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Part 1 Que 1. We have n TAs and k courses. For each TA, we are given a list of suitable courses. A TA
is either a PhD or an Mtech student. Each course has a specific requirement, which can be in one of the
following forms:

• at least d PhD TAs and at least b Mtech TAs.

• at least c TAs in total, out of which at least b should be from PhD

• at least b TAs.

We want to check whether it is possible to fulfill requirements of every course and if it is possible then find
a TA allocation. Show that there is a polynomial time algorithm for this problem. One way to do that is to
convert any instance of this problem into an instance of bipartite matching and use the bipartite matching
algorithm (no need to describe the bipartite matching algorithm).

Answer. First, for any course requiring b TAs in total, we will create b TA positions required to be fulfilled.
The idea is to create a bipartite graph where there will be a vertex for each TA and also a vertex for each TA
position. If a TA X is eligible for a TA position Y , then we add an edge between X and Y . Let’s describe
the edges of the graph in more detail. We will consider the three given forms in which a course can give its
requirement.

• Suppose a course requires at least d PhD TAs and at least b Mtech TAs. We will create d + b vertices
corresponding to these TA positions. Naturally, each of the d PhD TA positions will be connected
to all PhD TAs who are eligible for this course. Similarly, each of the b Mtech TA positions will be
connected to all Mtech TAs who are eligible for this course.

• Suppose a course requires at least c TAs in total, out of which at least b should be from PhD. Create
b vertices for PhD TA positions and connect each of them to all the PhD TAs who are eligible for this
course. Then create c− b vertices for general TA positions and connect each of them to both PhD and
Mtech TAs who are eligible for this course.

• Suppose a course requires at least b TAs. Then simply create b vertices for general TA positions and
connect each of them to both PhD and Mtech TAs who are eligible for this course.

Clearly this graph would be bipartite. Any matching in this graph will give a valid TA allocation because
a TA will get assigned to at most one TA position and a TA position will get at most one TA. Similarly, any
valid TA allocation will correspond to a matching in the above graph. Thus, to see whether it is possible
to fulfill all the TA requirements, we simply need to compute a maximum matching in the above graph and
check whether all vertices for TA positions have been matched. Since maximum matching can be found in
polynomial time, a desired TA allocation can be found in polynomial time.
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Part 1 Que 2. This problem has multiple parts. Even if you are not able to solve initial parts, you can
assume them and solve the later parts.

Consider the problem of finding the kth smallest number from a given set of distinct numbers. One can
do this easily in O(n log n) time via sorting. We want to find an O(n) time algorithm. Let us propose the
following randomized algorithm, called quickselect. It takes as input an array of integers A , and a number
k.

Quickselect(A, k):
Select a pivot element uniformly randomly from A, say it is p.
Compare p with every number in A and generate two arrays:
L : numbers in A which are less than p.

Let |L| = `.
G : numbers in A which are greater than p.
If ` = k − 1 then return p.
If ` < k − 1 then

return Quickselect(G, k − `− 1).
If ` > k − 1 then

return Quickselect(L, k).

We want to show that the expected number of comparisons in the Quickselect algorithm will be O(n). For
any two indices i < j, consider the ith smallest element ai and the jth smallest element aj in the array.
We want compute the probability that ai and aj will ever be compared in the algorithm. Note that this
comparison can happen only when one of ai and aj will be selected as pivot. Consider three cases:

1. i < j < k : Prove that the probability that ai and aj will ever be compared in the algorithm is
2/(k− i+ 1). You can prove this inductively. Note that the probability is independent of n [3 marks].

2. i ≤ k ≤ j : Prove that the probability that ai and aj will ever be compared in the algorithm is
2/(j − i + 1). You can prove this inductively. Note that the probability is independent of n [3 marks].

3. k < i < j : This is similar to the first case. The probability in this case will be 2/(j− k+ 1) by similar
arguments. No need to prove anything.

Using the probabilities in above three cases show that the expected number of total comparisons will be
O(n) [4 marks]. You may need to use linearity of expectation.

Answer. As mentioned in the question we will prove the probabilities using induction based on the size
of the array. Note that ai and aj can possibly be compared only when one of them is chosen as the pivot
element. Moreover, when we pick something as a pivot, it will be thrown out and will not be compared with
anything in the later rounds. Hence, a pair of elements can only be compared once in the algorithm.

