Self-assessment Quiz

Total Marks: 80

Note. You are supposed to solve these problems without any discussions with anyone. Try to write your answers succinctly.

Que 1. [20] A graph is called bipartite if its vertex set can be partitioned into two parts, say V_{1} and V_{2}, such that all the edges connect a vertex from V_{1} to a vertex from V_{2}. Let us say we are given a graph by its adjacency matrix. Can you design an algorithm which can test whether the graph is bipartite? Formally argue that your algorithm is correct.

Hint: Start by assuming that the graph is indeed bipartite with V_{1}, V_{2} as the two parts. Pick an arbitrary vertex v, which we can assume belongs to V_{1} (why?). Now, any neighbor of v should belong to V_{2}. Similarly, for any vertex $u \in V_{2}$, any neighbor of u must belong to V_{1}. This way you can try to mark all the vertices as either belonging to V_{1} or V_{2}. Now, how would you detect if the graph was not actually bipartite?

You can try to use a depth-first-search or breadth-first-search for exploring the graph.
Que 2. [10] Mark true or false.

- $(2 n+1)^{2}=O\left(n^{2}\right)$.
- $f(n)=O(g(n)) \Longrightarrow 2^{f(n)}=O\left(2^{g(n)}\right)$.

Prove that if $f(n)=O(f(n / 2))$ then there is a polynomial function $g(n)$ such that $f(n)=O(g(n))$.

Que 3. $[10+10] \operatorname{Part}(\mathrm{a})$. Let G be a directed graph with $N+1$ vertices, for a large number N. Imagine the vertices to be points on the number line. That is, the vertices are indexed $0,1,2,3, \ldots, N$ For each $i \geq 2$, we have two edges going out of the vertex i - one going into $i-1$ and the other into $i-2$. Moreover, there is one edge from 1 to 0 . Show that the number of distinct paths from vertex N to vertex 0 is at least $2^{\lfloor N / 2\rfloor}$.

Part (b). Consider the following recursive procedure to compute the fibonacci series.
function Fibonacci(n):
if $n=0$ or $n=1$: return 1 ;
else: return Fibonacci(n-1)+Fibonacci(n-2);

Using part (a) show that this procedure takes $\Omega\left(2^{\lfloor N / 2\rfloor}\right)$ time to compute Fibonacci(N).
Que 4. [10] Prove the following. In a party with 100 people, there must at least two people who have the same number of friends in the party.

Que 5. [10] Consider the following algorithm.

```
input: a positive number n;
i\leftarrow2;
while(i\leqn):
    i\leftarrow2\timesi;
end while
```

The number of iterations the algorithm makes is $O(?)$.

Que 6. [10] Let a class have 25 students. Show that the probability that at least two students in the class will have the same birthday is at least $1 / 2$. (Ignore February 29 and assume that each student got a birthday uniformly randomly and independently from the 365 possible dates.)

