
CS218 Design and analysis of algorithms Jan-Apr 2023

Exercises: Network Flow (No submission)

1. You have an alphabet of size n. You are given an encoding in {0, 1}∗ for each letter in your alphabet.
How will you determine if the encoding is uniquely decodable? That is, whether there are two strings
from you alphabet get mapped to the same 0-1 string?

2. For an s-t path, the bottleneck is defined to be the least capacity of an edge on that path. Can you
design an efficient algorithm to find the s-t path with largest bottleneck? Or try this variant: given a
threshold λ, is there an s-t path where every edge has capacity at least λ?

3. Use max flow algorithm to solve the following problem. Given a graph with a source vertex s and
a destination vertex t, find the minimum number of vertices which can be removed to make s and t
disconnected.

4. Recall the reduction from partitioning of a given partially ordered set into minimum number of chains
to maximum flow. Prove that the algorithm indeed gives the minimum number of chains.

5. Use the max flow min cut theorem to prove that for any partially ordered set, the minimum number
of chains in which we can partition the set is equal to the maximum number of mutually incomparable
elements. You can use the same reduction to max flow. Assume max flow is equal to s-t-minimum-cut.
Then given a s-t cut with outgoing capacity of k, try to construct a set of k mutually incomparable
elements.

6. Project selection We are given a set of projects, where some projects are pre-requisites for others.
This can be represented by a direct acylic graph on projects. An edge from i to j represents that
i is a pre-requisite for j. Clearly this is a transitive relation. A project can be done only if all its
pre-requisite projects have been done.

Some projects might have a positive value, i.e., you gain a net profit from them. While some other
projects may have a negative value, i.e., you have to invest more into them than what you gain from
them. The goal is to select a subset of projects which maximizes the total value, under the constraint
that if a project is selected then all its pre-requisites must also be selected.

Reduce this problem to s-t-minimum-cut problem. That is design an algorithm which can use s-t-
minimum-cut subroutine. Note that minimum cut is also a subset (of vertices) selection problem.

7. Consider a two player game between Ankita and Puneet. Ankita starts the game by saying the name
of an Indian film actor/actress, say X. Puneet has to respond with the name of any actress/actor,
say Y, that has appeared in a film opposite X. Then Ankita has to respond with the name of any
actor/actress, say Z, that has appeared in a film opposite Y. And they continue like this. At each
player’s turn, she/he has to respond with the name of an actor/actress that has appeared opposite the
actress/actor whose name was last taken by the other player. Naturally, the names cannot be repeated.
The player who cannot come up with a name loses.

For simplicity, assume that they consider films only from last 10 years. Suppose both players have all
the information about these films. One can represent this information simply by a directed graph –
we put an edge from an actress to an actor if the two have a film together. Each player wants to use
this information to come up with a winning strategy.

Construct a flow network by adding a source, edges from source to each actress, a sink edges from
each actor to the sink. All edges have capacity 1. Clearly, the maximum flow is upper bounded by the
number of actors and also by number of actresses.

• Prove that if the number of actors is equal to the number of actresses and the maximum flow is
equal to that number, then the Puneet has a winning strategy, irrespective of how Ankita plays.

1



• Prove that if the condition above is not true then Ankita has a winning strategy, irrespective of
how Puneet plays.

8. Recall the bipartite matching problem. Given a bipartite graph, find the largest set of edges such that
no two of them have a common endpoint. We write the following linear program. Each edge e has a
variable xe.

max
∑
e

xe

subject to∑
e incident on v

xe ≤ 1

1 ≥ xe ≥ 0

In general, it is not necessary that a linear program has a integer optimal solution. But, it is true for
the above linear program. Use the connection of bipartite matching with maximum flow and prove
that the above linear program always has an integer (0/1) optimal solution. Recall the flow algorithm,
which always gives an integer flow, if the capacities are integer.

2


