
CS218 Design and analysis of algorithms Jan-Apr 2025

Quiz 2
Total Marks: 20 Time: 55 minutes

Instructions.

• Please write your answers clearly and concisely.

Question 1. Let J1, J2, . . . , Jn be job positions and let C1, C2, . . . , Cm be candidates. Each candidate has
a strict preference order over job positions and each job position has a strict preference order over candidates.
Assume m = n for now. For a given perfect matching M between jobs and candidates, we defined a blocking
pair as a pair (Ji, Ck) such that

• Ji is matched with Ck′ in M and Ji prefers Ck over Ck′

• and Ck is matched with Ji′ in M and Ck prefers Ji over Ji′ .

A perfect matching M is called stable if there is no blocking pair with respect to M .
Now suppose number of jobs and candidates are not necessarily same. Also, a candidate (or job position)

may not be interested in all job positions (or candidates). Each candidate has a strict preference order
among the job positions she/he is interested in. Similarly, each job position has a strict preference order over
candidates it is interested in. Naturally, each job/candidate prefers to be matched to something in their list
rather than being unmatched. But, it may not be possible to match every job/candidate. We want to define
stable matching in this more general setting, again via blocking pairs.

(a) [3 marks]. In addition to the above defined blocking pair, how should we define other possible
blocking pairs, with respect to any given matching M?

Hint: There are three kinds of blocking pairs other than the above. Pairs (Ji, Ck) where Ji is unmatched,
or Ck is unmatched, or both are unmatched.

• (Ji, Ck) is a blocking pair if Ji is unmatched and has Ck in its list and Ck is matched Ji′ and prefers
Ji over Ji′ .

• (Ji, Ck) is a blocking pair if Ck is unmatched and has Ji in its list and Ji is matched Ck′ and prefers
Ck over Ck′ .

• (Ji, Ck) is a blocking pair if both Ji and Ck are unmatched and have each other in their list.

Marks have been deducted if it is not mentioned that “has Ji in its list” etc.
(b) [2 marks]. Consider the following example for jobs J1, J2, J3 and candidates C1, C2, C3. Below are

their preferences. If a job (or candidate) is not present in a candidate’s (or job’s) list, then they cannot be
matched with each other.

• J1 : C3 > C2

• J2 : C3 > C2 > C1

• J3 : C2 > C3 > C1

• C1 : J2 > J3

• C2 : J2 > J1 > J3

• C3 : J3 > J1 > J2

1



Consider a matching where J2 is matched to C3, and J3 is matched to C2. Job J1 and candidate C1

remain unmatched. Is this a stable matching? Explain why or why not.
No.
It is not stable because (J1, C2) is a blocking pair. Because J1 is unmatched and has C2 in its list and

C2 prefers J1 to its current match J3.
Alternatively, it is not stable because (J1, C3) is a blocking pair. Because J1 is unmatched and has C3

in its list and C3 prefers J1 to its current match J2.
1 mark for answer, 1 mark for explanation. Showing any one of the two blocking pairs is sufficient.
(c) [3 marks]. Give the job-optimal stable matching for the above preference lists. Recall that in the

job-optimal stable matching, every job gets matched to the best possible candidate it could get in any stable
matching. (We had seen an algorithm for this in the class.)

Stable matching is (J2, C2), (J3, C3), the remaining J1 and C1 are unmatched.

Question 2. Consider the flow network in Figure (1a) with a source s and a sink t. The edge capacities
are shown on the edges. Figure (2b) shows an s-t flow in the same network with flow values indicated on
the edges.

s

a b

c d

t

10

15

2

9

10

17

7

10

(a) A flow network with capacities on the edges

s

a b

c d

t

7

15

0

7

10

17

5

5

(b) Current flow values shown on the edges.

Figure 1: Network Flow

(a) [2 marks]. Construct the residual graph with respect to the flow shown in Figure (2b) and capacities
shown in Figure (1a). You do not need to show any (forward/backward) edges with zero residual capacity.

s

a b

c d

t

7 3

15

2

2

7

10

17

2

5

5 5

(a) Residual capacities shown on the edges

s

a b

c d

t

3

2

10

2

5

(b) A path from s to t in the residual graph.

Figure 2: Network Flow

(b) [1+1 marks]. Find a path from s to t in the residual graph (using edges with nonzero residual
capacity)? What is the maximum possible additional flow you can push along this path?

s→ a→ b→ c→ d→ t.
The minimum residual capacity along this path (bottleneck) is 2. Hence, 2 units is the maximum possible

flow we can push along this path.
(c) [2 marks]. After pushing this additional flow, show the updated flow value on each edge of the given

graph.

2



s

a b

c d

t

9

15

0

9

8

17

7

7

Figure 3: Network Flow

(d) [1+1 marks]. Is it the maximum possible flow from s to t? Give a short argument for your answer.
Yes, it is the maximum possible flow. The total flow going out of s is 24, while there is an s-t cut

{s, a} whose outgoing capacity is 24. Since flow is upper bounded by the capacity of any s-t cut, 24 is the
maximum.

Question 3 [4 marks]. We are given a flow network with integer capacities (directed graph, single source
s with no incoming edges, single sink t with no outgoing edges). Suppose the maximum possible outgoing
flow from source is x units. We want to increase it to x + 1 units by increasing capacities of certain edges
(not allowed to add new edges). We want to minimize the number of edges whose capacities we have to
increase. Give a polynomial time algorithm for this. You can directly use subroutines for problems discussed
in this or previous courses.

Hint: example in the previous question may be helpful.

• Compute maximum flow f using the algorithm seen in the class.

• Compute the residual graph Gf with respect to max flow f (zero capacity edges deleted).

• Since it is maximum flow, there is no way to increase the flow. That means there is no path in the
residual graph from s to t.

• Note that we need to increase capacity of only those edges in the given network, which are saturated
(flow = capacity). That is, edges whose residual capacity is zero. When we increase an edge’s capacity
by 1 unit, its forward residual capacity will also increase by 1 unit. While backward capacity remains
same.

• In the residual graph, add all the forward edges with zero residual capacity. Mark these edges as red.

• Now, in this modified graph, we find a path from s to t with minimum number of red edges.

• This can be done via Dijkstra’s algorithm by giving red edges weight 1, the other edges weight 0,
finding minimum weight path.

• Note that the desired path may involve backward edges. The algorithm is correct only if you also
consider backward edges. Clearly, zero capacity backward edges should not be considered. 1.5 marks
deducted for not using backward edges.

• Note that BFS/DFS cannot find a path with minimum number of red edges. 1 mark deducted for not
using the correct algorithm.

3


