Homework (No submission)

Lectures 30-32

- Reduce the independent set problem to the vertex cover problem.
- Suppose the following version of knapsack problem is NP-complete. Given a set of integer weights $w_{1}, w_{2}, \ldots, w_{n}$ and target weights W_{1}, W_{2}, is there a subset S of the weights whose sum is between W_{1} and W_{2}, i.e., $W_{1} \leq \sum_{i \in S} w_{i} \leq W_{2}$?
Using this fact, prove that the following load balancing problem is NP-complete. Given a set of integer loads $t_{1}, t_{2}, \ldots, t_{n}$ and a target makespan T, is there a way to distribute all the loads to two machines so that the maximum load on any machine is at most T ?
- Integer programming: Given a set of linear inequalities in variables $x_{1}, x_{2},, x_{n}$, decide if there is an integer solution satisfying all of them simultaneously. For example the set

$$
\begin{array}{r}
0 \leq x_{1}, x_{2} \leq 1 \\
x_{1}-x_{2} \geq 0
\end{array}
$$

has an integer solution (1,0) (and also (1, 1), (0,0$)$).
Show that Integer Programming is NP-hard. You can try a reduction from SAT to this problem. Given a CNF Booelan formula ϕ, you need to generate a set S of linear inequalities and prove that ϕ is satisfiable if and only if the set S has an integer solution.

