CS601 Algorithms and Complexity

Homework (No submission)

Lectures 30-32

- Reduce the independent set problem to the vertex cover problem.
- Suppose the following version of knapsack problem is NP-complete. Given a set of integer weights w_1, w_2, \ldots, w_n and target weights W_1, W_2 , is there a subset S of the weights whose sum is between W_1 and W_2 , i.e., $W_1 \leq \sum_{i \in S} w_i \leq W_2$?

Using this fact, prove that the following load balancing problem is NP-complete. Given a set of integer loads t_1, t_2, \ldots, t_n and a target makespan T, is there a way to distribute all the loads to two machines so that the maximum load on any machine is at most T?

• Integer programming: Given a set of linear inequalities in variables x_1, x_2, x_n , decide if there is an integer solution satisfying all of them simultaneously. For example the set

$$0 \le x_1, x_2 \le 1$$

 $x_1 - x_2 \ge 0.$

has an integer solution (1,0) (and also (1,1), (0,0)).

Show that Integer Programming is NP-hard. You can try a reduction from SAT to this problem. Given a CNF Booelan formula ϕ , you need to generate a set S of linear inequalities and prove that ϕ is satisfiable if and only if the set S has an integer solution.