
CS601 Algorithms and Complexity Jul-Nov 2021

Homework (No submission)

Lecture 11-12 (Aug 30-31)

• Let G(V,E) be a graph with edge weights and V = V1 ∪V2 be a partition of vertices. Let C be the set
of cut edges connecting V1 with V2, i.e.,

C = {(u, v) : u ∈ V1, v ∈ V2}.

Let e∗ be the minimum weight edge in C. Prove that there must exists a minimum weight spanning
tree containing e∗.

• Suppose you are given a set of n course assignments today, each of which has its own deadline. Let the
i-th assignment have deadline di and suppose to finish the i-th assignment it takes `i time. Given that
there are so many assignments, it might not be possible to finish all of them on time. If you finish an
assignment at time ti which is more than its deadline di, then the difference ti−di is called the lateness
of this assignment (if ti < di then the lateness is zero). Since you want to maintain a balance among
courses, you want that the maximum lateness over all assignments is as small as possible. You want to
find a schedule for doing the assignments which minimizes the maximum lateness over all assignments.
Can you show that a greedy algorithm will give you an optimal solution?

– Greedy Strategy 1: Do the assignments in increasing order of their lengths (`i).

– Greedy Strategy 2: Do that assignment first whose deadline is the closest.

– Greedy Strategy 3: Do that assignment first for which di − `i is the smallest.

Two of these strategies don’t work. Give examples to show that they don’t work. One of the strategies
actually work. Prove that it works by arguing that there is an optimal solution which agrees with the
first step of the greedy algorithm.

Example: d1 = 20, `1 = 10, d2 = 40, `2 = 20, d3 = 60, `3 = 30. If the assignments are done in order
(1, 3, 2) then the maximum lateness will be 20 (for assignment 2). If the assignments are done in order
(1, 2, 3) then the maximum lateness will be 0.

• Given a set of intervals, you need to assign a color to each interval such that no two intersecting
intervals have the same color. Design an efficient algorithm find a coloring with minimum number of
colors.

Lecture 13 (Sep 2)

• You are going on a car trip from city A to city B that will take multiple days. On the way, you will
encounter many cities. You plan to drive only during the day time and on each night you will stay in
one of the intermediate cities. Suppose you can drive at most d kilometers in a day. You are given the
distances of the intermediate cities from city A, say, d1, d2, . . . , dn. And distance of B from A is dn+1.
You are also given the costs of staying in various cities for one night, say, c1, c2, . . . , cn. Find a travel
schedule, that is, in which all cities you should do a night stay, such that your total cost of staying is
minimized.

• A subsequence of a string is obtained by possibly deleting some of the characters without changing the
order of the remaining ones. For example, ephn is a subsequence of elephant.

1

A t1 t2 tn B

d1

d2

dn

dn+1

Figure 1:

You are given a string A of length n and another string B of length m (≤ n). If we want to check
whether A contains B as a subsequence, there is greedy algorithm for it: For 1 ≤ i ≤ m, match the
character B[i] with its first occurrence in A after the matching of B[i− 1].

For example, if A = bacbcbabcacba and B = bcbca, then the greedy approach will match B as follows
(shown in red).

bacbcbabcacba

Now, suppose to match with the j-th character in string A, you have to pay a cost pj . And to match
B with a subsequence in A, you have to pay the sum of costs of the matched characters.

In the above example, if the prices for the characters in A were 2, 5, 3, 1, 2, 5, 3, 1, 3, 1, 2, 4, 1 then the
matching bacbcbabcacbaa has cost 2 + 3 + 1 + 2 + 3 = 11. While the matching bacbcbabcacba has cost
only 1 + 2 + 1 + 2 + 1 = 7.

Design an algorithm that given A,B and p1, p2, . . . , pn, can find the minimum cost subsequence in A
that can be matched with B. Ideally your algorithm should run in time O(mn).

• Given an array of integers, you want to find a subset with maximum total sum such that no two
elements in the subset are adjacent. For example, for the array {6, 4, 3, 2, 1, 5}, the desired subset is
{6, 3, 5} with total sum 14. Design an O(n)-time algorithm for this problem, where n is the length of
the array.

