thus, we go to right half.

• start = 3/2, end = 2.

• mid = (3/2 + 2)/2 = 7/4.

• Compare 27/4 with 3. 27 > 34, hence, 27/4 > 3.

• Thus, we go to left half.

• start = 3/2, end = 7/4.

• mid = (3/2 + 7/4)/2 = 13/8.

• Compare 213/8 with 3. 213 > 38, hence, 213/8 > 3.

• Thus, we go to left half.

• start = 3/2, end = 13/8.

1



Question 3 [7 marks]. (Moving Median): In statistics, a robust estimate of a trend is obtained by
considering moving medians, which is not susceptible to rare anamolies.

For a given array of n integers a1, a2, . . . , an, and a given parameter k, we want to compute an array M
such that

M [j] = median(aj−k, aj−k+1, . . . , aj , . . . , aj+k−1, aj+k), for any j between k + 1 and n− k.

Other entries in M are supposed be 0. Recall that median of an odd size set of numbers is just the middle
number in the sorted order.

Design an O(n log k) time algorithm for this.
Hint: A balanced binary tree may help.

Example.
Input: 2, 8, 4, 7, 8, 1, 5, 3 and k = 2
Output: 0, 0, 7, 7, 5, 5, 0, 0.

Answer 3. First let us see how to find predecessor or successor of an element x in a binary tree.

• Predecessor: Find x in the tree using the standard binary tree search. If x has a left child y, then from
y keep going to the right child till there is no right child. The last node reached is predecessor.

Consider the case when x has no left child. Then go to closest ancestor y such that x is in the
right subtree of y. This ancestor y is the predecessor. If there is no such ancestor, then there is no
predecessor.

Similarly one can define successor.

In the answer, the algorithm to find predecessor or successor is not expected. The time to find them for
any node is O(h), where h is the height of the tree.

We will insert the first 2k + 1 numbers in a balanced binary tree one by one. We will find the median of
these 2k+1 numbers by first finding the largest node in the binary tree and then using predecessor operation
k times. We will set M [k + 1] as the value of the median. And we will also keep a pointer med to the node
storing the median. Finding predecessor takes O(log k) time, hence, total time spent here is O(k log k).

For simplicity, we are assuming that all numbers are distinct. If they are not, we make a convention that
among two equal numbers, the one which comes before in the array is smaller. We can also store the index
information in the binary tree.

For j = k + 2 to n− k, we will do as follows:

• Insert aj+k in the binary tree.

• If aj+k, aj−k > med then set M [j] as the value of med.

• If aj+k, aj−k < med then set M [j] as the value of med.

• If aj−k ≥ med and a[j + k] < med, then set M [j] as the value in the predecessor of med. Also update
the med pointer to its predecessor.

• If aj−k ≤ med and a[j + k] > med, then set M [j] as the value in the successor of med. Also update
the med pointer to its successor.

• Remove aj−k from the binary tree. Both insertion and removal can be done in O(log k) time in a
balanced binary tree.

Question 4 [7 marks]. We are given n rectangular boxes B1, B2, . . . , Bn with same heights. We are
given their widths and lengths. Suppose the box Bi has width wi and length `i (assume wi ≤ `i) for every
1 ≤ i ≤ n. The box Bi fits inside box Bj if and only if wi ≤ wj and `i ≤ `j . For each box Bi, we want
to output the number of other boxes that can fit into Bi. That is, you have to output n numbers. For
simplicity, you can assume that all widths and lengths are distinct numbers.

2



Design a divide and conquer algorithm for this problem. You may want to sort the boxes in some
order before running the algorithm. Do a runtime analysis for the complete algorithm.

Full marks for O(n log n) time algorithm. Only 5 marks for O(n log2 n) time algorithm.

Hint: If it helps, you can try to ensure that after a recursive call on the left/right half, you also get that
half sorted in some way.

Example:
Input: (5, 7), (2,10), (1, 6), (4, 16)
Output: 1, 1, 0, 2

Answer 4. Sort the boxes in increasing order of lengths. While sorting, also store the original index in
the given list of boxes. Let FitCount be an array whose i-th entry is supposed to the number of other boxes
that can fit into Bi, for each i. Initially, it is all zeros.

Count-and-Sort:
Input: a list S of boxes sorted in increasing order of lengths.
Output: updates the FitCount so that for each box Bi in S, the entry FitCount[i] is the number of

other boxes in S that can fit into Bi. It also sorts S in increasing order of widths.

1. If S has only one box then return.

2. Divide S into two halves (based on length): let S1 be the first half and S2 be the second half.

3. Count-and-Sort(S1)

4. Count-and-Sort(S2)

5. Count(S1, S2)

6. S ← Merge-width(S1, S2).

Here, Merge-width is the standard procedure that takes two lists of boxes sorted in increasing order
of widths and outputs the union of the two lists sorted in increasing order of widths. Now, we describe
the Count procedure, which will count for every box in S2, how many boxes in S1 fit into it, and update
FitCount accordingly.

Observe that each box in S2 has a larger length than each box in S1. We need to count for every box in
S2, how many boxes in S1 have smaller width than it. We will traverse over S1 and S2, which are sorted in
increasing order of widths. We will maintain two pointers: i for S1 and j for S2.

Count(S1, S2):
Initially i = 0
for j = 0 to n/2− 1 {

Keep increasing i till the first point we get S2[j].width < S1[i].width
Let kj be the original index of the box S2[j].
FitCount[kj ]← FitCount[kj ] + i (because S2[j].width is larger than exactly i widths in S1)

}

3


