
CS601 Algorithms and Complexity 2021 Jul-Nov

Assignment 2 Solutions
Total Marks: 50

Que 1 [5+5 marks]. We are given a binary encoding scheme for an alphabet of size n. We want to design
an algorithm to test whether it is uniquely decodable or not. A code is said to be not uniquely decodable, if
there are two different strings over the alphabet whose binary encodings are same. Consider two examples
below.

• A→ 11, B → 1100, C → 01, D → 1001, E → 101.

This code is uniquely decodable. Different strings over {A,B,C,D,E} are mapped to distinct binary
encodings.

• A→ 11, B → 110, C → 01, D → 1001, E → 101.

This is not uniquely decodable. ACD, BBC both have the same binary encoding 11011001.

Someone suggests us to build the following directed graph.
Vertices.

V = {w ∈ {0, 1}∗ : w is a nonempty prefix or suffix of an alphabet encoding or w is an alphabet encoding}.

To elaborate, the set of vertices will be corresponding to the set of prefixes and suffixes of the alphabet
encodings. An alphabet encoding of length ` can contribute up to 2` − 1 vertices: ` − 1 prefixes, ` − 1
suffixes, and the encoding itself. A binary string can be a prefix/suffix for multiple alphabet encodings, but
there will be only one vertex for it. For the second encoding scheme above, the vertex set will have ten
vertices labeled {1, 11, 10, 0, 110, 01, 100, 001, 1001, 101}.
Edges.

E = {(w1, w2) : w1w2 is an alphabet encoding} ∪ {(w1, w2) : w1 = αw2 for some alphabet encoding α}.

To elaborate, for a vertex labeled w1 and a vertex labeled w2, there is a directed edge from w1 to w2 if and
only if any of the following is true

• w1w2 is an alphabet encoding.

• w1 = αw2 for some alphabet encoding α.

For the second encoding scheme above, for example, there will be a directed edge from 10 to 01 (because
1001 is D). There will also be a directed edge from 110 to 0 (because 11 is A). And for example, there will
be no edge from 100 to 0 (because neither 1000, nor 10 is an encoding for an alphabet).

• Prove that if there is a path (of nonzero length) from a vertex labeled wi to a vertex labeled wj such
that both wi and wj are alphabet encodings then the encoding scheme is not uniquely decodable.

• Prove that if the encoding scheme is not uniquely decodable then there is a path (of nonzero length)
from a vertex wi to a vertex wj such that both wi and wj are alphabet encodings.

1

Ans 1. In the question, we have confusingly used the word ‘alphabet’ to mean both, a set of characters
and a character. In the following, characters will mean the elements of the alphabet. Word will mean a
sequence of characters. String will mean a sequence of bits.

For any character a, let φ(a) be its binary encoding. For any word S = a1a2 · · · a` over the alphabet, let
φ(S) = φ(a1)φ(a2) · · ·φ(a`) be its binary encoding. When a binary string x is an encoding of a character,
we denote the corresponding character by ψ(x). That is, ψ is the inverse map of φ for character encodings.

Suppose there is a path (of nonzero length) from a vertex labeled wi to a vertex labeled wj such that
both wi and wj are character encodings. We will show that there are two different words S1 and S2 over
the alphabet such that φ(S1) = φ(S2). Let the path have vertices wi, wi+1, wi+2, · · · , wj . To understand
the simple case first, let us assume that all the edges on this path are of the first kind, i.e., wpwp+1 is a
character encoding for every i ≤ p ≤ j−1. In that case, it is straightforward to get two different words: S1 =
ψ(wi) ψ(wi+1wi+2) ψ(wi+3wi+4) · · · ψ(wj−1wj) and S2 = ψ(wiwi+1) ψ(wi+2wi+3) ψ(wi+4wi+5) · · · ψ(wj).
We are assuming j − i is even (the case of odd is similar). Clearly φ(S1) = φ(S2) = wiwi+1wi+2 · · ·wj .

Originally, the above was the simple proof I had in mind. But, at some point Kushagra pointed out that
it’s not enough to have just the first kind of edges. With the addition of second kind of edges, things become
a bit more complicated. The construction of the two words is somewhat similar, but it’s not as clean as
above. We argue via induction. Without induction, perhaps it would be more intuitive, but requires too
much notation.