• Suppose there are n objects with their weights being w1, w2, . . . , wn and their values being v1, v2, . . . , vn.
You need to select a subset of the objects such that the total weight is bounded by W , while the total
value is maximized. Your algorithm should run in time poly(n,W).

Consider the case when the weights are too large, that is, they are exponential in n. Then the above
algorithm is not really efficient. Suppose on the other hand, then values {v1, v2, . . . , vn} are small. Can
you design an algorithm running in time poly(n,

∑
i vi, logW)?

Lecture 14,15 (Sep 6, 7)

• The naive algorithm to multiply two matrices of dimensions p×q and q×r takes time O(pqr). Suppose
we have four matrices A,B,C,D which are 2×4, 4×3, 3×2, 2×5 respectively. If you multiply ABCD
in the order (AB)(CD), it will take time 2× 4× 3 + 3× 2× 5 + 2× 3× 5 = 84, on the other hand if
you multiply in the order A((BC)D), it will take time 4× 3× 2 + 4× 2× 5 + 2× 4× 5 = 104.

Given matrices A1, A2, . . . , An with dimensions p1 × p2, p2 × p3, . . . , pn × pn+1, design an algorithm to
find the order in which you should multiply A1A2 · · ·An which minimizes the multiplication time.

• Segmented Least Square (Kleinberg Tardos Section 6.3)

• Kleinberg Tardos Chapter 6 Exercise 4

• Kleinberg Tardos Chapter 6 Exercise 19. Can you do it in O(|s| · |x| · |y|) time.

2

Lecture 16-18 (Sep 20-23)

• Let A = {a1, a2, . . . , ak} be an alphabet of size k. You are given a code that maps each letter in A to
a 0-1 string. You have decide whether the code is uniquely decodable. That is, are there two different
strings over A whose encodings are same?

For example, consider the following code: a → 01, b → 010, c → 00, d → 10. Here the two strings bb
and acd have the same encoding. Thus, this code is not uniquely decodable.

For another example, consider the following code: a→ 01, b→ 10, c→ 0100, d→ 110. This is uniquely
decodable. Why? Suppose there are two different strings S1, S2 having same encoding. One of them
(say S1) must start with a and the other (S2) must start with c, because enc(a) is a prefix of enc(c)
and there is no other such pair of letters. Then the next letter in S1 must be one whose encoding starts
with 00, but there is no such letter.

Design an efficient algorithm to decide whether a given code is uniquely decodable.

• Suppose you have a text where there is some letter whose frequency is more than 0.4. Prove that
Huffman coding will map at least one letter to a length 1 encoding (not necessarily the letter with 0.4).

• Suppose we have a black and white image with 106 pixels (black or white). It is represented by a 0-1
string of length 106. Suppose at least 0.9 fraction of the bits are 0. We want to use Huffman coding to
compress the image. Divide this string into 5 lakh chunks of two bits each. Each chunk will be seen as
a character. There are four possible values any two bits can take – 00,01,10,11. Observe that 00 will
be much more frequent than the other three. So, we go with the following code.

00 → 0

10 → 10

01 → 110

11 → 111

There are many such images that we want to compress. The only information we are given is that
each image has at least 0.9 fraction of the bits being 0. We don’t know the exact frequencies of 00,
01, 10, 11. Suppose there is a particular image that just has repeated occurrences of 1 followed by
nine 0’s. For this image, the frequencies of (00,10,01,11) will be roughly like (0.8, 0.2, 0.0, 0.0). Our
coding scheme will give 1.2 bits per character. That means your compressed output will have a size
(12/20) of the original size. What do you think is the worst example of an image with respect to our
coding. Can you give an upper bound on the compression ratio that is guaranteed for every image in
our collection?

What if your collection had images with at least 0.7 fraction of 0’s. What is the guarantee you have
now? Do you always get a compression? If not then can your situation improve if you instead used
chunks of 3 bits?

3

