Exponentiation

Given 2 and n, compute a”.

axax---xg ntimes

n-1 multiplications

a6 = ((((#2)?)?)? only 4 multiplications

all = (((a2)?)? x a2 x a only 5 multiplications

Repeated squaring technique

Repeated Squaring

« Exp(a, n):
e [fniseven
« return (Exp(a, n/2))2

e [fnisodd

Number of multiplications
Tn)<Tn/2) +2

T(n)<2logn

* return (Exp(a, (n-1)/2))2 x a

e Ifnisl1

e return a

Another implementation

« Exp(a, n):
o If niseven
o return (Exp(a2, 1/2))
e If nis odd
o return (Exp(a2, (n-1)/2)) x a
e Ifnisl

e return a

[terative implementation

* Input:a, n

e Initialize
a_power_n <=1, // this will be 4" at the end
a_two_power <— a, // this will be 72”1 after i iterations

* while (1 > 0)
o If (nis odd) then a_power_n < a_two_power x a_power_n;
* a_two_power <— a_two_power X a_two_power;

* 1 < n/2 //integer part after division by 2 //or right-shift by 1 bit

Repeated squaring

Does it give the minimum number of multiplications?
What about a15?
* can be done in 5 multiplications

Given 71, what the minimum number of multiplications
required for 4" ? No easy answer.

Can apply repeated squaring for other operations like
Matrix powering.

Apparently proposed by Pingala (200 BC ?).

Fibonacci numbers

F(n) =F(n-1) + F(n-2)

Used by Pingala to count the number of patterns of
short and long vowels.

Here again we are repeating the same operation n
times.

Can repeated squaring be used?

Can we compute F(n) in O(log n) arithmetic
operations?

Fibonacci numbers

 F(n)=F#n-1)+ F(n-2)

* if nis even

* F(n) =Fn/2) F(n/2-1) + E(n/2+1)F(n/2)
=F(n/2) 2F(n/2+1) - F(n/2))

e F(n+1)=Fn/2) F(n/2) + F(n/2+1)F(n/2+1)

* similarly, if n is odd

Fibonacci numbers
) -G 1))
B)-CDE-C D &)
(i)=G 0"
)=o) (

-G ()
(i)t

/
I
Fy

Integer Multiplication

Addition: Adding two n bit numbers
School method O(n) time

O(n) time is necessary to write the output.

Multiplication: multiplying two 7 bit numbers
School method O(n2) time

is O(n?) time is necessary?

Integer Multiplication

Kolmogorov (1960) conjectured that O(n?) time is necessary.
In a week, Karatsuba found O(n1-%9) time algorithm.
Karatsuba quoted in Jeff Erickson’s Algorithms

“ After the seminar I told Kolmogorov about the new
algorithm and about the disproof of the 12 conjecture.
Kolmogorov was very agitated because this contradicted his
very plausible conjecture. At the next meeting of the
seminar, Kolmogorov himself told the participants about
my method, and at that point the seminar was terminated. ”

Special case: Integer Squaring

* If we have a squaring algorithm, does it directly
give us a multiplication algorithm?

* Input: n bit integer a

* Break it into two chunks 7-1 bits and 1 bit
*a=¢+2Db

e 2=¢e2+2be+1?

e T(n)=T(n-1) + O(n) = O(n2)

Squaring: divide and conquer

* Input: n bit integer a

* Break it into two chunks: 7/2 bits and /2 bits

e a=b+c2n2.

e i2=0p2 +2bc2m2+c22n

* Need to compute the multiplication bc recursively.

« How to compute bc with the square function?

2 bc = (b+c)? - b?- 2

Squaring: divide and conquer

* Input: n bit integer a
* Break it into two chunks: 7/2 bits and /2 bits
« @22=D02 + (b2+ c2- (b-c)?) 212 4 ¢2 2n
e Squaring an # bit number reduced to
* squaring three 1/2 bit numbers
 and few additions and left shifts O(1n)

e T(n)=3Tmn/2) + O(n)

Running time analysis

e T(n)=3Tmn/2)+ O(n)

e T(n)<cn+ 3 T(n/2) for some constant c

T(n)<cn + 3cn/2 + 32 T(n/22)

T(n)<cn+3cn/2 +32cn/22 + 33 T(n/23)

T(n)<cn+3cn/2 +32cn/22 + -+ + 3k1cn/2k1 + 3k T(n/2k)

Assuming n =2kand T(1) =1

T(n)<cn(1+3/2+3222+ -+ + 3k1/2k1) + 3k

T(n) <2 cn (3%2k -1) + 3k< (2¢+1) 3k = O(3k) = O(3logn) = O(nlos 3)

Karatsuba’s multiplication

* Input: n bit integers a and b

Break integers into two chunks: 7/2 bits and /2 bits
s a=uqa9p+a;2n?.