No marks will be deducted if the base case of the induction is not explicitly discussed. The main argument
is the induction step.

Case 1 (i < j < k): Recall that each of the n elements of the array are equally probable to be the pivot,
i.e., they have probability 1/n of selected as pivot p. Let’s consider various scenarios for the choice of p.

If p = ai or p = aj , then clearly ai and aj will be compared with each other as the pivot is compared
with every other element. Clearly, this will happen with probability 2/n.

If ai < p < aj < ak, then in the next recursive call only elements larger than p will be considered, i.e., ai
will be thrown out. Hence ai and aj can never be compared with each other. Same conclusion can be drawn
when ai < aj < p < ak. The total probability for these events will be (k − i− 2)/n.

If ak < p, then we will go into the recursive call Quickselect(L, k ). The probability for this kind of pivot
is (n − k)/n. L will contain both ai and aj and hence, there is a possibility that they can be compared
later on. By induction hypothesis, the probability that ai and aj will be compared in the recursive call
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Quickselect(L, k) is 2/(k − i + 1). Note that ai still has rank i in L and ak still has rank k in L, hence, the
same probability expression 2/(k − i + 1) is valid.

If p < ai, then we will go into the recursive call Quickselect(G, k − `− 1 ). The probability for this kind
of pivot is (i− 1)/n. G will contain both ai and aj and hence, again there is a possibility that they can be
compared later on. By induction hypothesis, the probability that ai and aj will be compared in the recursive
call Quickselect(G, k − ` − 1) is 2/(k − i + 1). Note that the new rank of ai in G will be i − ` − 1 and the
new rank of ak in G will be k− `− 1. We can write (k− `− 1)− (i− `− 1) + 1 = k− i+ 1, hence, the same
probability expression 2/(k − i + 1) is valid.

Putting all these cases together, we get the probability that ai and aj will be compared

=
2

n
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n
× 2
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+

i− 1

n
× 2
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+
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=
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For the base case of induction, we need to consider the call after which no further recursive call with ai
and aj present is possible. This will be when n = k and i = 1. In this call, ai and aj will be compared
precisely when the current pivot is ai or aj . Hence, the probability is 2/n = 2/k = 2/(k − i + 1).

Case 2 (i ≤ k ≤ j): Let’s again consider various scenarios for the choice of p.
If p = ai or p = aj , then clearly ai and aj will be compared with each other. Clearly, this will happen

with probability 2/n.
If ai < p < aj , then in the next recursive call, definitely either ai or aj will be thrown out. Hence ai and

aj will never be compared with each other. The probability for this kind pivot will be (j − i− 1)/n.
If aj < p, then we will go into the recursive call Quickselect(L, k ). The probability for this kind of pivot

is (n − j)/n. L will contain both ai and aj and hence, there is a possibility that they can be compared
later on. By induction hypothesis, the probability that ai and aj will be compared in the recursive call
Quickselect(L, k) is 2/(j − i + 1). Note that ai and aj will still have ranks i and j in L, hence, the same
probability expression 2/(j − i + 1) is valid.

If p < ai, then we will go into the recursive call Quickselect(G, k − `− 1 ). The probability for this kind
of pivot is (i− 1)/n. G will contain both ai and aj and hence, again there is a possibility that they can be
compared later on. By induction hypothesis, the probability that ai and aj will be compared in the recursive
call Quickselect(G, k − ` − 1) is 2/(j − i + 1). Note that the new rank of ai in G will be i − ` − 1 and the
new rank of aj in G will be j − `− 1. We can write (k− `− 1)− (i− `− 1) + 1 = k− i+ 1, hence, the same
probability expression 2/(j − i + 1) is valid.

Putting all these cases together, we get the probability that ai and aj will be compared

=
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For the base case of induction, we need to consider the call after which no further recursive call with ai
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and aj present is possible. This will be when n = j and i = 1. In this call, ai and aj will be compared
precisely when the current pivot is ai or aj . Hence, the probability is 2/n = 2/j = 2/(j − i + 1).

Case 3 (k < i < j) : This is similar to the first case. The probability in this case will be 2/(j − k + 1)
by similar arguments.

