## Apr 11, 2023

Vertex Cover: A set S of vertices such that for every edge (u,v) in the graph,

u is in S or v is in S.

Finding minimum size vertex cover is NP-hard.

Can we design an approximation algorithm for this problem?

2-approximation: Given a graph, output a vertex cover whose size is at most twice of the minimum vertex cover.

Algorithm 1 While V is non-empty Choose any vertex & EV and put it in s Delete vertex & and all its incident edges Delete all isolated vertices Bad example

Proof for 2-approximation: consider all the edges chosen during the algorithm. Note that they are disjoint, that is no two of them share a common vertex (matching).

If k edges are chosen during the algorithm then that means there are k disjoint edges, and hence we need at least k vertices in any vertex cover. While the algorithm will output a vertex cover of size 2k. Hence, this is a 2-approximation algorithm.

Weighted vertex cover Given weights on vertices, find a vertex cover of minimum weight. Any variants of the greedy algorithms fail to give a good approximation for the minimum weight vertex cover problem.

Linear Programming.  $\chi_2$ -> linear objective function -> linear constraints subject to  $2x_1+x_2 \leq 4$  $3x_1 + 4x_2 \le 12$ रे. Max R1+22  $\chi_1 + \chi_2$ · Optimal soluctions are at the boundary. · There is always a corner point which is optimal. Integer Linear Programming (ILP) " Linear program where some/all variables are restricted to be integers Algorithms for linear programming · Simplex method (efficient in practice) · Ellipsoid method ( poly time) Interior point methods ( poly time + efficient in practice) • · Integer linear programming is NP-hard.

Use of linear programming to solve discrete problems.  
For example minimum weight vertex cover  
For a graph G (V, E) with weights (Wo) on vertices.  
for each 
$$\forall \in V$$
  $\forall s \in \{0, 1\}$  T LP  
for each  $\forall \in V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall \in V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall e V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall e V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall e V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall e V$   $\forall s \in \{0, 1\}$  T LP  
for each  $\forall e V$   $\forall s \in \{1, 1\}$   $\forall e V$   
The IIP optimal value will be exactly equal to  
the weight of the min weight vertex cover.  
Can we get a linear program?  
for each  $\forall e V$   $0 \leq \forall s \leq 1$  LP  
for each  $\forall e V$   $0 \leq \forall s \leq 1$  LP  
for each  $\forall e V$   $0 \leq \forall s \leq 1$  LP  
for each  $edge$   $(u_s v)$ :  $\forall u + \forall v \geq 1$   
Min  $\sum_{v \in V} w_o x_v$   
Now, the LP optimal value may be different from  
the minimum weight of a vertex cover.  
Example  $\int_{q}^{2}$  All vertices have weight 1.  
 $\int_{q}^{2}$   $O \leq \aleph_1, \aleph_2, \aleph_3, \aleph_4, \aleph_5 \leq 1$   
Min weight vertex cover = 3  $\aleph_1 + \aleph_2 \geq 1$   $\aleph_1 + \aleph_3 \geq 1$   
 $\Re_1 + \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 + \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 + \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 - \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 - \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 - \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 - \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$   
 $\Re_1 - \aleph_2 \geq 1$   $\aleph_3 + \aleph_3 \geq 1$ 

Nonetheless, the above LP can help us design an approximation algorithm for minimum weight vertex cover Algorithm outline 1. Find an optimal solution x\* for the above LP 2. Apply rounding on x\* to obtain an integral solution Rounding Scheme æ<sup>#</sup> ∈ ℝ<sup>V</sup> Construct  $S \subseteq V$  soto if  $x^* \varphi \ge \frac{1}{2}$  then put  $v \in S$ otherwise don't put vin S We need to show: 1. S 1sa Vertex cover 2. Sis an approximately optimal vertex cover proof 1: Show that for any edge (U, V) either UES or VES  $\iff e_1 \text{ Her } \mathcal{X}_{\mu}^* > \frac{1}{2} \text{ or } \mathcal{X}_{\nu}^* > \frac{1}{2}$  $(= \chi_{u}^{*} + \chi_{v}^{*} \geq 1$ 

Let's say 
$$S^*$$
 is the optimal vertex cover:  
 $\omega(s) \leq \propto \omega(s^*)$  for some  $\alpha \geq 1$   
Obs:  $\Sigma = \omega_{\alpha} \times \omega_{\alpha} \leq \omega(s^*)$   
 $\psi(s^*) = \sum_{i=1}^{n} \cdots_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n$ 

Special Case when LP optimal correctly gives  
the size of the minimum vertex cover.  
Bipatite Graphs.  
Min 
$$\sum x_u$$
  
uev  
St.  $0 \leq x_u \leq 1$  for  $u \in V$   
 $x_u + x_v \geq 1$  for  $edge(u, v) \in E$   
for any matching M,  
and for any vertex cover S  
 $|S| \geq 1M1$   
Claim 1 For any matching M,  
 $EP - OPT \geq |M|$   
 $\sum x_u \geq \sum x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq x_u \geq |M|$   
 $u \in V$   
 $u \leq x_u \geq |M|$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq x_u \geq |M|$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq x_u \geq |M|$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq x_u \geq |M|$   
 $u \leq x_u \geq |M|$   
 $u \leq v$   
 $u \leq |M|$   
 $u \leq |M|$   
 $u \leq |W|$   
 $u \leq |W|$   