b=b0+b12”/2.

ab = ao bo + (El() b1 + 1 bo) 2n/2 4 a1 b1 2n

Want to compute the three terms agbo, (ao b1 + a1 bo), a1 by
with only three multiplications and a few additions

T(n) =3 T(n/2)+ On)
T(n) = O(nlog3) = O(nl-585)

Toom-Cook multiplication

e Break it into three chunks: 71/3 bits each
* a=aqay+ a; 23 + gy 2213
 b="by+ by 213 + by 22113

e ab =apby + (ap b1 + aj by) 273 + (ag by + a; by + a» by) 221/3

+ (a1 by + a» by) 23n/3 4 a> by 24nf3

* In how many multiplications of n/3 bit numbers, can
you find these five terms?

Toom-Cook multiplication

e ab =uapby + (ap by + aj by) 23 + (ag by + a; by + a» by) 22n/3

+ (a1 by + @ b1) 23n/3 4+ a> by 24n/3

* In how many multiplications of n/3 bit numbers, can
you find these five terms?

If six multiplications
e T(n)=6T(n/3) + O(n) = T(n) = O(nllog6)llog3)) = O(nl63)
* If five multiplications

e T(n)=5Tm/3)+ O(n) = T(n) = O(nleg5llog3)) = O(nl46)

Toom-Cook multiplication

* Homework: find these five terms using five
multiplications and a few additions

* apbo

* a9 b1+ a by

* ap by +a; b+ az by
* a1 by + ap by

* bz

Toom-Cook multiplication

* Homework: find these five terms using five square
operations and a few additions

¢ P2
¢ PO

e 2PR + (Q?
+ OR

¢ R2

Announcements

Quiz: Wednesday 8:30-9:25 AM

Venue: LA 001 (odd roll numbers)
LA 002 (even roll numbers).

Syllabus: Lecture 1-7 (till repeated squaring)

One handwritten A4 size page (both sides)
Make up class: This Fri, 5:30 pm, LH 302.

Integer multiplication history

« Karatsuba: break integers into two parts: O(n15%)
* Toom-Cook: break integers into three parts: O(n1-4¢)
* What if break into more parts?

* can get better and better time complexity by
increasing the number of parts

* for k parts, we will get O(kZnlog (2k-1)/ logk)

* we can get O(n!+¢) for any constant ¢ > 0

Integer multiplication history

* for k parts, we will get O(k2nlog (2k-1)/log k)
* we can get O(n!+¢) for any constant ¢ > 0
 Exercise: how many parts to break into for O(n11)

* Theoretically faster, but not necessarily faster in
practice due to large constants.

* For multiplying 64 bit integers, Karatsuba may not
be faster than school method. A combination of the
two may be faster.

Integer multiplication history

e [1960] Karatsuba O(n1:585)
e [1963, 1966] Toom-Cook: O(nl46)

» [1981)

. [1971

Donald Knuth: O(n 2v@legn) Jog 1)

Schonhage—Strassen: O(n log n loglog n)

* [2007, 2008] Firer, De-Kurur-Saha-Saptharishi:

O(n log n 2log™n)

12019] Harvey-van der Hoeven: O(n log 1)

* Conjecture: O(n log n) can not be improved

Matrix multiplication

* Input: n x n matrices A and B

 Break matrices into four parts: /2 x 1/2 each
AO Al BO Bl
— B =
A (AQ Ag) (BQ BB)

AR — (AOBO + A1By AgB; + A1BS>

AQBO - A3B2 AgBl T Ang

» Want to compute the four matrices with only seven
multiplications and a few additions

Polynomial multiplication

 Input: degree d polynomials P and Q

P(x)= po+p1x+prx2 + -+ paxa.

¢« Q(x)=qgo+qix+qox?2 + -+ gaxi.

P(x) Q(x) = po + (poqi+p190)x + -+ + paga x%4.

Assume integer multiplication in unit time.

School multiplication O(d?) time.

Can we do better?

Polynomial multiplication

e A(x)=ao+ a1 x +ayx2+ -+ + a4q x4
* B(x)=bo+b1x~+byx2+ -+ bgq x¥!

 A(x)B(x)
=&l()b() +(a0b1 + a7 bo)x+(aob2+a1 b] + > bg)xz
+ e+ 447 bd—] de—Z

2d—2 J
) A(x)B(x) = Z b (Z aibj—i>

=0 i=0

Polynomial multiplication

e A(x)B(x)
=a0b0 +(a0b1 + a7 bg)x+(aob2+a1 b1 + a» b())xz
+ o+ A4 bd-l de—Z

* Assuming unit cost arithmetic operations, what is
the time complexity?

* Naive algorithm O(d2)

* Can we use Karatsuba’s idea for polynomial
multiplication?