Expected number of total comparisons. To find the expected number of total comparisons we will
use linearity of expectation. Let’s define a random variable Xi,j which is 1 if ai and aj are compared with
each other and 0 otherwise. We can write

E[Xi,j ] = 1× Pr(Xi,j = 1) + 0× Pr(Xi,j = 0) = Pr(Xi,j = 1) = Pr(ai and aj are compared).

Let X be the total number of comparisons. Clearly,

X =

n∑
i=1

n∑
j=i+1

Xi,j .

Using linearity of expectation,

E[X] =

n∑
i=1

n∑
j=i+1

E[Xi,j ] =

n∑
i=1

n∑
j=i+1

Pr(ai and aj are compared).

Let’s fix k and break this sum into three parts: i < j < k, i ≤ k ≤ j, and k < i < j. We will use the
value of Pr(ai and aj are compared) as derived above for the three cases.

Case 1 (i < j < k):

k−2∑
i=1

k−1∑
j=i+1

Pr(ai and aj are compared) =

k−2∑
i=1

k−1∑
j=i+1

2/(k − i + 1)

=

k−2∑
i=1

(k − i− 1)× 2/(k − i + 1)

≤
k−2∑
i=1

2

= 2(k − 2).

Case 2 (i ≤ k ≤ j):

k∑
i=1

n∑
j=k

Pr(ai and aj are compared) =

k∑
i=1

n∑
j=k

2/(j − i + 1)

There are n− 1 possible values for the difference j − i. If we fix the difference of j and i to a certain value
h, then the maximum possible value of j can be k + h, while the minimum possible value of j is k. Hence,
the number of such pairs (i, j) is at most h + 1. Thus, we can write,

k∑
i=1

n∑
j=k

2/(j − i + 1) ≤
n−1∑
h=1

(h + 1)× 2/(h + 1)

= 2(n− 1).
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Case 3 (k < i < j):

n−1∑
i=k+1

n∑
j=i+1

Pr(ai and aj are compared) =

n∑
j=k+2

j−1∑
i=k+1

Pr(ai and aj are compared)

=

n∑
j=k+2

j−1∑
i=k+1

2/(j − k + 1)

=

n∑
j=k+2

(j − 1− k)× 2/(j − k + 1)

≤
n∑

j=k+2

2

≤ 2(n− k − 1).

Adding the three cases together we get that the expected number of total comparisons is at most 4n.
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Part 1 Que 3. For two binary strings A and B, another string C is called their superposition if C can be
partitioned into two subsequences such that one of the subsequences is A and the other is B. For example,
for A = 011010 and B = 10010, the string C=01010101100 is their superposition. You can see that in the
string C=01010101100, bold letters give you A and light letters give you B.

There are two sources which are generating some kind of repeated signals. Source 1 sends a signal A
of the form x∗ for some binary string x, that is, repetition of x multiple times. For example, if x is 110
then A can be for example, 110110110110110110. Source 2 sends a signal B of the form (y|z)∗ for some
binary strings y and z. That is, B is made by concatenating y and z any number of times, in any order. For
example, if y = 00 and z = 101 then B can be for example, 101000010110110100.

Design an efficient algorithm that takes as input binary strings x, y, and z and another binary string T
and outputs whether T is a superposition of two signals A and B as described above. That is, whether one
can partition T into two subsequences A and B, where A is of the form x∗ and B is of the form (y|z)∗.

Answer. Let x = x1x2 · · ·xp, y = y1y2 · · · yq, and z = z1z2 · · · zr. Let T = T1T2 · · ·Tn.
Let’s try to build a recursive algorithm. Let T have n bits. If T is indeed a superposition of A and B,

then the last bit of T will either come from A or come from B. In case 1, we will try to see if T1T2 · · ·Tn−1
is a superposition of A′ and B where A′ is of the form x∗x1x2 · · ·xp−1 and B is of the form (y|z)∗. In case
2, we will try to see if T1T2 · · ·Tn−1 is a superposition of A and B′ where A is of the form x∗ and B′ is of
the form (y|z)∗y1y2 · · · yq−1 or (y|z)∗z1z2 · · · zr−1 depending on whether Tn matches with yq, or zr, or both.

This motivates us to define the following Boolean variables. For 0 ≤ i ≤ n, 0 ≤ j ≤ p, 0 ≤ k ≤ q,
0 ≤ ` ≤ r, define

XY (i, j, k): supposed to be true if and only if T1T2 · · ·Ti is a superposition of A and B such that A is of
the form x∗x1x2 · · ·xj and B is of the form (y|z)∗y1y2 · · · yk.