Before proceeding to the general case, let’s see an example. Let A→ 11, B → 11010, C → 0, D → 1011.
The corresponding graph will have a path 11→ 010→10→ 11. Here the first and the third edge are of the
first kind, while the middle edge is of the second kind. To construct a binary string with two decodings, we
should just put together all the vertices on the path, except the heads of second kind of edges. In the above
example, this would be 11 010 11. The two decodings will be ACD and BA.

Now let us describe the construction in general. We start with a slightly more general claim.

Claim 1.1. If there is a path (of nonzero length) from a vertex labeled wi to a vertex labeled wj such that
wi is a character encoding, then there exist two words S1 and S2 such that

• φ(S1) = φ(S2)wj

• and the first characters in S1 and S2 are different.

Proof. The proof will be based on a induction on the path length.
Base case: The path length is 1. That is, there is an edge from wi to wj . The edge can mean one of two

things: (i) wiwj is an encoding of a character. In this case, define S1 = ψ(wiwj) and S2 = ψ(wi). We get
the claim. (ii) wi = wwj where w is a character encoding. Define S1 = ψ(wi) and S2 = ψ(w). We get the
claim.

Induction hypothesis: The claim is true for any path up to length k − 1.
Induction step: Consider a path of length k, with vertices wi, wi+1, . . . , wi+k. By applying induction

hypothesis on the path (wi, wi+1, . . . , wi+k−1) we get that there exist two words S1 and S2 such that

• φ(S1) = φ(S2)wi+k−1

• and the first characters in S1 and S2 are different.

Now, the edge (wi+k−1, wi+k) can mean one of two things: (i) wi+k−1wi+k is an encoding of a character. In
this case, define S′2 = S1 and S′1 = S2ψ(wi+k−1wi+k). Observe that

φ(S′1) = φ(S2)wi+k−1wi+k = φ(S1)wi+k = φ(S′2)wi+k.

Hence, the two words S′1 and S′2 satisfy the claim.
(ii) wi+k−1 = wwi+k where w is a character encoding. Define S′1 = S1 and S′2 = S2 ψ(w). Observe that

φ(S′1) = φ(S1) = φ(S2)wi+k−1 = φ(S2)wwi+k = φ(S′2)wi+k.

Hence, the two words S′1 and S′2 satisfy the claim.

2

Now, from Claim 1.1, it is straightforward to prove our main statement. Take S1 and S2 as guaranteed
by the claim. If wj is also a character encoding, then S1 and S2 ψ(wj) are two words which are different but
have the same binary encoding φ(S1) = φ(S2)wj .

Now, we prove the other direction. Suppose there are two different words with same encoding. Then we
will show the desired path in the graph. Again it will be convenient to argue via induction. We make the
following stronger claim, which will immediately imply what we want.

Claim 1.2. Suppose there are two words S1 and S2 (with at least two characters in total) such that

• φ(S1) = wiφ(S2), where wi is the label of some vertex, and wi is not equal to the encoding of the first
character of S1.

Then there exists a path in the graph that starts from the vertex wi to a vertex wj, where wj is a character
encoding.

Proof. The proof will be via an induction based on the total number of characters in S1 and S2.
Base case: When total number of characters in S1 and S2 is 2. This is possible in two ways (i) S1 = a

and S2 = b and (ii) S1 = ab and S2 = ε (empty string). In case (i), we have φ(a) = wiφ(b). This means
there will be an edge from wi to φ(b). That edge is the desired path. In case (ii) we have φ(a)φ(b) = wi.
This means there will be an edge from wi to φ(b). That edges is the desired path.

Induction hypothesis: Assume that the claim is true when the total number of characters in S1 and S2 is
at most k + `− 1.

Induction step: We prove the claim for two words S1 = a1a2 · · · a` and S2 = b1b2 · · · bk. By the assumption
in the claim, φ(S1) = wi φ(S2). That means either wi is a prefix of φ(a1) or φ(a1) is a prefix of wi We
consider both the cases one by one.

(i) wi is a prefix of φ(a1). Let φ(a1) = wiwi+1. Clearly there is an edge from wi to wi+1. If wi+1 is a
character encoding, then we already have our path. Otherwise define S′1 = a2a3 · · · a`. Observe that

wi φ(S2) = φ(S1) = φ(a1)φ(S′1) = wiwi+1 φ(S′1).