Convolution

a= (ap,ai, ax, ..., am1) € Rm
b= (by, bi, by, ..., b,1) ER"

axb=(a bO/ (aob1 + aibo) , (apbz + ai1b1 + a»bp) ,
o (F @B v ttbur) € R

Dot product with a sliding window

Applications of Convolution

* Signal processing

* Smoothening of noisy data

* Covid cases per day: take seven day averages

* Image processing: 2D convolution (bivariate
polynomial multiplication)

e Convolutional neural networks

Operation Kernel w Image result g(x,y)
0O 0 O
Identity 0 1 0
0O 0 O
rm =il
-1 4 -1
0 -1 0
Ridge or edge detection
[=1l =il =il
-1 8§ -1
-1 -1 -1
0 —1 0
Sharpen -1 5 -1
| 0 -1 0
1 1 1
Box blur 1
_ =11 1 1
(normalized) 9
1 1 1
1 1
Gaussian blur3 x 3 1
_— — | 2 2
(approximation) 16 1 1

Source: https:/ /en.wikipedia.org/wiki/Kernel_(image_processing)

Applications of Convolution

* Probability distribution of a sum of two random
variables

* Dice with
Outcome 1 2 3 4 5 6
Probability 0.2 03 0.1 0.1 0.2 0.1

e Sum of two such dice

Outcome 1 2 3 4 5 6 7 ...
Probability 0 0.04 0.12....

Puzzle

* Puzzle: secret sharing

* Share secret among 7 parties
If any k of them come together, the secret can be
reconstructed.

Polynomial multiplication/
Convolution

» Can we get faster than the naive O(d?) algorithm?
* Different representations of a polynomial

* coefficients

* roots

e evaluations

* Claim: given d evaluations, there is a unique degree
d-1 polynomial satisfying those evaluations.

Unique polynomial with d
evaluations

 Claim: given d evaluations, there is a unique degree d-1
polynomial satisfying those evaluations.

 Proof:

* Suppose there are two different degree d-1 polynomials
P(x) and Q(x) which have the same d evaluations.

e Define R(x) = P(x) - O(x).
* Then R(x) is zero at these d points

* But, a degree d-1 polynomial cannot have d roots.
Contradiction.

Roots of a polynomial

Claim: A (nonzero) degree d-1 polynomial can have at most d-1 roots
Proof: We prove it by induction.
Base case: degree 1 polynomial has exactly one root.
Induction hypothesis: a degree d-2 polynomial has at most d-2 roots
Induction step: Let P(x) be a polynomial of degree d-1.

« Let a be a root of P(x). Then x-a divides P(x).
Let P(x) = (x-a) Q(x). If P(3) = 0 for some 3 # «, then Q(f3) = 0.

Hence, all other roots of P(x) are also roots of Q(x).

By induction hypothesis, Q(x) has at most d-2 roots.

Hence, P(x) has at most d-2+1 = d-1 roots.

Polynomial representations

* Computations with different representations

Addition Multiplication

Coefficients O(d2) O(d?)
Roots ? O(d)
Evaluations O (d) O (d)

 But, can we convert between different
representations?

Polynomial Representations

e Given d coefficients, how much time needed to
compute evaluations of the polynomial at d points?

* Naively, each evaluation will need O(d)
multiplications and additions

e Overall time O(d?)

* Can evaluation at one point help with evaluating at
another point?

Coefficients to evaluations

e A(x)=ap+a1x +a»x2+ -+ + agq x1
e A(1)=uap+a; +ax+ -+ +a41

e A(-1)=ap-a1 +a» -+ -ad1

e Total additions = 2d-2

 First compute
even-sum=aop+a, +as+ - +dg
odd-sum = a; + a3 +as+ -+ + a4

e A(1) =even-sum + odd-sum
e A(-1) = even-sum - odd-sum

e Total additions = d

Coefficients to evaluations

e Similar trick with A(a) and A(-«a)

e Alx)=ap+a1x+ax2+ -+ + ay.1 x4-1

o Apen(X) =00+ a>x +asx2+ -+ + ay.p x9/2-1
e Avui(x)=0a1+az3x +asx2+ -+ + ag.q xi2-1
* A() = Acven(0?) + - Apga(a?)

o A(-a) = Acwen(a?) - a0 - Aoaa(a?)

» Two evaluations of degree d-1 polynomial
— Two evaluations degree d/2-1 polynomials

Coefficients to evaluations

o Ala) = Aeven(a?) + v - Apaa(r?)
o A(-a) = Aeven(?) - a - Apaa(a?)

e Evaluations of A(x) at
a, -a, IB/ -IB/ 7// -7// ERE

« — Evaluations of A..en(x) and Ayua(x) at
a’, %, v?, ...

e Total work reduced by half

« Can we further apply this trick?

