Network flow

- Input: a directed graph $G(V, E)$
- edge capacities

$$
\left\{C_{e} \in \mathbb{N}: e \in E\right\}
$$

- a source vertex s
- a sink vertex t

Assumption: No incoming edge to s
No outgoing edge from t.
\rightarrow Output: An $s-t$ flow which maximizes the total flow out of s.

Def: An st flow is a function

$$
f: E \rightarrow \mathbb{R} \geq 0
$$

which satisfies

- Capacity constraints $0 \leqslant f(e) \leqslant C_{e}$
- Flow conservation
for any $v \neq s, t \quad f^{\text {out }}(v)=f^{\text {in }}(v)$

$$
\sum_{\text {e out of } v} f(e)=\sum_{e} f(e)
$$

Capacities in red.
Flow values in blue
 capacities

A flow
Flow value $B O$

another flow
Flow value 40

Flow value $\sum_{e \text { out of } s} f(e)=\sum_{e \text { into } t} f(e)$
Want to maximize flow value.

Claim: Consider a subset $U \subseteq V$ $s \cdot t . \quad s \in U$, but $t \notin U$

Then the net flow out of U is same as the net flow ont of s.

$$
\sum_{\substack{\text { out of } \\ U}} f(e)-\sum_{\substack{\text { into }}} f(e)=f^{\text {out }}(s)
$$

This number is the s - t flow value.

Proof Consider

$$
\begin{aligned}
& \sum_{u \in U}\left(f^{\text {out }}(u)-f^{\text {in }}(u)\right)=f^{\text {out }}(s) \text { (conservation) } \\
& =\sum_{u \in U}\left(\begin{array}{c}
\sum_{\substack{e \\
\text { out of } \\
u}} f(e)
\end{array} \sum_{\substack{e \\
\text { into } \\
u}} f(e)\right) \\
& =\sum_{\substack{\text { out } \\
\text { of } U}} f(e)-\sum_{\substack{\text { into } \\
U}} f(e)
\end{aligned}
$$

Natural upper bound on maximum set flow?

- $\sum_{\substack{\text { into } \\ t}} C_{e}$

Def: $U \subseteq V$ is an $s-t$ cut if $s \in U$ but $t \notin U$.

Def $\operatorname{Cap}(u):=\sum C_{e}$
e out of
U
For an s-t cut U, cap (U) is an upper bound on the flow value.

Theorem Maximum s-t flow \leqslant minimum capacity of an st cut

Does the equality always hold?
Amazingly, yes!

Algorithm

Idea: Start with zero flow on all the edges.

Find an sot path and push as large flow as possible

Paths
$s-a-b-t$
$s-a-c-t$
$s-c-t$
$s-a-b-c-t$

Bottleneck
15
20
10
5

Remove saturated edges
Update capacities.
And then find an $s-t$ path

push a flow of 10 along path $s-a-b-t$

Remove saturated edges
And then find an s-t path

No set path !!
How can we push more flow? Push back along (a, c)
Def Residual graph wort. a flow f

- Vertex set same.
- For each edge $e=(u, v)$
\rightarrow Forward edge $(u, v) \quad c_{e} \leftarrow c_{e}-f(e)$
keep this edge only if positive residual capacity
\rightarrow Backward edge $e^{\prime}=(v, u) \quad C_{e^{\prime}} \leftarrow f(e)$
keep this edge only if $f(e)>0$

Find a sot path in the residual graph.

Original capacities

flow f

Residual Graph Cf
Path in the residual Graph $s-c-a-b-t$ push 5

flow f

No outgoing. edges from $\{s, q, c\}$
Residual Grash G_{f}

Algorithm

Initialize $f=0$

While you can
find an set path p in the residual graph G_{f} $b \leftarrow \min$ capacity of a_{n} edge on P.
for each edge $e=(u, v) \in P\{$
if (u, v) is a forward edge

$$
f(u, v) \longleftarrow f(u, v)+b
$$

if (u, v) is a backward edge

$$
f(v, u)<\quad f(v, b)-b
$$

$\}$
Update the residual graph Ge.
\}

Claim 1: After each iteration of the while loop, f remains a valid flow.

Claim 2: If we cannot find an st path then the flow is maximum.

Claim 3: Algorithm always terminates.

Proof of (aim 1:
Conservation of flow at any vertex v Case 1

$$
f^{\text {out }}(v)-f^{\text {in }}(v)
$$

Case 2

Capacity constraints
\rightarrow Forward edge
\rightarrow Backward edge

Proof of Claim 2
Idea is to show an St cut in original graph whose capacity is equal to current flow value.

Residual graph:
We can't find an sot path.

$$
\Rightarrow \quad \exists \text { subset } U \subseteq V \quad \text { st. } \quad s \in U, t \notin U
$$ and there are no outgoing edges from U.

$U \leftarrow$ reachable vertices from s.

U
Residual Graph.