Hence, φ(S2) = wi+1 φ(S′1). Total number of words in S2 and S′1 is k+ `−1. Applying the claim inductively
on the two words S2, S

′
1, we get that there is path from wi+1 to wj , where wj is a character encoding.

Combining this path with the edge (wi, wi+1) gives a path from wi to wj .
(ii) φ(a1) is a prefix of wi. Let wi = φ(a1)wi+1. Clearly there is an edge from wi to wi+1. If wi+1 is a

character encoding, then we already have our path. Otherwise define S′1 = a2a3 · · · a`. Observe that

φ(a1)φ(S′1) = φ(S1) = wi φ(S2) = φ(a1)wi+1 φ(S2).

Hence, φ(S′1) = wi+1 φ(S2). Total number of words in S′1 and S2 is k+ `−1. Applying the claim inductively
on the two words S′1, S2, we get that there is path from wi+1 to wj , where wj is a character encoding.
Combining this path with the edge (wi, wi+1) gives a path from wi to wj .

Finally we argue our main statement using Claim 1.2. Let there be two different words b1b2 · · · bk and
c1c2 · · · c` which have the same encoding. Without loss of generality, b1 6= c1. Define S1 = b1b2 · · · bk,
wi = φ(c1), S2 = c2 · · · c`. Clearly φ(S1) = wiS2. Hence, from Claim 1.2, we have a path from wi to wj ,
where wi and wj both are character encodings.

3

Que 2 [10 marks]. Recall the taxi scheduling problem discussed in the class. Suppose for the given set
of bookings, minimum number of taxis required is k. Design an algorithm to find a ‘bottleneck’ of size k.
That is, a set of k bookings such that no two of them can be scheduled in the same taxi. Equivalently, an
independent set of size k in the given directed graph.

Hint: It is not an easy question. You might want to look at the algorithm for taxi scheduling more
closely. You might want to first design an algorithm for finding a Hall’s block in a bipartite graph (a subset
S of left vertices with |N(S)| = |S| − k).

Ans 2. Let there be n bookings B1, B2, . . . , Bn. Let us revisit a construction of a bipartite graph discussed
in the class. The left side has n vertices b1, b2, . . . , bn and the right side has n vertices b′1, b

′
2, . . . , b

′
n (no extra

vertices for taxis). We have an edge from bi to b′j if and only if booking Bj can be served after booking Bi
in the same taxi.

We had claimed that if the minimum number of taxis required is k, then the maximum matching size in
this bipartite graph is n−k. To see this, take any taxi allocation with k taxis. For any i, j, if Bj is allocated
immediately after Bi in the same taxi, then we include (bi, b

′
j) in the matching. It is easy to see that it is

indeed a matching. The size of the matching is n− k, because the unmatched vertices on the right side are
exactly those bookings which are the first in their taxis.

For the other direction, take a matching with r edges. The unmatched vertices on the right side are
allocated to be the first bookings in their taxis. That is, we have n − r taxis. For any i, j, If (bi, b

′
j) is in

the matching, then Bj is allocated immediately after Bi in the same taxi. This way we allocate all bookings
with n− r taxis.

Bottleneck from Hall’s block: Once we have established this, it’s easy to get a bottleneck from a Hall’s
block. We postpone the discussion on how to find a Hall’s block. Hall’s block: if in a bipartite graph, the
maximum matching size is n − k, then there exists a set S of left side vertices such that its neighborhood
set N(S) has only |S| − k vertices. Let us propose the following bottleneck set B of bookings:

B = {Bi : bi ∈ S, but b′i 6∈ N(S)}.

Why is it a bottleneck set? Consider two bookings Bi and Bj in B. We claim that Bi and Bj cannot be
served by the same taxi. Because if Bj can be served after Bi in the same taxi then b′j ∈ N(bi) ⊆ N(S).
But, b′j cannot be in N(S) by definition.

What is the size of the bottleneck B? Observe that its size is at least |S| − |N(S)| (because we are
including S and excluding N(S)). But, we know that this quantity is k.

Construction of Hall’s block: Now, we describe how to construct Hall’s block in a bipartite graph and
that will finish the algorithm’s description. We run the augmenting path algorithm on the bipartite graph
to construct a maximum matching. Let its size be n−k. The left and right side both will have k unmatched
vertices each, let these sets be UL and UR.

