
CS601 Algorithms and Complexity Jul-Nov 2021

Homework (No submission)

Lecture 1 (July 29)

• Given two sorted integer arrays (with all distinct numbers in them) of size n, we want to find the
median of the union of the two arrays. Can you find it by accessing only O(log n) entries in the two
arrays.

• Given an array of n integers and an integer S, find a pair of integers in the array whose sum is S. Can
you do it in O(n log n) time?

• Let f : R → R be a convex function that is promised to have a minimizing point. The function f(x)
and its derivative f ′(x) are not given explicitly, but via oracle access. That is, you can give any point
x ∈ R and the oracle will give the values of f(x) and f ′(x). How many queries do you need you find
the point minimizing f(x)?

Lecture 3 (Aug 3)

• Suppose you are given a function Random(k), that on an integer input k, gives you a uniform ran-
dom integer from the range {1, 2, . . . , k}. Using this function, can you generate a uniform random
permutation of {1, 2, . . . , n}, for any given n. That is, each permutation should be the outcome with
probability 1/(n!).

• Design an algorithm to find the minimum and the second-minimum element in an array such that the
total number of comparisons at most n+log n, where n is the array size. Note that we don’t care if the
overall running time is much larger. The goal is to have as small a number of comparisons as possible.
To get a hint, you can check the Repechage rule in Olympics wrestling.

Lecture 4 (Aug 5)

• Write a proof for linearity of expectation.

• Design a randomized algorithm for finding three smallest elements in an array. In each iteration, there
should be a good probability of having only one comparison.

Lecture 5 (Aug 9)

• Prove that for any integer n ≥ 2,
n∑

i=2

1

i
≤ loge n.

• Let X be a random variable which takes values between n and 2n. If its expectation E[X] ≤ n + α,
then using Markov’s inequality show that

Pr[X ≥ n+ kα] ≤ 1/k.
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• Implement the randomized algorithm discussed in the class for finding minimum and second-minimum
elements in an array. To get an estimate of the expected number of comparisons, repeat the algorithm
a few times and take the average of the number of comparisons. See how the expected number of
comparisons is growing with n.

• Can you design a randomized algorithm to find the third-minimum element in an array such that the
expected number of comparisons is n+O(log n).

Lecture 6 (Aug 10)

• In the longest increasing subsequence (LIS) problem, you are given an array of integers and you need to
find a subsequence (a subset, not necessarily contiguous) that is increasing and has the longest length.
Design an O(n2) time algorithm for this.

Here is one way to think about it. If someone already gives you the LIS Sn−1 in the subarray A[1 . . . n−
1], can you use it to find the LIS Sn in the array A[1 . . . n] ? If it so happens that A[n] is larger than
the last element in Sn−1, then we can simply append A[n] to Sn−1 and that will give us Sn. However,
what if it’s not true? We can divide all possible increasing subsequences of A[1 . . . n] into two groups,
one with those which end with A[n], and the second with those which don’t end with A[n]. From the
second group, we already know the longest sequence – it’s Sn−1? What about the first group? May be
we can strengthen the subproblem to give us the longest sequence from the first group as well.

Here is the more general problem we can consider – find Sn that is the LIS in A[1 . . . n] and find Tn that
is the LIS in A[1 . . . n] which ends with A[n]. Now, if Si and Ti are already known for each i ≤ n− 1,
can you compute Sn and Tn?

• We want to find the n-th Fibonacci number Fn in only O(log n) arithmetic operations. The idea is
to reduce it to matrix exponentiation. If you prove the following, the algorithm will be immediately
clear.

There is a 2× 2 matrix M such that [
Fn

Fn−1

]
= Mn−1

[
F1

F0

]
.

Can you say what should be M? Can you compute Mn−1 in O(log n) arithmetic operations?

Lecture 7 (Aug 12)

We saw an iterative approach for the hidden/visible lines problem. We asked if given a solution for n − 1
lines, can we build a solution for n lines. Here are some questions to think about.

• Prove that the total number of intersections between the n-th line and the current set of visible segments
is at most 2.

• Can you do a binary search for these two intersection points, and thus, needing only O(log n) time?

• Once you find the two intersection points, can you update the set of visible segments in O(log n) time?
Do you need a different data structure? Is there a data structure where you can update in O(log n)
time and also do the binary search from the previous step?