Flow graph

Obs In the flow graph
outgoing edges from U are saturated edge into U have zero flow.

$$
\begin{aligned}
\rightarrow \quad \text { flow value } & =f^{\text {out }}(u)-f^{\text {in }}(u) \\
& =\sum_{e \text { out }} \operatorname{cap}(e)-0 \\
& =\operatorname{of} u \\
& \operatorname{cap}(u)
\end{aligned}
$$

But we know
flow value $\leq \operatorname{Cap}(U)$
Hence the flow is maximum.
Hence $\operatorname{Cap}(u)=\min s-t$ cut capaicty.

Thy Max ${ }^{s-t}$ flow $=$ Min st cut

Terminate
Flow value increase is always integral.
Flow value increases by at least 1.
No. of interation $\leqslant \operatorname{Sum}_{\mathrm{m}}$ of edge capacities.
Time $O(\| E \mid-C)$
Pseudo poly nominal
exponential in the input size

Find st paths in a clever way.

- Shortest length path (Edmonds Karp)

$$
O\left(V E^{2}\right) \text { Strongly } \underset{\substack{\text { Polynomial } \\ \text { time }}}{ }
$$

- Max bottleneck

$$
O\left(E^{2} \log C \cdot E\right)
$$

A Not strongly
Augmenting, path polynomial

Reduction:
The following statements mean the same
\rightarrow Problem A reduces to Problem B
\rightarrow One can design an algorithm for problem A using a subroutine for problem B.
\rightarrow Notation $A \leq B$
Example: Multiplication \leq Squaring

TA allocation \leqslant Network flow

Network flow \leqslant Linear programming

Often we need to use the reduction only once as in the second example.

These are called many-one reductions.

Applications of Network Flow.

1. Network flow variants

- Multiple sources and sinks with demands
- Undirected Network

2. Bipartite Matching
3. TA allocation
4. Maximum number of edge disjoint paths from s to t.
5. Airline Scheduling / Container arrangement
6. Project selection

Container arrangement

Exam: greedy algorithm worked in the setting of 2 parameters.
More general version: Containers with 3 parameters height, width, length

Abstract version
Given a partial order on n elements, partition them into minimum number of chains

Lower bound: any set of mutually incomparable elements. Amazingly, if the minimum number of chains in k, then there is a set of k mutually incomparable elements

Another example:
Trains arriving/departing at a station, schedule them using minimum number of platforms.

Taxi Scheduling
A taxi company gets a list of bookings for the next day.

Want to minimize the number of taxis required.
Bookings
$B_{1}:$ 9:00 Chembur \rightarrow Airport 10:00
B2: 10:30 Andheri \rightarrow IITB 11:15
$B_{3}: 11: 30 \quad$ ITS \rightarrow TJFR $1: 30$
B4: 10:15 Dadar \rightarrow Airport 11:15
$B_{5}:$ 12:00 Powai \rightarrow LTT 12:45

B6: 13:00 Chembur \rightarrow Sion 13:30

Input: Directed graph - acyclic

- transitively closed
(Partial Order on a set of elements)

Output: Partition of vertices into minimum number of paths.

Algorithm via Network Flow
Given a partial order (directed graph)
For every element Bi , create two nodes

$$
l_{i}, r_{i}
$$

If $B_{i} \longrightarrow B_{j}$ then add an edge from r_{i} to l_{j} of capacity 1 .

From source s to all $r_{i}{ }^{\prime}$ s capacity 1
from each l_{i} to sink t capacity 1

Claim 1:
If there is a partition of the partially ordered set into k chains
then there is a flow of $n-k$ units in the network
Proof: for any chain with p elements, say

$$
B_{i} \rightarrow B_{i_{2}} \rightarrow B_{i_{3}} \cdots B_{i_{p}}
$$

We will have p-1 units of flow along the following paths

Note that any vertex r_{i} or l_{j} will be used in only one of the paths because any Bi appears in exactly one chain.

Clearly adding the flows corresponding to all the k chains, we have $n-k$ units of flow.
(integral)
Claim 2: If there is l units of flow in the network then there is a partition of the given partially ordered set into $n-l$ chains

Proof: If there is flow along $r_{i} \rightarrow l_{j}$ then we will put B_{j} as a successor of Bi_{i} in one of the chains.

Since r_{i} can have at most one unit of outgoing flow we get that any Bi will get at most one successor.

Similarly any B_{j} will get at most one predecessor. Hence the result will be collection of chains. How many chains are there?

We start with n elements as n different chains. For every one unit of flow two chains get combined into one.
Hence $n-l$ chains.

Note: A flow is not necessarily integral. But recall that the max flow algorithm gives an integral flow whenever the capacities are integer.

Algorithm (1) from given partial ordered set, construct the flow network
(2) Compute a maximum flow in the network (which is integral)
(3) Use claim 2 to obtain a collection of chains from the flow

HW Claim 1 implies that the collection of Chains we get is optimal.

Project Selection

Downward closed subset: If we take an element j we must take everything below it.

Find the downward closed subset which maximizes the total sum.

Reduce this problem to the minimum cut froblem.