As usual, direct all the matching edges from right to left and direct all the non-matching edges from left
to right. Start a BFS from all the vertices in UL and collect all the vertices that are reachable from any
vertex in UL. Let the set of reachable vertices on the left side be QL (excluding UL) and on the right side
be QR. Note that QR cannot contain any unmatched vertices, otherwise we would get an augmenting path
from left to right. An augmenting path is not possible because we are already at a maximum matching.
Hence, QR only has matched vertices. Since matching edges go from right to left, all the matched partners
of QR are all reachable, i.e., they are in QL. But, anything in QL can only be reached via their matched
partners. Hence, we conclude |QL| = |QR|. Now, our set S can be defined as QL ∪ UL. From the above
discussion N(S) = QR. Hence, |N(S)| = |S| − |UL| = |S| − k.

4

Que 3 [10 marks]. Given a set of intervals, you need to assign a color to each interval such that any two
intersecting intervals should have different colors. Consider the following algorithm for this problem.

1. Initialize c← 1.

2. Find a largest set of disjoint intervals (can be done via the interval scheduling algorithm).

3. Assign color c to each of these intervals and remove them.

4. If there are any intervals left then update c← c+ 1 and go to line 2.

Give an example where this algorithm fails to color with minimum possible number of colors. To convince
the reader, please show the number of colors used by this algorithm on your example and also a better way
of coloring.

Ans 3. Consider the example (1, 3), (2, 9), (4, 6), (7, 15), (10, 12), (14, 17). We can color it with two colors:
(1, 3), (4, 6), (7, 15) get one color and (2, 9), (10, 12), (14, 17) get the second color.

Now, let us see what will the algorithm give. First we want to find a largest set of disjoint intervals. For
this, let’s use the greedy algorithm for interval scheduling. First we need to sort the intervals in increasing
order of ending times. We get (1, 3), (4, 6), (2, 9), (10, 12), (14, 17), (7, 15). Now, greedily selecting a disjoint
set of intervals, we get (1, 3), (4, 6), (10, 12), (14, 17). So, these four intervals get color 1.

We are left with two intervals (2, 9), (7, 15). We again find the largest set of disjoint intervals from these,
which will simply have one interval (2, 9). The interval (2, 9) will get color 2. Finally, we are left with (7, 15),
which will get color 3.

To conclude, this is an example where the algorithm uses 3 colors, but there is another coloring scheme
with just 2 colors. Hence, the algorithm fails to give an optimal solution.

5

Que 4 [10 marks]. There is an election with N voters and two candidates. To predict the election result,
you select a sample set of k voters as follows:

S ← set of voters
for i = 1 to k

Choose a voter from S uniformly randomly (i.e., each voter has probability 1/|S| of being chosen).
Remove the chosen voter from S.

You assume that each chosen voter tells you their voting preference correctly and thus, you predict the
candidate with the majority vote from the sample set as the winner.

Suppose εN is the winning margin for the winner candidate in the actual election. Prove that if you want
your prediction to be correct with probability at least 1− δ, then it suffices to take k = O(1

ε2 log(1/δ)).

Ans 4. Let us say W is the set of voters who voted for the winner candidate in the actual election and L
is the set of voters who voted for the loser candidate. When we randomly sample k voters as given in the
algorithm, the probability that exactly j sampled voters come from L is

1

N

1

N − 1
· · · 1

N − k + 1
×
(
|L|
j

)(
|W |
k − j

)
× k!.

Here the first product term is probability that a particular given sequence of k voters is sampled. It follows
by the number of ways to choose j voters from the L, number of ways to choose k − j voters from W and
the number of ways to arrange these k voters. The probability is same as(|L|

j

)(|W |
k−j
)(

N
k

) .

Now, let us think about the case when our prediction is wrong. That will happen when k/2 or more
sample candidates are from L. The probability of this happening is

k∑
j=k/2

(|L|
j

)(|W |
k−j
)(

N
k

) .

As the winning margin is εN , we have |W | = N(1 + ε)/2 and |L| = N(1− ε)/2. The probability expression
becomes

k∑
j=k/2

(
N(1−ε/2)

j

)(
N(1+ε/2)
k−j

)(
N
k

) .

