Vertex Cover: A set S of vertices such that for every edge (u, v) in the graph, u is in S or v is in S.

Finding minimum size vertex cover is NP-hard.

Can we design an approximation algorithm for this problem?

2-approximation: Given a graph, output a vertex cover whose size is at most twice of the minimum vertex cover.

Algorithm 1
While V is non-empty
$\{$ choose any vertex $v \in V$ and put it in s

- Delete vertex v and all its incident edges Delete all isolated vertices \}

Bad example

Algorithm 2
While V is non-empty
\{choose highest degree vertex $v \in V$ and put it in s

Delete vertex v and all its incident edges Delete all isolated vertices
\}

Bad example

Algorithm 3
While V is non-empty
\{choose an edge (u, v) and put both u and v in S

Delete vertices u and v and all their incident edges Delete all isolated vertices \}

Gives a 2-approximation algorithm.

Proof for 2-approximation: consider all the edges chosen during the algorithm. Note that they are disjoint, that is no two of them share a common vertex (matching).

If k edges are chosen during the algorithm then that means there are k disjoint edges, and hence we need at least k vertices in any vertex cover. While the algorithm will output a vertex cover of size $2 k$. Hence, this is a 2-approximation algorithm.

Weighted vertex cover
Given weights on vertices,
find a vertex cover of minimum weight.

Any variants of the greedy algorithms fail to give a good approximation for the minimum weight vertex cover problem.

Linear Programming
\rightarrow linear objective function
\rightarrow linear constraints subject to

$$
\begin{aligned}
2 x_{1}+x_{2} & \leq 4 \\
3 x_{1}+4 x_{2} & \leq 12
\end{aligned}
$$

$\operatorname{Max} x_{1}+x_{2}$

- Optimal solutions are at the boundary.
- There is always a corner point which is optimal.

Integer Linear Programming (ILP)

- Linear program where some/all variables are restricted to be integers

Algorithms for linear programming

- Simplex method (efficient in practice)
- Ellipsoid method (poly time)
- Interior point methods (poly time + efficient in practice)
- Integer linear programming is NP-hard.

Use of linear programming to solve discrete problems.
For example minimum weight vertex cover
For a graph $G(V, E)$ with weights $\left\{\omega_{v}\right\}$ on vertices.
for each $v \in V \quad x_{v} \in\{0,1\} \quad I L P$
for each edge $(u, v) \quad x_{u}+x_{v} \geq 1$

$$
\text { Min } \sum_{v \in V} \omega_{v} x_{v}
$$

The ILP optimal value will be exactly equal to the weight of the min weight vertex cover.

Can we get a linear program?
for each $v \in V \quad 0 \leqslant x_{v} \leqslant 1$
for each edge $(u, v) \quad x_{u}+x_{v} \geqslant 1$

$$
\text { Min } \sum_{v \in V} \omega_{v} x_{v}
$$

Now, the LP optimal value may be different from the minimum weight of a vertex cover.

Example

All vertices have weight 1

$$
0 \leqslant x_{1}, x_{2}, x_{3}, x_{4}, x_{5} \leqslant 1
$$

min weight vertex cover $=3$
LP opt $=2.5$

$$
\begin{array}{ll}
x_{1}+x_{5} \geqslant 1 & x_{1}+x_{4} \geqslant 1 \\
x_{1}+x_{2} \geqslant 1 & x_{2}+x_{3} \geqslant 1 \\
x_{4}+x_{5} \geqslant 1 & x_{3}+x_{4} \geqslant 1
\end{array}
$$

$$
x_{1}^{*}=x_{2}^{*}=x_{3}^{*}=x_{4}^{*}=x_{5}^{*}=1 / 2
$$

$\min \left(x_{1}+x_{2}+x_{3}+x_{4}+x_{5}\right)$

Nonetheless, the above LP can help us design an approximation algorithm for minimum weight vertex cover.

Algorithm outline

1. Find an optimal solution x^{*} for the above $L P$
2. Apply rounding on x^{*} to obtain an integral solution

Rounding Scheme

$$
x^{*} \in \mathbb{R}^{v}
$$

Construct $S \subseteq V$ sot. if $x_{v}^{*} \geqslant 1 / 2$ then put $v \in S$ otherwise don't put v in S

We need to show:

1. S is a Vertex cover
2. S is an approximately optimal vertex cover
proof 1: Show that for any edge (u, v) either $u \in S$ or $v \in S$

$$
\begin{aligned}
& \Leftrightarrow \quad e_{i} \text { the } x_{u}^{*} \geqslant 1 / 2 \text { or } x_{v}^{*} \geqslant 1 / 2 \\
& \Leftrightarrow \quad x_{u}^{*}+x_{v}^{*} \geq 1
\end{aligned}
$$

Let's say S^{*} is the optimal vertex cover.

$$
\omega(s) \leqslant \alpha \omega\left(s^{*}\right) \quad \text { for some } \alpha \geqslant 1
$$

Obs: $\quad \sum_{u} w_{u} x_{u}^{*} \leqslant w\left(s^{*}\right)$
proof

$$
y_{u}= \begin{cases}1 & u \in S^{*} \\ 0 & u \notin S^{*}\end{cases}
$$

$$
\omega\left(s^{*}\right)=\sum_{u} w_{u} y_{u}
$$

y is a feasible point for LP
Hence, $\quad \sum \omega_{u} x_{u}^{*} \leqslant \sum \omega_{u} y_{u}=\omega\left(s^{*}\right)$

Claim: $\omega(5) \leq 2 \sum_{u} \omega_{u} x_{u}^{*}$
Proof $\omega(s)=\sum_{u \in S} \omega_{u \cdot 1} \leqslant 2 \sum_{u \in S} \omega_{u} x_{u}^{*} \leqslant 2 \sum_{u \in V} \omega_{u} x_{u}^{*}$
$1 \leqslant 2 \cdot x_{u}^{*}$ whenever $u \in S$
Summary $\omega(s) \leqslant 2 \cdot L P \cdot O P T \leqslant 2 \omega\left(S^{*}\right)$
2-approximate solution

There is no efficient algorithm known for better than 2-approximation for min weight vertex cover.

Special case when LP optimal correctly gives the size of the minimum vertex cover. Bipartite Graphs.
$\min \sum_{u \in V} x_{u}$
S.t. $0 \leqslant x_{u} \leqslant 1 \quad$ for $u \in V$
$x_{u}+x_{v} \geqslant 1$ for edge $(u, v) \in E$
for any matching M,
and for any vertex cover S

$$
|s| \geqslant|M|
$$

Claim 1 For any matching M,

$$
\angle P-O P T \geqslant|M|
$$

for any edge $(u, v) \in M \quad x_{u}+x_{v} \geqslant 1$

$$
\sum_{u \in V} x_{u} \geqslant \sum_{u_{i s} x_{u}} x_{u} \geqslant|M|
$$

Claim 2 size of min vertex cover size of maximum matching

$$
\left[\begin{array}{l}
\text { Homework } \\
\text { using } \\
\text { Max flow min cut }
\end{array}\right.
$$

$$
\Rightarrow \angle P-O P T=\text { min vertex cover }
$$