XZ(i, j, `): supposed to be true if and only if T1T2 · · ·Ti is a superposition of A and B such that A is of
the form x∗x1x2 · · ·xj and B is of the form (y|z)∗z1z2 · · · z`.

We will compute these variables recursively.

1. Initialize XY (0, 0, 0) and XZ(0, 0, 0) as True.
2. Initialize all other entries as false.
3. for i = 1 to n:
4. for j = 1 to p and for k = 1 to q:
5. XY (i, j, k)←

(
XY (i− 1, j − 1, k) and (Ti == xj)

)
or
(
XY (i− 1, j, k − 1) and (Ti == yk)

)
;

6. for j = 1 to p and for ` = 1 to r:
7. XZ(i, j, `)←

(
XZ(i− 1, j − 1, `) and (Ti == xj)

)
or
(
XZ(i− 1, j, `− 1) and (Ti == z`)

)
;

8. for k = 1 to q:
9. XY (i, 0, k)← XY (i, p, k);
10. for ` = 1 to r:
11. XZ(i, 0, `)← XZ(i, p, `);
12. for j = 0 to p:
13. XY (i, j, 0)← XY (i, j, q) or XZ(i, j, r);
14. XZ(i, j, 0)← XY (i, j, 0);
15. Output XY (n, 0, 0);

The update rule for XY (i, j, k) and XZ(i, j, `) are natural. Let’s go over the updates in boundary cases.
The update in line 9 is done because if a string A is of the form x∗x1x2 · · ·xp then A can also be said to be
of the form x∗. Line 11 has a similar logic. The argument behind Line 13 and 14 is that if a string B is of
the form (y|z)∗y1y2 · · · yq or of the form (y|z)∗z1z2 · · · zr, we can also say that B is of the form (y|z)∗.
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Part 2 Que 1. Suppose we are storing a set of files on a hard disk which has only a sequential access. That
is, to read a certain memory location you have to traverse through all the memory locations before it. Suppose
there arenfiles with their lengths being `(1), `(2), . . . , `(n). If they are stored in the order1, 2, . . . , nthen to
read thekth file, the time it takes will be

k∑
h=1

`(h).

We are also given the access frequencies for the files f(1), f(2), . . . , f(n). We want to arrange the files in an
optimal order i1, i2, . . . , inso that the average access time

n∑
j=1

f(ij)

j∑
h=1

`(ih).

is minimized.
Show that the optimal order is simply the increasing order of`(i)/f(i). You can show this in small steps.

That is, just consider two consecutive files which are not in the correct order, swap them and show that the
average access time goes down.

Answer. Let qth and pth file satisfy `(q)/f(q) > `(p)/f(p). Equivalently, f(q)`(p)−f(p)`(q) < 0. Suppose
the files are ordered such that the qth file comes just before the pth file. Let the average access time for this
order be T . Now, let us swap the pth and qth file. Observe that except these two, all other files will have
the same access time as before. The qth file will get its access time increased by `(p), while the pth file will
get its access time reduced by `(q). Hence, the net change in the average access time is

f(q)`(p)− f(p)`(q) < 0.

That is, the average access time has reduced.
Starting from an arbitrary ordering, we repeatedly do this swap on any two consecutive files with

`(q)/f(q) > `(p)/f(p). Finally, we will get the files ordered in increasing order of `(i)/f(i). Since the
average access time reduces in every swap, we can conclude that increasing order of `(i)/f(i) is better than
every other order.
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Part 2 Que 2. A ministry wants to create a scientific advisory panel which has a representation from
every field. It is a given a list of experts with their areas of expertise. One person can be expert in multiple
areas. They want to find a subset of experts such that every subject area is covered by at least one expert
in the subset.

For example, suppose there are five subject areas A, B, C, D, E. Suppose
P1 is an expert in A, B, C,
P2 is an expert in B, D, E,
P3 is an expert in A, C, D,
P4 is an expert in A, E.
Then P1, P2 is a subset of experts that covers every subject area. But, P1, P3 does not cover every

subject area, it leaves out E.
Show that the following problem is NP-hard: given a list of experts with their areas of expertise and a

number k , is there a subset of k experts that covers every subject area?
You can assume NP-completeness for a problem, only if it was done in the lectures. There were two such

problems, satisfiability and independent set.
Hint: You can start with the assumption that the independent set problem in a graph is NP-complete.

