Homework (No submission)

Lecture 25 (Oct 11)

- Say $1 \geq \epsilon>0$. Find $x \in(0,1)$ where the function $\frac{((1-\epsilon)+x(1+\epsilon))^{2}}{4 x}$ is minimized.
- Say $1 \geq \epsilon>0$. Say a coin gives heads with probability $(1-\epsilon) / 2$. Show that the probability that there will be at least $k / 2$ heads out of k coin tosses is upper bounded by $e^{-\epsilon k}$.
- Given n values, we want to output a value whose rank among the n values is in the range

$$
(n(1-\epsilon) / 2, n(1+\epsilon) / 2)
$$

with probability at least $1-\delta$. Show that it suffices to take a random sample of $O\left(\frac{1}{\epsilon} \log (1 / \delta)\right)$ many values.

- Show the following inequality for $j \geq k / 2$

$$
\frac{\binom{n / 4}{j}\binom{3 n / 4}{k-j}}{\binom{n}{k}} \leq\binom{ k}{j}(1 / 4)^{j}(3 / 4)^{k-j} .
$$

Lecture 26-27 (Oct 12-14)

- Recall the algorithm for minimum cut seen the class and the success probability bound of $2 /(n(n-1))$. Can you argue that the number of minimum cuts in any graph with n vertices is at most $n(n-1) / 2$.
- Let G be an undirected graphs with given weights on the edges. Weight of a cut is the sum of the weights of the cut edges. We want to find a cut with minimum weight. Modify the algorithm discussed in the class to obtain an algorithm for this. Show that the probability of success is at least $2 /(n(n-1))$.

