
CS218 Design and analysis of algorithms Jan-Apr 2023

Quiz 1
Total Marks: 20 Time: 85 minutes

Instructions.

• Please write your answers concisely.

• Describe the steps in your algorithms using English text. Use some kind of code only when necessary.

• Explain the reasoning behind the steps in your algorithm, whenever it’s not obvious.

Question 1 [10 marks]. Suppose you are given a list of linear inequalities in two variables (x, y) of the
following form.

y ≤ a1x+ b1

y ≤ a2x+ b2
...

y ≤ anx+ bn

Here each ai is a number (positive/negative/zero) and each bi is a positive number. We are interested in
the region defined by these inequalities, together with

y ≥ 0.

That is, we are interested in the set of points which simultaneously satisfy all these inequalities. This set of
points forms a (convex) polygon. We want to find the number of vertices in the polygon.

See Figure 1 (last page), for an example. It shows the region (shaded area) defined by the following six
inequalities together with y ≥ 0. The polygon we get is a pentagon, that is, a polygon with 5 vertices. This
is because two of the inequalities become redundant.

y ≤ 2x+ 10

y ≤ x+ 6

y ≤ x/2 + 5

y ≤ −x/2 + 2

y ≤ −2x+ 6

y ≤ 4

Design an algorithm that takes as input an array of pairs [(a1, b1), (a2, b2), . . . , (an, bn)] and outputs the
number of vertices in the polygon defined by inequalities

y ≤ aix+ bi for 1 ≤ i ≤ n and y ≥ 0.

For full marks your running time should be O(n log n). You will get only 4 marks for O(n2) running time.
Assume basic arithmetic operations can be done in constant time.

Hint: Feel free to use or ignore the hint. There can be two approaches to design an O(n log n) algorithm.
One approach is divide and conquer. Note that just computing the number of vertices for a subproblem
might not be good enough. You might need to compute more information about the polygon. The other
approach can be to sort the input in a particular order and then make one pass over the input to compute
the required information. In this approach, you might need a special data structure.
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Question 2. Consider the following approach for finding the square of an n bit integer a. We divide the
integer into four parts each of n/4 bits (assume n is divisible by 4) and write

a = a3 23n/4 + a2 22n/4 + a1 2n/4 + a0.

Squaring both the sides we get,

a2 = a23 26n/4+2a3a2 25n/4+(a22 + 2a3a1) 24n/4+2(a2a1 + a3a0) 23n/4+(a21 + 2a2a0) 22n/4+2a1a0 2n/4+a20.

Suppose we have a subroutine to find square of an integer with n/4 bits (or a few more, say up to n/4 + 6
bits). Assume that addition of two n bit integers can be done in O(n) time. Assume that an n bit integer
can multiplied/divided by a constant (e.g., 15, 2/3) in O(n) time.

(i) [7 marks]. Show that you only need to use the above subroutine 7 times together with some O(n)
time computations to find the above 7 terms (a23, 2a3a2, (a

2
2 + 2a3a1), (a2a1 + a3a0), (a21 + 2a2a0), 2a1a0, a

2
0).

Hint: Feel free to use or ignore this hint. Suppose we have a degree 2 polynomial c0+c1x+c2x
2. Suppose

we evaluate it over three points x = 0, 1, 2. The three evaluations e0, e1, e2 can be given bye0e1
e2

 =

1 0 0
1 1 1
1 2 4

c0c1
c2


Then coefficients can be computed from evaluations asc0c1

c2

 =

1 0 0
1 1 1
1 2 4

−1 e0e1
e2


(ii) [3 marks]. Using the above approach, write a recurrence relation for T (n), time to find square of

an n bit integer. What is the time complexity you get on solving the recurrence? Is it better or worse than
O(nlog2 3)?
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y ≤ 2x+ 10

y ≤ x+ 6 y ≤ x/2 + 5

y ≤ −x/2 + 2

y ≤ −2x+ 6

y ≤ 4

y ≥ 0

Figure 1: A polygon defined by 7 given inequalities, but with only 5 vertices.
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Question 1 solution.

Here are some useful observations. The number of vertices in the polygon is same as the number of sides.
So, we need to find the number of sides in the polygon. As seen in the example, some inequalities become
redundant and don’t make a side of the polygon. So, basically we need to find the number of inequalities
which are not redundant.