One thing you can try is to relate independent set to vertex cover and then relate vertex cover to the above
problem. Or you can try to directly relate independent set to the above problem.

Answer. Let’s recall the independent set problem. Given a graph G and a number `, is there an indepen-
dent set in G of size `? We are assuming that the independent set problem is NP-complete. We will reduce
the independent set problem to the given problem statement, which we will refer as the experts problem.
That will prove that the experts problem is NP-hard.

Reduction: We start with an instance of the independent set problem, that is a graph G and a number
`. Let the vertices of G be v1, v2, . . . , vn. We will generate an instance EG,` of the experts problem as follows:
(i) for every vertex vi in G, let us create an expert pi, (ii) for every edge (vi, vj) in the graph G, we create a
subject si,j . The subject si,j has exactly two experts pi and pj . Finally let us define k as n− `.

Claim: G has an independent set of size ` if and only if there is a set of k = n− ` experts covering every
subject.

Proving the forward direction of the claim: Let I be an independent set of vertices of size `.
Consider the set of experts {pi : vi 6∈ I}, that is, the complement set of I. Clearly, the set has n− ` experts.
Now, we argue that this set of experts covers every subject area. Take any subject si,j . By construction,
there is an edge (vi, vj) in G. Since I is an independent set, it cannot contain both vi and vj . That means,
at least one of pi and pj will fall into the chosen set of experts (as it is complement of I). Hence, the subject
si,j has at least one expert in the chosen set.

Proving the backward direction of the claim: Let P be a set of k = n− ` experts that covers every
subject area. Consider the set of vertices I = {vi : pi 6∈ P}, that is, the complement set of P . Clearly, I has
` vertices. We argue that I is an independent set. Consider any edge (vi, vj) in G. There is a corresponding
subject si,j by construction. Hence, one of pi and pj must be present in the set of experts P . That means,
at most one of vi and vj can be in I (because it is complement of P ). We have argued that for any edge, at
most one endpoint can be in I. Thus, I is indeed an independent set.

This finishes the reduction.
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Part 2 Que 3. Consider a version of the previous problem where we want to find a panel with minimum
number of experts which will cover every subject area. Since it is NP-hard, we do not expect an efficient
algorithm. Let us consider the following algorithm that can give an approximate solution.

0. Let S be initialized to the set of subjects.
1. Pick an arbitrary subject in S and include all the experts in that subject into your panel.
2. Remove all those subjects from S that are covered by the selected experts.
3. If S is non-empty, go to 1.
4. Output the panel formed.
Let’s run this algorithm on the example given in the previous question. Say, in line 1 we pick the subject

C. Then we include all the experts in C, which are P1 and P3, into our panel. Now, P1 and P3 together
cover A, B, C, D. So, in line 2, we remove these from S and are left with only E. Now, we go back to line 1.
We include all the experts in E, which are P2 and P4, into our panel. Now, E is covered and and S is empty.
We output our panel P1, P3, P2, P4. Note that the optimal solution has only two experts in this example.

Assume that in the given instance, any subject has at most 3 experts. Assuming this prove that the
above algorithm is a 3-approximation algorithm.

Hint: a natural lower bound on the optimal solution can be a set of subjects where no two subjects have
any common experts.

Answer. Let s1, s2, . . . , sk be all the subjects that were picked in line 1 during the algorithm. Observe
that when we pick s1, we remove all those subjects from S that are covered by any expert in s1. That means,
s2 is a subject that is not covered by any expert in s1. In other words, s1 and s2 don’t have any experts
in common. By the same logic, any two subjects in {s1, s2, . . . , sk} cannot have any experts in common.
From this we can conclude that the optimal covering set of experts must have at least k experts because the
subjects s1, s2, . . . , sk all need different experts.

Now, recall that by assumption any subject has at most 3 experts. Hence for each subject in {s1, s2, . . . , sk},
the algorithm includes at most 3 experts into our panel. That means, the algorithm outputs a set with at
most 3k experts.

To conclude, the optimal solution has at least k experts, while the algorithm outputs at most 3k experts.
It follows that the number of experts selected by the algorithm is at most 3 times the optimal number of
experts. Thus, it’s a 3-approximation algorithm.
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