
CS601: Algorithms and Complexity 2019-20 Sem I

Self-assessment Quiz
Total Marks: 80

Note. You are supposed to solve these problems without any discussions with anyone. Try to write your
answers succinctly.

Que 1. [20] A graph is called bipartite if its vertex set can be partitioned into two parts, say V1 and V2,
such that all the edges connect a vertex from V1 to a vertex from V2. Let us say we are given a graph by
its adjacency matrix. Can you design an algorithm which can test whether the graph is bipartite? Formally
argue that your algorithm is correct.

Hint: Start by assuming that the graph is indeed bipartite with V1, V2 as the two parts. Pick an arbitrary
vertex v, which we can assume belongs to V1 (why?). Now, any neighbor of v should belong to V2. Similarly,
for any vertex u ∈ V2, any neighbor of u must belong to V1. This way you can try to mark all the vertices
as either belonging to V1 or V2. Now, how would you detect if the graph was not actually bipartite?

You can try to use a depth-first-search or breadth-first-search for exploring the graph.

Que 2. [10] Mark true or false.

• (2n + 1)2 = O(n2).

• f(n) = O(g(n)) =⇒ 2f(n) = O(2g(n)).

Prove that if f(n) = O(f(n/2)) then there is a polynomial function g(n) such that f(n) = O(g(n)).

Que 3. [10+10] Part(a). Let G be a directed graph with N + 1 vertices, for a large number N . Imagine
the vertices to be points on the number line. That is, the vertices are indexed 0, 1, 2, 3, . . . , N For each i ≥ 2,
we have two edges going out of the vertex i – one going into i− 1 and the other into i− 2. Moreover, there
is one edge from 1 to 0. Show that the number of distinct paths from vertex N to vertex 0 is at least 2bN/2c.

Hint: Observethattherearetwopathsfromvertexitovertexi−2.
Itsufficestocountonlyasubsetofallpaths.

Part (b). Consider the following recursive procedure to compute the fibonacci series.

function Fibonacci(n):
if n = 0 or n = 1: return 1;
else: return Fibonacci(n-1)+Fibonacci(n-2);

Using part (a) show that this procedure takes Ω(2bN/2c) time to compute Fibonacci(N).

Que 4. [10] Prove the following. In a party with 100 people, there must at least two people who have the
same number of friends in the party.

Que 5. [10] Consider the following algorithm.

1

input: a positive number n;
i← 2;
while(i ≤ n):
i← 2× i;

end while

The number of iterations the algorithm makes is O(?).

Que 6. [10] Let a class have 25 students. Show that the probability that at least two students in the class
will have the same birthday is at least 1/2. (Ignore February 29 and assume that each student got a birthday
uniformly randomly and independently from the 365 possible dates.)

Hint:

Thinkabouttheprobabilitythatallofthemhavedifferentbirthdays.

2

