
CS218 Design and analysis of algorithms Jan-Apr 2023

Exercises: Greedy, Dynamic Programming (No submission)

Lecture 7 & 8: Greedy algorithms

1. Let G(V,E) be a graph with edge weights and V = V1 ∪V2 be a partition of vertices. Let C be the set
of cut edges connecting V1 with V2, i.e.,

C = {(u, v) : u ∈ V1, v ∈ V2}.

Let e∗ be the minimum weight edge in C. Prove that there must exists a minimum weight spanning
tree containing e∗.

2. Let G(V,E) be a graph with edge weights and let v1 be an arbitrary vertex. Let e∗ be the minimum
weight edge incident on v1. Prove that there must exists a minimum weight spanning tree containing
e∗.

3. Suppose you are given a set of n course assignments today, each of which has its own deadline. Let the
i-th assignment have deadline di and suppose to finish the i-th assignment it takes `i time. Given that
there are so many assignments, it might not be possible to finish all of them on time. If you finish an
assignment at time ti which is more than its deadline di, then the difference ti−di is called the lateness
of this assignment (if ti < di then the lateness is zero). Since you want to maintain a balance among
courses, you want that the maximum lateness over all assignments is as small as possible. You want to
find a schedule for doing the assignments which minimizes the maximum lateness over all assignments.
Can you show that a greedy algorithm will give you an optimal solution?

• Greedy Strategy 1: Do the assignments in increasing order of their lengths (`i).

• Greedy Strategy 2: Do that assignment first whose deadline is the closest.

• Greedy Strategy 3: Do that assignment first for which di − `i is the smallest.

Two of these strategies don’t work. Give examples to show that they don’t work. One of the strategies
actually work. Prove that it works by arguing that there is an optimal solution which agrees with the
first step of the greedy algorithm.

Example: d1 = 20, `1 = 10, d2 = 40, `2 = 20, d3 = 60, `3 = 30. If the assignments are done in order
(1, 3, 2) then the maximum lateness will be 20 (for assignment 2). If the assignments are done in order
(1, 2, 3) then the maximum lateness will be 0.

4. Consider another variant. Now, all assignments are equally long, so let’s say each takes a unit time
to finish. The ith assignment has deadline di and a reward ri. You get the reward only if you finish
the assignment within the deadline, otherwise the reward is zero. Design an algorithm to find the
maximum possible reward you can get.

5. Hard problem. Consider another variant. For each assignment, you know its deadline di and the time
`i it takes to finish it. Suppose you get zero marks for finishing an assignment after its deadline. So,
either you should do the assignment within the deadline or not do it at all. How will you find the
maximum number of assignments possible within their deadlines.

6. Given a set of intervals, you need to assign a color to each interval such that no two intersecting
intervals have the same color. Design an efficient algorithm find a coloring with minimum number of
colors. To put the problem in another way, given arrival and departure times of trains at a station
during the day, what is the minimum number of platforms that is sufficient for all trains.

1



7. Given a list of n natural numbers d1, d2, . . . , dn, we want to check whether there exists an undirected
graph G on n vertices whose vertex degrees are precisely d1, d2, . . . , dn (that is the ith vertex has degere
di) and construct such a graph if one exists. G should not have multiple edges between the same pair
of vertices and should not have self-loop (edges having same vertex as the two endpoints).

Example 1: (2, 1, 3, 2) . The graph with the set of edges (v1, v3), (v1, v4), (v2, v3), (v3, v4) has this
degree sequence.

Example 2: (3, 3, 1, 1) . There is no graph on four vertices having these degrees.

8. Suppose you are an advertisement company who wants to advertise something to all n people in the
city. You know that each of these n people will come to the city center on Sunday for some interval
of time. You have acquired these time intervals for all people through some unethical means. You
cannot put ads at the city center, but you can pay people to carry your ad on them (maybe by wearing
a t-shirt). Assume that if X is carrying the ad, then anyone whose time interval intersects with the
time interval of X will see the ad (of course, X will also see the ad). You want to choose minimum
number of people to whom you should pay so that everyone sees the ad. Design an algorithm for this
and prove its correctness.

Lecture 9: Dynamic Programming

Flavour 1: where the subproblems are on suffixes/prefixes of the input.