On Moodle, it was said that this quantity can be taken as bounded by e−ε
2k/2 (for a proof, see this https:

//www.cse.iitb.ac.in/~rgurjar/CS601/HypergeometricTail.pdf).

Hence we have that the probability of making a wrong prediction is at most e−ε
2k/2. The question asks

for prediction to be correct with probability at least 1 − δ. That is, the probability of wrong prediction
should be at most δ. This can be ensured by choosing k such that

e−ε
2k/2 ≤ δ.

This implies that k ≥ 2 1
ε2 log(1/δ) is good enough for us.

6

https://www.cse.iitb.ac.in/~rgurjar/CS601/HypergeometricTail.pdf
https://www.cse.iitb.ac.in/~rgurjar/CS601/HypergeometricTail.pdf

Que 5 [10 marks]. There is a processor and n jobs {J1, J2, . . . , Jn} which can be potentially scheduled
on it. For 1 ≤ i ≤ n, the job Ji has a processing time ti and a deadline di. If you schedule the job Ji to
start at time t then it will finish on time t+ ti. The jobs can be processed only one at a time. Your goal is
to maximize the number of jobs which can be scheduled before their deadlines.

Note: Clearly, a job should either be finished before its deadline or not scheduled at all. If there is a
subset of jobs which is schedulable, then their schedule can be simply in increasing order of deadlines.

Design an efficient algorithm which takes n, processing times {ti}, deadlines {di} as input and outputs
the maximum number of jobs schedulable before their deadlines.

The values of processing times and deadlines are quite large, so, it is undesirable to have the algorithm
running time proportional to these values. Let T =

∑
i ti and let D be the maximum deadline. Zero marks if

the running time dependence is linear on T or D. For full marks, your running time should be polynomial in
(n, log T, logD). Essentially, it means that you can add/compare the processing times and deadlines. But,
you cannot run a loop with D or T iterations. If you think such an algorithm is not possible, then you can
write that.

Ans 5. This question turned to be much more amazing then I thought earlier. We will discuss four
algorithms for this problem, two DP and two greedy.

DP 1 (zero marks for this solution). As mentioned in the question, any subset of jobs that is schedu-
lable, can be scheduled in increasing order of deadlines. So, let us sort the jobs in increasing order of
deadlines and assume d1 ≤ d2 ≤ · · · ≤ dn. Define f(i, t) to be the maximum number of jobs from first i
jobs {J1, J2, . . . , Ji} that we can schedule and finish within time t. Let’s try to define a recurrence for this
function.

f(i, t) = max

{
f(i− 1, t)

f(i− 1, t− ti) + 1 (consider only if t ≥ di)

Here we have partitioned the possible solutions into two classes: ones which contain Ji and others which
don’t contain Ji. When Ji is not included then we simply need to find maximum number of jobs from
{J1, J2, . . . , Ji−1} that can be finished within time t. When Ji is included, then it has to be scheduled at the
end because it has the highest deadline. This possibility should be consider only if t ≥ di. Then we need to
find the maximum number of jobs from {J1, J2, . . . , Ji−1} that can finished within time t− ti.

Base cases are left for you to fill up. Clearly, f(n,D) is our final answer. The running time of the
algorithm is proportional to n×D, which is not desirable.

DP 2. Again sort the jobs in increasing order of deadlines and assume d1 ≤ d2 ≤ · · · ≤ dn. For k ≤ i, let
h(i, k) be the minimum total time taken by any k schedulable jobs from the first i jobs. Let’s look at the
following example.

Deadlines 3 7 8 13 15 16
Processing times 2 6 2 4 3 1

In the example given above take i = 4 and k = 3. There are four subsets of size 3:

• {J1, J2, J3} is not schedulable because t1 + t2 = 8 is more than d2 = 7.

• {J1, J2, J4} is not schedulable because t1 + t2 = 8 is more than d2 = 7.

• {J1, J3, J4} is schedulable and total time taken is t1 + t3 + t4 = 8.

• {J2, J3, J4} is schedulable and total time taken is t2 + t3 + t4 = 12.

So, among the schedulable subsets the minimum time taken is 8. Hence, h(4, 3) is 8. If no subset of size k
from first i is schedulable then define h(i, k) =∞.