Here is another observation. When we look at the consecutive sides of the polygon form left to right,
their slopes (ai) are decreasing. 2 marks for this observation. When we look at consecutive vertices, their x
coordinates are in increasing order. This will be useful in both the approaches for O(n log n) time. First let
us look at few simple approaches.

Time O(n3): when is a line li redundant? When it is “between” two lines lj and lk and is strictly above
the intersection of lj and lk. By “between”, we mean the slope of l is between the two other slopes, i.e.,
aj ≤ ai ≤ ak. For example, in Figure 1, the line y ≤ x/2+5 is redundant, because it is above the intersection
point of y ≤ x + 6 and y ≤ −x/2 + 2. One can easily check whether intersection of two lines is above or
below a third line. Overall time is O(n3).

Time O(n2): We will process the lines one by one, in an arbitrary order. We will maintain the polygon
formed by the current set of lines (to ensure that we have a polygon in the beginning, we can start by taking
two lines one with positive and one with negative slope). We will maintain the vertices of the current polygon
in increasing order of x coordinates. Note that number of vertices is same as the number of sides. When a
new line comes, if it is above all the current vertices, then it is redundant and we can throw it. Otherwise
the new line will intersect the current polygon at two points. We find the two line segments where the new
line intersects and compute the points of intersections. Any vertices above the new line must be thrown
away. All the update per new line can be done in total O(n) time. Total 4 marks for O(n2) time.

Approach 1: Sorting in decreasing order of slopes. We need to find the line segments that form the
boundary of the polygon.

Sorting: We first sort the lines w.r.t to their slope in decreasing order.
Processing lines: We insert the lines one by one in the decreasing order of slopes. For the lines already

seen, we maintain the boundary of the current polygon (formed together with y ≥ 0) in the following format.
Solution format: a list of line segments forming the boundary of the polygon, in increasing order of

x-values (the last piece could be a line instead of a line segment).
When we insert a new line, it will intersect at most one of the existing line segments (or line). This is

because the slope of the new line is smaller than all the existing line segments (see Figure 2).
To find the intersecting line segment, we can do a binary search as follows: start with the middle line

segment in the list. If both the endpoints of this line segment are below the new line then go to the right
half. If both the endpoints are above the new line then go to the left half. If one endpoint is above and one
is below then we have found the intersecting segment.

Note that all other segments which come after the intersecting segment will disappear. The new line
makes them redundant. Hence, we delete all the line segments in the list which appear after the intersecting
segment. We compute the intersecting point of the segment and the new line and update the endpoint of
the segment accordingly.

Each insertion will take O(log n) time, because of binary search. Note that the deletion step does not take
much time because, the deletion is from the end of the list. Hence, the overall time complexity is O(n log n).

Approach 2: Divide and conquer We divide the given set of lines into two sets of roughly equal size,
arbitrarily. Assume that we have computed the polygons for both the sets recursively. Now, we need to
‘merge’ the two polygons to compute the new polygon. It will be important how exactly we are representing
the computed polygons.

Solution format: The list of lines which form the boundary of the polygon, in decreasing order of
slopes.

The merge step: We have two arrays containing lines in decreasing order of slopes. We want to decide
which of these line will be part of the boundary of the new polygon. We will go over the two arrays and
decide which line should be put into the output array and which should be discarded (when it’s redundant).
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Figure 2: The new incoming line (in red) intersects one of the existing line segments.
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Figure 3: The current line is redundant because it is above the intersection of previous and next1.

Let’s keep a pointer for each array, which are initially at the first entries of the arrays. Consider an
intermediate stage, where the pointers in two arrays are pointing to lines `i and `j , respectively. Let the
corresponding inequalities be y ≤ aix+ bi and y ≤ ajx+ bj .

Compare the slopes of `i and `j (i.e., ai and aj). Let us call the one with higher slope as the current
line and the other one as the next1 line. Let us call the line appearing after the current line in its array as
next2 line. Let us refer to the last line which was put in the output array as previous line.

• If the intersection of the previous line and the next1 line is below the current line (i.e., the intersection
point satisfies y ≤ aix+ bi for the current line), then the current line is redundant, and hence should
be discarded (see Figure 4).

• If the intersection of the previous line and the next2 line is below the current line, then the current
line is redundant, and hence should be discarded (see Figure ??).

• Else, the current line should be pushed in the output array.

