CS601: Algorithms and Complexity

2019-20 Sem I

Self-assessment Quiz

Total Marks: 80

Note. You are supposed to solve these problems without any discussions with anyone. Try to write your answers succinctly.

Que 1. [20] A graph is called bipartite if its vertex set can be partitioned into two parts, say V_1 and V_2 , such that all the edges connect a vertex from V_1 to a vertex from V_2 . Let us say we are given a graph by its adjacency matrix. Can you design an algorithm which can test whether the graph is bipartite? Formally argue that your algorithm is correct.

Hint: Start by assuming that the graph is indeed bipartite with V_1, V_2 as the two parts. Pick an arbitrary vertex v, which we can assume belongs to V_1 (why?). Now, any neighbor of v should belong to V_2 . Similarly, for any vertex $u \in V_2$, any neighbor of u must belong to V_1 . This way you can try to mark all the vertices as either belonging to V_1 or V_2 . Now, how would you detect if the graph was not actually bipartite?

You can try to use a depth-first-search or breadth-first-search for exploring the graph.

Que 2. [10] Mark true or false.

- $(2n+1)^2 = O(n^2)$.
- $f(n) = O(g(n)) \implies 2^{f(n)} = O(2^{g(n)}).$

Prove that if f(n) = O(f(n/2)) then there is a polynomial function g(n) such that f(n) = O(g(n)).

Que 3. [10+10] Part(a). Let G be a directed graph with N + 1 vertices, for a large number N. Imagine the vertices to be points on the number line. That is, the vertices are indexed $0, 1, 2, 3, \ldots, N$ For each $i \ge 2$, we have two edges going out of the vertex i – one going into i - 1 and the other into i - 2. Moreover, there is one edge from 1 to 0. Show that the number of distinct paths from vertex N to vertex 0 is at least $2^{\lfloor N/2 \rfloor}$.

Hint: .2. *i* xetree to vertex if the vertex i = 2. Also be the vertex i = 2.

It suffices to count only a subset of all paths.

Part (b). Consider the following recursive procedure to compute the fibonacci series.

function Fibonacci(n): if n = 0 or n = 1: return 1; else: return Fibonacci(n-1)+Fibonacci(n-2);

Using part (a) show that this procedure takes $\Omega(2^{\lfloor N/2 \rfloor})$ time to compute Fibonacci(N).

Que 4. [10] Prove the following. In a party with 100 people, there must at least two people who have the same number of friends in the party.

Que 5. [10] Consider the following algorithm.

input: a positive number n; $i \leftarrow 2$; while($i \le n$): $i \leftarrow 2 \times i$; end while

The number of iterations the algorithm makes is O(?).

Que 6. [10] Let a class have 25 students. Show that the probability that at least two students in the class will have the same birthday is at least 1/2. (Ignore February 29 and assume that each student got a birthday uniformly randomly and independently from the 365 possible dates.)

Hint: .avaluation of them have different birthdays. This about the probability that all of them have different birthdays.