Let’s try to define a recurrence relation for this function.

h(i, k) = min

{
h(i− 1, k) (consider only if k ≤ i− 1)

h(i− 1, k − 1) + ti (consider only if h(i− 1, k − 1) + ti ≤ di)

7

Here we have partitioned the possible solutions into two classes: ones which contain Ji and other which
don’t contain Ji. When Ji is not included, then we simply need to find the minimum time for a set of k
schedulable jobs from first i− 1. When Ji is included, then it has to be scheduled at the end because it has
the highest deadline. Then we need to consider minimum time over all sets of k − 1 schedulable jobs from
first i− 1. and add ti to it. Note that this possibility can be considered only if Ji can be finished within its
deadline, i.e., h(i− 1, k − 1) + ti ≤ di.

Initialization: h(i, 0) = 0 for each 1 ≤ i ≤ n. All other entries are initialized to infinity.
We will compute h(n, k) for each 1 ≤ k ≤ n. Output the maximum value of k such that h(n, k) is finite.

Greedy 1. The algorithm uses a subroutine to test if a set of jobs is schedulable, which is described below.

Sort the jobs in increasing order of their processing times and assume t1 ≤ t2 ≤ · · · ≤ tn.
Maintain a set S of schedulable jobs (initially empty).
for (i = 1 to n)

if {S ∪ Ji} is schedulable then insert Ji in S.

A set of jobs is said to be schedulable, if all the jobs in the set can be scheduled to finish within their
deadlines. To test this, sort the jobs in increasing order of their deadlines. Say, the deadlines in this order
are δ1, δ2, . . . , δk. Let the corresponding processing times be τ1, τ2, . . . , τk. The set of jobs is schedulable if
and only if

for each 1 ≤ j ≤ k, τ1 + τ2 + · · ·+ τj ≤ δj .

This works because if a set of jobs is schedulable then they can be scheduled in increasing order of their
deadlines. The condition is just checking if the j-job finishes within its deadline.

Proof of correctness for Greedy 1. This proof was given by Aniruddha Joshi.
Recall that the jobs are sorted in increasing order of processing times i.e., t1 ≤ t2 ≤ · · · ≤ tn. Let S be

the set of jobs computed by the algorithm. Let O be an optimal size set of schedulable jobs. Suppose S and
O agree on first r − 1 jobs. That is,

S ∩ {J1, J2, . . . , Jr−1} = O ∩ {J1, J2, . . . , Jr−1}.

We consider two possibilities for the r-th job.
(i) Jr 6∈ S and Jr ∈ O. Note that the algorithm will decide to not put Jr into S only if it was not

schedulable together with the jobs selected so far. But, O and S agree on the jobs selected so far. Hence,
Jr cannot be in O.

This leaves us with the only possibility (ii) Jr 6∈ O and Jr ∈ S. Now, let’s try to insert Jr in O. Since O
is an optimal size set, O ∪ {Jr} should not be schedulable. So, let us remove a job Jk from O ∪ {Jr} which
has tk > tr and has the minimum deadline among such jobs. We claim that the new set O′ = O∪{Jr}−{Jk}
is again schedulable. Recall that for any given set of jobs, the best arrangement is in increasing order of
deadlines. Arrange the jobs of O in increasing order of deadlines. When we remove Jk and add Jr, all
the jobs having deadlines after Jk will only see a decrement in their finish times (as Jk is longer than Jr).
So, we only need to worry about jobs in O having deadlines before Jk. By choice of Jk, all these jobs are
actually shorter than Jr. Recall that S and O agree on jobs shorter than Jr. And Jr ∈ S means that Jr was
schedulable with all the jobs in S which are shorter than Jr. So, these jobs will not violate their deadlines
when we insert Jr. Hence O′ is schedulable.

To conclude, we constructed a new optimal size set O′ which agrees with S on one more step. Repeating
this argument again and again, we will get an optimal size set that agrees with S on all jobs.

8

Greedy 2. This algorithm was told to me by Aniruddha. It is also known as Moore’s algorithm.
For a set S of jobs, t(S) will denote the sum of processing times of the jobs in S.

Sort the jobs in increasing order of deadlines and assume d1 ≤ d2 ≤ · · · ≤ dn.
for i = 1 to n:

If t(S) + ti ≤ di
then S ← S ∪ {Ji}.

Else
Let Jj be the job with maximum processing time in Si.
If tj > ti

then S ← S − {Jj} ∪ {Ji}.