Move the pointer ahead from the current line in its array. And repeat.
Corner case: When there is nothing in the output array, then the previous line can be taken as x ≥ α0,

where (α0, 0) is leftmost vertex of the polygon. Similarly, when the pointer is at the last line in an array,
next2 line can be taken as x ≤ β0, where (β0, 0) is the rightmost vertex of the polygon.
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Figure 4: The current line is redundant because it is above the intersection of previous and next2.
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Question 2 solution.

Part (a) Let us divide into four parts where each of a0, a1, a2, a3 is an n/4 bit integer. Squaring both
the sides we get -

a2 = a23 26n/4+2a3a2 25n/4+(a22 + 2a3a1) 24n/4+2(a2a1 + a3a0) 23n/4+(a21 + 2a2a0) 22n/4+2a1a0 2n/4+a20.

Now, we have to compute these 7 terms except the power of 2. For this, we need to see computation of these
7 terms as as a squaring of a polynomial. More precisely let us define a polynomial

A(x) = a3 x
3 + a2 x

2 + a1 x+ a0.

Its square will be given by

(A(x))2 = a23 x
6 + 2a3a2 x

5 + (a22 + 2a3a1) x4 + 2(a2a1 + a3a0) x3 + (a21 + 2a2a0) x2 + 2a1a0 x+ a20.

Thus, finding the square of A(x) is equivalent to compute the desired 7 terms. We have a three step plan
for computing the square of A(x):

1. Compute the evaluations of the polynomial A(x) at 7 different values of x.

2. Square these 7 numbers to get 7 evaluations of (A(x))2 .

3. Since (A(x))2 is a degree 6 polynomial, we can obtain its coefficients from its 7 evaluations

Step 1: The 7 values for x can be chosen arbitrarily. We choose x = -3, -2, -1, 0, 1, 2, 3. To compute
A(x) for any of these values of x, we first need to multiply a3, a2, a1, a0 with some constants and then add
them up. From the assumption in the question, constants can be multiplied in O(n) time. After that there
are 3 additions, which can also be done in O(n). Thus, step 1 can be finished in O(n) time.

Step 2: We need to find squares of A(3), A(2), A(1), A(0), A(1), A(2), A(3). From step 1, it can be seen
that these numbers have at most n/4 + 6 bits. Thus, each of these numbers can be written as (α 26 + β),
where α is n/4 bits and β is bounded by 26 . For squaring (α 26 + β), we need to compute α2 plus a few
additional O(n) time operations. In summary, step 2 involves computing squares of 7 n/4 bit numbers and
some other operations doable in O(n) time.

Step 3: Given A(−3)2, A(−2)2, A(−1)2, A(0)2, A(1)2, A(2)2, A(3)2, we want to compute coefficients of
(A(x))2. Lets us define B(x) = (A(x))2. In other words, we have 7 evaluations for the degree 6 polynomial
B(x) and we want to compute its coefficients. Suppose coefficients of B(x) are given by

B(x) = b6 x
6 + b5 x

5 + b4 x
4 + b3 x

3 + b2 x
2 + b1 x+ b0.

The relation between coefficients and evaluations of B(x) are given as below

B(−3)
B(−2)
B(−1)
B(0)
B(1)
B(2)
B(3)


=



36 −35 34 −33 32 −3 1
26 −25 24 −23 22 −2 1
1 −1 1 −1 1 −1 1
0 0 0 0 0 0 1
1 1 1 1 1 1 1
26 25 24 23 22 2 1
36 35 34 33 32 3 1





b6
b5
b4
b3
b2
b1
b0


Let us call the 7 7 matrix above as M. Then coefficients of B(x) can be computed as

M−1



B(−3)
B(−2)
B(−1)
B(0)
B(1)
B(2)
B(3)


Note that all the entries in M−1 are constants. The evaluations of B(x) have n/2 + 12 bits at most.

Thus, the above matrix vector product can be done in O(n) time.
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Part (b) To find a2, we did squares of 7 n/4 bit integers together with some O(n) operations. Thus, for
the time complexity we can write following recurrence relation -

T (n) = 7 T (n/4) +O(n).

Solving it, we get
T (n) = O(nlog47) = O(n(log27)/2) = O(n1.4037).

We can see that the complexity of the above recurrence relation is less than O(nlog23). This is because
log2 3 = log4 9 < log4 7.
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