* We will need o? =- 27

Roots of unity

Evaluations of A(x) at
1,-1,1,-1

— Evaluations of A....(x) and A,q(x) at
1, 2=-1

— Evaluations of Aeven—even(x) p Aeven-odd(x) , Aodd-even(x) ’

Aodd-odd(x) at
1

To generalize assume d = 2!

We will start with d-th roots of unity.

Roots of unity

a+ib =reid

r = V(a2 + b2) is the absolute value

0 = tan-1(b/a) is the angle with real axis
ein=-]

Primitive d-th root of unity = w = e2mi/d

* All d-th roots of unity =1, w, @?, @3,...., w1

Properties of roots of unity

* Primitive d-th root of unity = @ = e27i/d
o /2 =p2mi/2=_]
* All d-th roots of unity =1, w, @?, @3,...., w1
* All (d/2)-th roots of unity =1, w2, w?, b,, w22
e T+w+ 2+ B+ -+ 1=

e 1+w+ wi+ i+ -+ wdli=0for 0<j<d

Discrete Fourier Transform

 Evaluate a degree d-1 polynomial at d-th roots of unity

 Evaluations of A(x) at
1, w, w2, 3,...., Wl (d-th roots)

e Givenap,ai,ar, -+, A4

* Output
ap+ar 1 +ax 12+ -+ + a4 141
ap+ a1 @+ az w2+ -+ + agg wtl
ap + ai; w? + az w*+ -+ + a4 w42

ap + ai; Wil + ay w2+ -+ + a4 w41

Fourier Transform

, F(k) = J‘°° f(x) sin(2rkx) dx
. G(k) = “00 f(x) cos(2rkx) dx

. G(k) + iF(k) =J f(x) e*™ dx

Fast Fourier Transform

Evaluations of A(x) at1, w, w?, w3,...., w!
Assume d is a power of 2
Acven(X) =ap+ ax x + ag x2+ -+ + a4 xd/2-1

Aogd(X) = a1 + a3 x + a5 X2+ - + qgq x2-1

_1 — wd/z

o Ala) = Acven(?) + o - Avad(a?)
....... o A(-a) = Aeven(¥?) - o = Apaa(a?)

- wd/z-l . wd/2+d/2-1 — wd-l

Squares of the d-th roots : 1, w?, w?,...., @2@2-D (d/2-th roots)

Fast Fourier Transform
Cooley-Tukey 1965

 Evaluations of A(x)
at 1, w, w2, w3,...., w4l (d-th roots)

* Recursively evaluate Acven(x) and Aoda(x)
at 1, w2, w4, wo,...., w42 (d/2-th roots)

e For0<k<d/2-1
o A(wk) = Acven(w?k) + k + Apga(w?k)

° A(wk+d/ 2) = Aeven(w?k) - wk + Apga(cw?*)

Fast Fourier Transform

Let T(d) be the time to evaluate a degree d-1
polynomial at d-th roots of unity.

For 0 <k <d/2-1

* A(wF) = Aeven(@?F) + @ - Agda(w?*)

© A(wktd2) = Agpen(w?F) - @k Apaa(w?*)
T(d)=21T(d/2) + O(d)

T(d) = O(d log d)

Polynomial multiplicaiton /
convolution

e Coefficients — Evaluations (FFT)
* O(dlog d)

* Pointwise multiply evaluations of the two
polynomials

* O(d)
e Evaluations — Coefficients (inverse FFT)

* Inverse FFT is just FFT with w replaced by w!
* O(dlog d)

Inverse FFT

* Inverse FFT is just FFT with w replaced by w! = w?!

eo=ap+a;l+a12+ - +qa47141
e1=ap+a;w+a >+ - +a41 il

i1 =ap+ a3 w1l + g, w242+ --- + g4 @241

dap =ep+e11+e 124 -+ + eq1 14
dai =eo +e1 wl +er w2+ -+ + eqq @it

dag1=ep + e7 w1 + ey 242+ -+ + e4.1 (291

FFT Implementation issues

« Can we really do additions/multiplications with roots of
unity in constant time?

 approximations: how many bits sufficient?
* Requires careful implementation.

« modular arithmetic: work modulo a large enough prime,
such that d-th roots of unity exist.

* Isit fast in practice?
o Iterative implementation, which is memory efficient

e FFT convolution faster than direct convolution for d=128

Fast integer multiplication

* Split the integers into d parts each having f bits
s a=aqap+a; 2t +ap 22+ --- + gz 200Dt
* b=>bo+ b1 2t + by 22t + --- + byq 20d-Dt
* Define
e Alx)=ap+a;x+ayx2+ -+ agq xd-1
e B(x)=byp+brx+byx?2+ -+ byq xt1

* Multiply as polynomials (using FFT) and put x = 2