To summarize, if Ji can be inserted in S without any deadline violation we do it. Otherwise we try
to remove a job with maximum processing time from S, which is also larger than Ji and replace it with
Ji. Intuitively, S is maintained to be the maximum size set of schedulable jobs that minimizes the total
processing time.

Proof of correctness for Greedy 2. For a schedulable subset S of jobs, let t(S) denote its total processing
time. For a given set of jobs, let Oh be defined as the subset with exactly h jobs, that is schedulable and
minimizes the total processing time. That is, Oh is the set of jobs such that

t(Oh) = min
O
{t(O) : |O| = h and O is schedulable}.

We first prove the following claim.

Claim 1.3. Let h ≥ 2. If the set Oh exists then the set Oh−1 can be obtained by removing the largest
processing time job from Oh.

Proof. Let Jp be the job with largest processing time in Oh. We want to show that Oh−1 = Oh − {Jp}. For
the sake of contradiction, let us assume that the two sets are different. Let Jr be shortest job where the sets
Oh−1 and Oh disagree, i.e., Jr is present in one but not in the other and Jr 6= Jp. Clearly, tr ≤ tp.

Case (i): Jr 6∈ Oh−1 and Jr ∈ Oh. Let’s try to insert Jr in Oh−1. The union might not remain schedulable.
So, let us remove another job Jk from Oh−1 ∪ {Jr} which has tk ≥ tr and has the minimum deadline among
such jobs. We claim that the new set O′h−1 = Oh−1 ∪ {Jr} − {Jk} is schedulable. Recall that for any given
set of jobs, the best arrangement is in increasing order of deadlines. Arrange the jobs of Oh−1 in increasing
order of deadlines. When we remove Jk and add Jr, all the jobs having deadlines after Jk will only see a
decrement (or no change) in their finish times (as Jk is longer than Jr). So, we only need to worry about
jobs in Oh−1 having deadlines before Jk. By choice of Jk, all these jobs are actually shorter than Jr. Recall
that Oh−1 and Oh agree on jobs shorter than Jr. And Jr ∈ Oh means that Jr was schedulable with all the
jobs in Oh−1 which are shorter than Jr. So, these jobs will not violate their deadlines when we insert Jr.
Hence O′h−1 is schedulable. But t(O′h−1) ≤ t(Oh−1). Hence O′h−1 is also an optimal set of size h − 1 and
agrees with Oh on Jr .

Case (ii): Jr ∈ Oh−1 and Jr 6∈ Oh. By exactly the same arguments as above, we can find another job Jk
with tk ≥ tr such that O′h := Oh ∪ {Jr}− {Jk} is schedulable. O′h is also an optimal set of size h and agrees
with Oh−1 on Jr .

To conclude, we can transform Oh−1 and Oh so that they remain optimal and agree on Jr. By repeatedly
applying this argument, we can make Oh−1 and Oh agree on all jobs other than Jp.

Now, using Claim 1.3, we can argue that algorithm Greedy 2 gives us an optimal solution. Let Si denote
the maximum size set of schedulable set of jobs from the first i jobs (sorted w.r.t. deadlines) which minimizes
the total processing time. We inductively argue that after the i-th iteration, the algorithm has computed Si.

If |Si| = |Si−1| + 1 = h, then clearly Ji ∈ Si. Since Ji has the largest deadline, it will be scheduled last
in Si. If Ji can be included with some set of h− 1 jobs from first i− 1 jobs, then clearly it can be included

9

with the optimal set of h− 1 jobs, which is Si−1. And, Si = Si−1 ∪ {Ji}. This is what the first condition in
the algorithm checks.

Now, consider the case when |Si| = |Si−1| = h. There are two possibilities, Ji might or might not be in
Si. If Ji is not in Si then clearly Si = Si−1. Consider the possibility that Ji ∈ Si. If Ji can be included with
some set of h− 1 jobs from first i− 1 jobs, then clearly it can be (and should be) included with the optimal
set of h− 1 jobs from the first i− 1 jobs. Using Claim 1.3, the optimal set of h− 1 jobs can be obtained by
removing the largest job from the optimal set of h jobs, which is Si−1. To conclude, Si can be obtained by
removing the largest job from Si−1 and adding Ji.

10