• Alternatively, can you design a divide and conquer algorithm for the problem that takes O(n log n)
time overall.

Here are some typical recurrences which are seen in divide and conquer approach. Can you solve them?

• T (n) ≤ 2T (n/2) + 5n2

• T (n) ≤ 3T (n/2) + 7n

• T (n) ≤ 7T (n/2) + 3n2
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Lectures 8, 9 (Aug 16,17)

• Write a code for solving the hidden/visible lines problem discussed in the class using the Divide and
Conquer approach.

• We had seen an O(n1.58) time algorithm for squaring an integer. Does this easily give us an algorithm
for multiplying two integers with the same running time?

• Let us try to directly apply the divide and conquer approach on the integer multiplication problem.
Suppose we want to multiply two n-bit integers a and b. Write them as

a = a12n/2 + a0

b = b12n/2 + b0

The product of the two integers can be written as

ab = a1b12n + (a1b0 + a0b1)2n/2 + a0b0.

Can you compute these three terms a1b1, a1b0 + a0b1, a0b0, using only three multiplications of n/2
bit integers and a few additions/subtractions? If yes, then we will get an O(n1.58) time algorithm.

Hint: Start with multiplying (a0 + a1)(b0 + b1). Which do two other multiplications will you do?

• Going back to the squaring problem, what if divided the integer a into three parts instead of two? Can
we get a better running time?

– Can you find square of an n-bit integer a, using squaring subroutine on six n/3 bit integers and a
few additions/subractions? What’s the running time you get?

– Can you find square of an n-bit integer a, using squaring subroutine on five n/3 bit integers and a
few additions/subtractions? What’s the running time you get?

Divide and conquer exercises

• Matrix Multiplication. Let us say we have 8 numbers a1, a2, a3, a4, b1, b2, b3, b4 and we consider
these seven expressions.

p1 = (a1 + a4)(b1 + b4), p2 = (a3 + a4)b1, p3 = a1(b2 − b4), p4 = a4(b3 − b1)

p5 = (a1 + a2)b4, p6 = (a3 − a1)(b1 + b2), p7 = (a2 − a4)(b3 + b4)

(a) Compute the following four sums. This will be helpful later.

p1 + p4 − p5 + p7, p3 + p5, p2 + p4, p1 − p2 + p3 + p6

Now, we want to apply divide and conquer technique to matrix multiplication. Let A and B be two
n× n matrices, and we want to compute their product C = A× B. The naive algorithm for this will
take O(n3) arithmetic operations. We want to significantly improve this using divide and conquer.

A natural way to split any matrix can be this:

A =

(
A1 A2

A3 A4

)
,

where each Ai is an n/2× n/2 matrix.

(b) Can you express the product matrix C, in terms of A1, A2, A3, A4 and B1, B2, B3, B4.

(c) Design an algorithm for matrix multiplication using divide and conquer which takes O(7log2 n) =
O(nlog2 7) = O(n2.81) time.
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• Dominating points. You are given a list of 2D points. A point (α, β) is said to be dominated by
another point (γ, δ) if α ≤ γ and β ≤ δ. Give an O(n log n) time algorithm to find the number points
that are not dominated by any other point.

• Majority Fingerprints. You are given a collection of n fingerprints. You are also told that more
than (n/2) of these are identical to each other. You are only given access to an equality test, which
takes two fingerprints and tells whether they are identical or not. Using this equality test, can you find
out the one with more than n/2 copies in O(n log n) time?

• Significant inversions. In an array A of integers, a pair is called a significant inversion if i < j and
A[i] > 2A[j]. Design an O(n log n) time algorithm to find the number of significant inversions.

Lecture 10 (Aug 26)

We saw how divide and conquer approach gives better time complexity for integer squaring/multiplication.
In particular, we saw that when we divide the integer into 3 parts instead of 2, we get better time complexity.
Suppose we divide the integer into k parts. Then what is the best recurrence relation you can get?

T (n) = . . . . . . T (n/k) +O(n).

Do you think the multiplicative factor in the above relation can be something linear like k or 2k, or will be
quadratic like k2?

Suppose it is possible possible to get a linear multiplicative factor, say something like 2k. Then let’s take
k = n/2. Does that give T (n) = O(n) ? There must be something wrong here.
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