1. Recall the discussion on the problem of finding a set of disjoint intervals that maximizes the total
length.

• Suppose we sort the intervals in increasing order of their finishing times. And then consider two
kinds of solutions: solutions containing the first interval and solutions not containing the first
interval. Construct an example where the number of distinct recursive calls become exponentially
large.

Alternatively, suppose we work with the same order. But, now we consider two kinds of solutions.
Solutions containing the last interval and solutions not containing the last interval. Do you think
now there will be only polynomially many recursive calls?

• The algorithm we described in the class only computed the optimal cost. Update the pseudocode
to also output an optimal set of intervals.

2. You are going on a car trip from city A to city B that will take multiple days. On the way, you will
encounter many cities. You plan to drive only during the day time and on each night you will stay in
one of the intermediate cities. Suppose you can drive at most d kilometers in a day. You are given the
distances of the intermediate cities from city A, say, d1, d2, . . . , dn. And distance of B from A is dn+1.
You are also given the costs of staying in various cities for one night, say, c1, c2, . . . , cn. Find a travel
schedule, that is, in which all cities you should do a night stay, such that your total cost of staying is
minimized.

A t1 t2 tn B

d1

d2

dn

dn+1

Figure 1

3. Given an array of integers, you want to find a subset with maximum total sum such that no two
elements in the subset are adjacent. For example, for the array {6, 4, 3, 2, 1, 5}, the desired subset is

2



{6, 3, 5} with total sum 14. Design an O(n)-time algorithm for this problem, where n is the length of
the array.

4. We are given a directed graph, where each edge goes from a lower index vertex to a higher index vertex.
Want to find the longest path from vertex 1 to vertex n.

5. Given a sequence of numbers, we want to find the longest increasing subsequence.

Flavour 2: where the subproblem is on a substring of the input.

1. The naive algorithm to multiply two matrices of dimensions p×q and q×r takes time O(pqr). Suppose
we have four matrices A,B,C,D which are 2×4, 4×3, 3×2, 2×5 respectively. If you multiply ABCD
in the order (AB)(CD), it will take time 2× 4× 3 + 3× 2× 5 + 2× 3× 5 = 84, on the other hand if
you multiply in the order A((BC)D), it will take time 4× 3× 2 + 4× 2× 5 + 2× 4× 5 = 104.

Given matrices A1, A2, . . . , An with dimensions p1 × p2, p2 × p3, . . . , pn × pn+1, design an algorithm to
find the order in which you should multiply A1A2 · · ·An which minimizes the multiplication time.

2. Suppose you have n keys a1 < a2 < · · · < an and you want to build a binary search tree that allows
efficient search for these keys. If the search queries are distributed uniformly across the keys then it
would make sense to build a balanced binary tree. However, if the some keys are more frequent than
others then a balanced binary tree might not be the most efficient structure. Consider an example
with four keys a1 < a2 < a3 < a4 with the binary search tree shown in Figure 2a.

a2

a1 a3

a3

(a) A binary search tree

a1

a3

a4a2

(b) A binary search tree

Suppose their search frequencies are distributed like 0.7, 0.1, 0.1, 0.1, respectively. Naturally, we can
assume that the search time for a key is proportional to its depth (distance from the root). Then, the
average search time for this search tree (Figure 2a) will be 0.7× 2 + 0.1× 1 + 0.1× 2 + 0.1× 3 = 2.

Now, consider another search tree in Figure 2b. The average search time for this tree will be 0.7× 1 +
0.1× 2 + 0.1× 3 + 0.1× 3 = 1.5, which is better than the first search tree.

Given search frequencies of n keys, say f1, f2, . . . , fn, we want to find the binary search tree that
minimizes the average search time defined as

∑
i fidi, where di is the depth of the node containing ai.

Flavour 3: where the subproblem (recursive call) has two different parameters.

1. A subsequence of a string is obtained by possibly deleting some of the characters without changing the
order of the remaining ones. For example, ephn is a subsequence of elephant.

You are given a string A of length n and another string B of length m (≤ n). If we want to check
whether A contains B as a subsequence, there is greedy algorithm for it: For 1 ≤ i ≤ m, match the
character B[i] with its first occurrence in A after the matching of B[i− 1].

For example, if A = bacbcbabcacba and B = bcbca, then the greedy approach will match B as follows
(shown in red).

bacbcbabcacba

Now, suppose to match with the j-th character in string A, you have to pay a cost pj . And to match
B with a subsequence in A, you have to pay the sum of costs of the matched characters.

3



In the above example, if the prices for the characters in A were 2, 5, 3, 1, 2, 5, 3, 1, 3, 1, 2, 4, 1 then the
matching bacbcbabcacbaa has cost 2 + 3 + 1 + 2 + 3 = 11. While the matching bacbcbabcacba has cost
only 1 + 2 + 1 + 2 + 1 = 7.

Design an algorithm that given A,B and p1, p2, . . . , pn, can find the minimum cost subsequence in A
that can be matched with B. Ideally your algorithm should run in time O(mn).

Lecture 10

1. Knapsack problem. Suppose there are n objects with their weights being w1, w2, . . . , wn and their
values being v1, v2, . . . , vn. You need to select a subset of the objects such that the total weight is
bounded by W , while the total value is maximized. Your algorithm should run in time poly(n,W ).

Consider the case when the weights are too large, that is, they are exponential in n. Then the above
algorithm is not really efficient. Suppose on the other hand, then values {v1, v2, . . . , vn} are small. Can
you design an algorithm running in time poly(n,

∑
i vi, logW )?

2. Solution for problem 4 in Lecture 7,8. Recall the problem. There are n assignments each of unit
length. ith assignment has a deadline di and a reward ri. You get the reward if you do the assignment
within its deadline. We want to maximize the total reward.

Strategy: go over the assignments in decreasing order of rewards. For any assignment, schedule it on
the last day available before its deadline. If there is no day available before its deadline then discard
it.

Proof: We start with some optimal solution and try to convert it into our solution step by step, while
maintaining optimality.

Let’s say the the optimal solution and our solution agree on the schedule of top k − 1 assignments (in
terms of rewards), for some k ≥ 1. Consider the kth assignment.

First consider the case when our solution does not schedule it on any day. This was only because there
was no day available after scheduling the top k − 1. Since the optimal solution agrees with us on the
top k − 1, the optimal solution also cannot schedule the kth assignment on any day.

Now, consider the case when our solution schedules the kth assignment on day tk. If the optimal
solution schedules it on day sk then, it must be that sk ≤ tk. This is because after scheduling top
k−1, the last day available is tk. Then in the optimal solution, we swap the two assignments scheduled
on day sk and tk. The kth assignment is still before its deadline. And other assignment gets shifted
to an earlier day, which is completely fine. The total reward remains unchanged.

Another possibility is that the optimal schedule does not schedule the kth assignment on any day. In
that case, we throw out the assignment scheduled on day tk and schedule kth assignment on that day.
What we throw out has a lower (or equal) reward than kth assignment. Hence the total reward can
only increase.

Now, the optimal solution agrees with our solution the schedule of kth assignment as well, while
maintaining optimality. We repeat the argument for every assignment in our solution (in decreasing
order of rewards).

Lecture 11

Flavour 4: where subproblems are parameterized by a prefix and something more

1. Suppose you have a movable shop that you can take from one place to another. You usually take your
shop to one of the two cities, say A and B, depending on whichever place has more demand. Suppose
you have quite accurate projections for the earnings per day in both the cities for the next n days.
However, you cannot simply go to the higher earning city each day because it takes one whole day and
costs c to move from one city to the other. For example, if you are in city A on day 5 and want to
move to city B, then on day 6 you will have no earnings, you will pay a cost of c and on day 7 you will

4



have earnings of city B. Design a polynomial time algorithm that takes as input the moving cost ,the
earnings per day in the two cities say, a1, a2, . . . , an and b1, b2, . . . , bn, and outputs a schedule for the
n days that maximizes the total earnings. Assume that you can start with any of the two cities on day
1, without costing anything.

Miscellaneous:

1. Kleinberg Tardos Section 6.3 Segmented least square

2. Kleinberg Tardos Section 6.5 RNA secondary structure

3.

4. Kleinberg Tardos Exercises 10, 16, 28

5


